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Abstract
Background: TGF-beta is a multifunctional growth factor involved in regulating a variety of
cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower
vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin-
and 17alpha, 20beta-dihydroxyprogesterone (DHP)-induced maturation in zebrafish. The aim of
the present study was to investigate the mechanisms underlying this action.

Method: To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/
or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and
cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in
combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1
on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were
performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h.
Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml) for 18 h.
Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the
end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers
specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD) which is involved in DHP
production, follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), the
two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH
(control), were performed.

Results: Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect
of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-
beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose
and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in follicles. On
the other hand, TGF-beta1 had no effect on mPR-alpha mRNA expression and increased FSHR
mRNA levels. Furthermore, hCG upregulated 20beta-HSD, LHR and mPR-beta mRNA levels, but
this stimulatory effect was blocked by TGF-beta1.

Conclusion: These findings suggest that TGF-beta1 acts at multiple sites, including LHR, 20beta-
HSD and mPR-beta, to inhibit zebrafish oocyte maturation.
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Background
Transforming Growth Factor-β1 (TGF-β1) is the prototyp-
ical member of the TGF-β family [1,2]. Members of this
family are implicated in diverse physiological processes,
including reproduction. Three isoforms of TGF-β (TGF-
β1, -β2, and -β3) are expressed in the mammalian ovary
[2-4]. They have been shown to regulate follicle develop-
ment, steroidogenesis, oocyte maturation, ovulation and
follicular atresia [2-4]. There is molecular evidence for the
presence of TGF-β1–3 in fish [5-7]. However, the role of
TGF-β in fish reproduction is not well understood. Studies
in zebrafish have suggested that TGF-β inhibits oocyte
maturation [8]. In the goldfish, TGF-β has been reported
to inhibit ovarian steroid production [9].

Ovarian development in fish is broadly divided into two
major phases: growth and maturation. During oocyte
growth, follicle stimulating hormone (FSH) stimulates
production of estradiol-17β from the ovary. Estradiol-17β
stimulates the production of vitellogenin by the liver.
Vitellogenin is taken up by the developing oocyte and
cleaved to yolk protein, which serves as a nutritional
reserve for the developing embryo [8,10,11]. Oocyte mat-
uration in teleosts is triggered by the release of leutinizing
hormone (LH) from the pituitary. LH stimulates a
number of signaling cascades culminating in the produc-
tion of 17α-hydroxyprogesterone (17α-HP). In the granu-
losa cells, under the action of 20β-hydroxysteroid
dehydrogenase (20β-HSD), 17α-HP is converted to 17α,
20β-dihydroxyprogesterone (DHP), the maturation
inducing hormone (MIH) in cyprinids, such as zebrafish
and goldfish. MIH activates the cytoplasmic maturation
promoting factor (MPF), which is made up of two subu-
nits: cyclin B (a regulatory subunit) and cdc2 (a catalytic
subunit). MIH stimulates the de novo synthesis of cyclin B.
Cyclin B protein binds to cdc2 to form MPF. The newly
formed MPF is activated by phosphorylation of cdc2 on
threonine 161. The active MPF, then, stimulates all the
changes associated with oocyte maturation, such as germi-
nal vesicle break down (GVBD), spindle formation, chro-
mosome condensation and allows the transition from
G2/M phase of meiosis [12-15].

Two isoforms of the MIH receptor, designated as mem-
brane progestin receptor-α (mPR-α) and mPR-β, have
recently been cloned in zebrafish [16]. Microinjection of
zebrafish oocytes with antisense oligonucleotides to
either mPR-α or mPR-β or both receptors has been shown
to block MIH-induced maturation, indicating that both
play a role in zebrafish oocyte maturation [17]. Originally
discovered in sea-trout oocytes, several isoforms of mPR
have also been discovered in humans and other verte-
brates [16-20].

The zebrafish model has been used extensively for studies
on early embryonic development. This model is also very
useful for the investigation of ovarian follicle develop-
ment and maturation because the zebrafish ovary con-
tains ovarian follicles at different stages of development.
We and others have been using zebrafish to examine the
role of TGF-β superfamily in oocyte maturation [8,21-23].
Our previous work has shown that TGF-β1 inhibits
human chorionic gonadotropin (hCG) and MIH-induced
maturation in zebrafish [8]. We have also observed a
decrease in TGF-β1 mRNA expression in maturing folli-
cles. These findings suggest that TGF-β1 may play a role in
preventing premature oocyte maturation in zebrafish. The
present study is an attempt to elucidate the mechanisms
underlying the inhibitory effect of TGF-β1 by identifying
the potential target genes of TGF-β1. We report here our
recent findings on the effect of TGF-β1 on the important
effectors of oocyte maturation in zebrafish, including:
20β-HSD, LHR, mPR-α, and mPR-β.

Materials and methods
Animals
Adult zebrafish, Danio rerio, were purchased from a local
pet supplier (Fish & Bird Emporium, Brampton, ON) and
maintained in 10 L tanks of an AHAB System(Aquatic
Habitats, FL) at 26°C, under a 14-h light, 10-h dark pho-
toperiod. The fish were fed twice daily with tropical fish
food and supplemented with freshly hatched brine
shrimp two or three times a week. Experiments were per-
formed according to the Guide to the Care and Use of Exper-
imental Animals published by the Canadian Council on
Animal Care.

In vitro culture of zebrafish follicles
Female zebrafish that have a full-grown ovary were anes-
thetized using 3-aminobenzoicacid ethyl ester (Sigma-
Aldrich Canada Inc., Oakville, ON) and decapitated. The
ovaries were removed and follicles greater than 0.52 mm
in diameter were collected, since previous studies in the
zebrafish have shown that only follicles of this size can
undergo maturation in vitro in response to hormones
[21]. Approximately 20 follicles were placed into each
well of a 24-well culture plate and pre-treated at 26°C in
either 1 ml of modified Cortland's medium (MCM) or
MCM + chemicals such as Actinomycin D or Cyclohexam-
ide (Sigma-Aldrich, Mississauga, ON) for 2 hours. Pre-
treated follicles were then incubated with the control
medium, human recombinant TGF-β1 (R&D Systems,
Minneapolis, MN), hCG (kindly provided by Dr. A. F. Par-
low, National Hormone and Peptide Program, Torrance,
CA), MIH (17α, 20β-DHP;Sigma-Aldrich Canada), either
alone or in combination, as previously described [8]. Mat-
uration was scored after 18 hours of incubation. Follicles
that underwent germinal vesicle breakdown (GVBD)
could be identified by their acquired translucency.
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Total RNA extraction
Approximately 80 follicles per treatment group were used
for RNA extraction. Total RNA was extracted using an
RNeasy Mini kit (Qiagen Inc., Mississauga, ON) according
to the manufacturer's suggested protocol. The RNase-free
deoxyribonuclease Set (Qiagen) was also used during
RNA isolation to remove any potential genomic DNA
contamination.

Reverse Transcription (RT) and polymerase chain reaction 
(PCR)
Five micrograms of total RNA were reverse transcribed to
cDNA at 37°C for 1.5 h in a total volume of 50 µl as pre-
viously described [21]. PCR was carried out in the pres-
ence of 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 2.0 mM
MgCl2, 50 µM deoxynucleotide triphosphate, 1U Hotstar
Taq (Qiagen) and 5 pmol primers. The primers for 20β-
HSD, FSHR, LHR, mPR-α and mPR-β were designed
according to the sequences from GenBank (Table 1). The
semi-quantitative RT-PCR was validated by peforming
PCR reactions for different cycles to determine the cycle
number that generated half maximal PCR product for
each gene studied. PCR was carried out on an Eppendorf
Master Cycler (Eppendorf AG, Hamburg, Germany) with
the cycling profile: 20 s at 94°C, 30 s at 60–65°C
(depending on the primer sets used), 30 s at 72°C fol-
lowed by a 7-minute final extension at 72°C. The PCR
products were electrophoresed on 1.5% agarose gels and
visualized by ethidium bromide staining. The spot density
of each PCR product was determined using the Fluorchem
v2.0 Software (Alpha Innotech Corporation, San Leandro,
CA). GAPDH was used as an internal control to normalize
the variation in mRNA concentration in the RT reaction.
The mRNA level of each gene was first normalized with
the GAPDH level and then expressed as percent of the
control.

Statistical Analysis
All values are expressed as mean ± SEM of 3–4 replicates
in one representative experiment. All experiments were

performed three times to confirm the results using differ-
ent batches of animals. To determine the statistical differ-
ence among different groups at the same time point,
multiple group comparisons were performed by one-way
ANOVA, followed by a Student-Newman-Keuls multiple
group comparisons test, using the GraphPad InStat Soft-
ware (GraphPad Inc., San Diego, CA). P < 0.05 was con-
sidered significant.

Results
Effects of transcriptional and translational inhibitors on 
final oocyte maturation
To determine if the effect of TGF-β on oocyte maturation
requires transcription and/or translation, follicles were
pretreated with cyclohexamide, an inhibitor of transla-
tion, or actinomycin D, an inhibitor of transcription. Pre-
treatment with cyclohexamide completely blocked hCG-
and MIH-induced oocyte maturation. Pretreatment with
actinomycin D blocked hCG-, but not MIH-, induced
oocyte maturation (Fig. 1A). Interestingly, the inhibitory
effect of TGF-β1 on MIH-induced maturation was par-
tially reversed in the presence of actinomycin D (Fig. 1B),
suggesting that the inhibitory effect of TGF-β1 on oocyte
maturation involves in part transcriptional regulation.

Semi-quantitative RT-PCR Validation
Semi-quantitative RT-PCR assays were developed to exam-
ine the effect of TGF-β1 on the mRNA expression of 20β-
HSD, FSHR, LHR, mPR-α and mPR-β. PCR assays were
performed using ovarian cDNA as template for varying
cycle numbers and spot densities of the resulting products
were measured. A cycle number within the exponential
phase of the amplification curve was chosen for quantify-
ing the expression of each gene in subsequent experi-
ments. Accordingly, 20, 23, 30, 31, 33 and 32 cycles of
PCR for GAPDH, 20β-HSD, FSHR, LHR, mPR-α and mPR-
β, respectively, were selected as the optimal cycle numbers
for measuring the levels of mRNA expression (Fig. 2).

Table 1: List of primers and their sequences

Gene Sequence (5'-3') Accession #

20β-HSD Forward: TGC ACG AGT GGT CAA TGT GTC
Reverse: ACT AGC TGT CCA TGC GGC TCT

AF298898

FSHR Forward: GGA TTC TTC ACC GTC TTC TCC
Reverse: TGT AGC TGC TCA ACT CAA ACA

AY278107

LHR Forward: GGC GAA GGC TAG ATG GCA CAT
Reverse: TCG CCA TCT GGT TCA TCA ATA

AY424302

mPR-α Forward: CAG CGC CTA CTT CTT CTC GT
Reverse: CAC TGC ATC ATG AGC CAA AT

AY149121

mPR-β Forward: ACA ACG AGC TGC TGA ATG TG
Reverse: ATG GGC CAG TTC AGA GTG AG

AY14920
Page 3 of 11
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2005, 3:53 http://www.rbej.com/content/3/1/53
Effects of transcriptional and translational inhibitors on oocyte maturationFigure 1
Effects of transcriptional and translational inhibitors on oocyte maturation. Ovarian follicles were pre-treated for 2 hours with 
1 mg/ml Actinomycin D, Cyclohexamide or medium (untreated) and then incubated with: (A) Medium only (control), TGF-β1 
(10 ng/ml), hCG (100 IU/ml), or a combination of hCG and TGF-β1 or (B) Medium only (control), TGF-β1 (10 ng/ ml), MIH 
(100 ng/ml) or a combination of MIH and TGF-β1 for 18 hours. The rate of maturation was scored as percentage of follicles 
that underwent GVBD. Data represent the mean ± SEM of one representative experiment with four replicates. Different letters 
denote statistical significance (P < 0.05).
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Validation of semi-quantitative RT-PCR for GAPDH (A), 20β-HSD (B), FSHR (C), LHR (D), mPR-α (E) and mPR-β (F)Figure 2
Validation of semi-quantitative RT-PCR for GAPDH (A), 20β-HSD (B), FSHR (C), LHR (D), mPR-α (E) and mPR-β (F). PCRs 
were performed using zebrafish ovarian cDNA as the template, amplified for varying cycle numbers and the density of the PCR 
products was quantified. Each value represents the mean ± SEM of three replicates in one representative RT-PCR. Represent-
ative ethidium bromide stained gel pictures were included. C = negative control; number on each lane represents the number 
of PCR cycles performed.

B.

D.

E. F.

A.

15 20 25 30 35 40

C.

4035302520
4035302520

4035302520 4035302520

GAPDH 20ß-HSD

FSHR LHR

PR-α PR-ß

C 12 14 16 18 20 22 24 26 28 30

0

10

20

30

40

50

0 10 20 30

Number of cycles

S
p

o
t

d
en

si
ty

(X
1

0
0
0

)

0

10

20

30

40

0 10 20 30 40

Number of cycles

S
p

o
t

d
en

si
ty

(X
1

0
0
0

)

0

10

20

30

40

50

0 10 20 30 40

Number of cycles

S
p

o
t

d
en

si
ty

(X
1

0
0
0

)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40

Number of cycles

S
p

o
t

d
en

si
ty

(X
1

0
0
0

)

0

1

2

3

4

5

6

7

0 10 20 30 40

Number of cycles

S
p

o
t

d
en

si
ty

(X
1

0
0
0

)

0

2

4

6

8

10

12

14

16

0 10 20 30 40

Number of cycles

S
p

o
t

d
en

si
ty

(X
1

0
0
0

)

C

C
C

CC
Page 5 of 11
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2005, 3:53 http://www.rbej.com/content/3/1/53
Effect of TGF-β1 on the mRNA expression of 20β-
Hydroxysteroid dehydrogenase
To test whether TGF-β1 affects the mRNA expression of
20β-HSD, a time course study was performed where folli-
cles were treated with 10 ng/ml of TGF-β1 for 2, 6, 12 and
24 hours. A set of untreated follicles was included for each
time point as controls. Total RNA was extracted and RT-
PCRs were performed. A time-dependant decrease in 20β-
HSD mRNA expression relative to control levels was
found in TGF-β1 treated follicles. A significant inhibitory
effect was observed at 24 hours of treatment (Fig. 3A). A
dose-response study was performed where follicles were
treated with increasing doses of TGF-β1 (0, 0.1, 1 and 10
ng/ml) for 18 hours. Total RNA was extracted from each
set of treated follicles and subjected to RT-PCR analyses. A
dose-dependant decrease in 20β-HSD expression in
response to TGF-β1 treatment was found (Fig. 3B). The
strongest inhibition was seen upon treatment with 10 ng/
ml of TGF-β1. Finally, the combinational effect of hCG
and TGF-β1 on 20β-HSD mRNA expression was tested.
Follicles were incubated with control medium, hCG (100
IU/ml), TGF-β1 (10 ng/ml), or hCG plus TGF-β1, for 18
hours. Treatment with hCG resulted in an increase in 20β-
HSD mRNA levels. However, treatment with TGF-β1
decreased basal and hCG-induced 20β-HSD mRNA levels
(Fig. 3C).

Effect of TGF-β1 on the mRNA expression of follicle 
stimulating hormone receptor
Treatment with TGF-β1 resulted in a significant increase in
FSHR mRNA levels from 6 to 18 hours after treatment,
with the maximal stimulation at 12 hours post treatment
(Fig. 4A, B). The stimulatory effect of TGF-β1 on FSHR
mRNA expression was observed for all doses tested (Fig.
4B). Treatment with hCG had no significant effect on
basal FSHR mRNA expression when compared to the con-
trol (Fig. 4C). Similarly, hCG did not affect TGF-β1-
induced FSHR mRNA levels (Fig. 4C).

Effect of TGF-β1 on the mRNA expression of the 
luteinizing hormone receptor
TGF-β1 significantly decreased LHR mRNA expression at
18 and 24 hours after treatment, but had no effect at 2 to
12 hours post treatment (Fig. 5A, B). At 18 hours after
treatment, TGF-β1 inhibited LHR mRNA expression in a
dose-dependant manner (Fig. 5B). Treatment with hCG
increased LHR mRNA levels. However, when TGF-β1 was
added together with hCG, the stimulatory effect of hCG
on LHR mRNA expression was blocked (Fig. 5C).

Effect of TGF-β1 on the mRNA expression of membrane 
progestin receptors
No significant effect of TGF-β1 on mPR-α mRNA expres-
sion was observed. The time course study showed no sig-
nificant difference in the mRNA expression of mPR-α at

TGF-β1 inhibits mRNA expression of 20β-HSDFigure 3
TGF-β1 inhibits mRNA expression of 20β-HSD. (A) Follicles 
were treated with control medium or 10 ng/ml of TGF-β1 
for 2, 6, 12 and 24 hours. (B) Follicles were treated with dif-
ferent concentrations (0, 0.1,1 and 10 ng/ml) of TGF-β1 for 
18 hours. (C) Follicles were treated with control medium, 
hCG (100 IU/ml), TGF-β1 (10 ng/ml), or hCG+ TGF-β1 for 
18 hours. Total RNA was extracted and subjected to RT-
PCR using primers for 20β-HSD and GAPDH. Each value 
represents the mean ± SEM of three replicates in one repre-
sentative RT-PCR reaction. 20β-HSD mRNA levels are 
expressed as percent of control after normalized with the 
GAPHD levels. Different letters above the bars denote sta-
tistical significance (P < 0.05). *, P < 0.05 vs. control. The 
insets show representative ethidium bromide stained gels. 
GAPDH gels are the same for Figs. 4-7.
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TGF-β1 stimulates FSHR mRNA expressionFigure 4
TGF-β1 stimulates FSHR mRNA expression. (A) Follicles 
were incubated with control medium or 10 ng/ml of TGF-β1 
for 2, 6, 12 and 24 hours. (B) Follicles were treated with dif-
ferent concentrations (0, 0.1,1 and 10 ng/ml) of TGF-β1 for 
18 hours. (C) Follicles were treated with medium (control), 
hCG (100 IU/ml), TGF-β1 (10 ng/ml), or a combination of 
hCG and TGF-β1 for 18 hours. At the end of each incuba-
tion, total RNA was extracted and reverse transcribed. PCR 
was carried out using primers for FSHR and GAPDH. Each 
value represents the mean ± SEM of three replicates in one 
representative RT-PCR. Statistical significance (P < 0.05) is 
indicated by either an * or a different letter. The insets show 
the representative ethidium bromide stained gels.
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TGF-β1 suppresses LHR mRNA expressionFigure 5
TGF-β1 suppresses LHR mRNA expression. Follicles were 
treated with (A) 10 ng/ml of TGF-β1 for 2, 6, 12 and 24 
hours; (B) 0.1, 1, or 10 ng/ml of TGF-β1 for 18 hours; and 
(C) hCG (100 IU/ml), TGF-β1 (10 ng/ml), either alone or in 
combination, for 18 hours. Each value represents the mean ± 
SEM of three replicates in one representative RT-PCR. Dif-
ferent letters denote statistical significance (P < 0.05). The 
insets show the original ethidium bromide stained gels.

A.

B.

C.

L
H

R
m

R
N

A
le

v
el

s

(
%

o
f

co
n

tr
o

l)

a

b
b

c

0

20

40

60

80

100

120

[TGF-ββββ1], ng/ml

0 0.1 1 10

*

0

50

100

150

2h 6h 12h 24h

control

TGF-β

L
H

R
m

R
N

A
le

v
el

s

(
%

o
f

co
n

tr
o

l)

0

20

40

60

80

100

120

140

160

L
H

R
m

R
N

A
le

v
el

s

(
%

o
f

co
n

tr
o

l)

control hCG hCG+TGF-β TGF-β

b

a

a

c

Page 7 of 11
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2005, 3:53 http://www.rbej.com/content/3/1/53
TGF-β1 has no effect on mPR-α mRNA expressionFigure 6
TGF-β1 has no effect on mPR-α mRNA expression. Follicles 
were incubated with (A) 10 ng/ml of TGF-β1 for 2, 6, 12 and 
24 hours; (B) different concentrations of TGF-β1 for 18 
hours; and (C) medium only (control), hCG (100 IU/ml), 
TGF-β1 (10 ng/ml) or hCG + TGF-β1 for 18 hours. Each 
value represents the mean ± SEM of three replicates in one 
representative RT-PCR. The insets show representative 
ethidium bromide stained gels. Neither hCG nor TGF-β1 had 
an effect on mPR-α mRNA expression.
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TGF-β1 downregulates mPR-β mRNA expressionFigure 7
TGF-β1 downregulates mPR-β mRNA expression. (A) Time 
course study of the effect of TGF-β1 on mPR-β mRNA 
expression. Follicles were treated with 10 ng/ml of TGF-β1 
for 2, 6, 12 and 24 hours. (B) Follicles were treated with dif-
ferent concentrations (0, 0.1,1 and 10 ng/ml) of TGF-β1 for 
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any of the time points examined (Fig. 6A). Similarly, treat-
ment with different concentrations of TGF-β1 for 18
hours did not result in a significant change in mPR-α
mRNA levels (Fig. 6B). Neither hCG nor TGF-β1 had a sig-
nificant effect on mPR-α mRNA expression (Fig. 6C). In
contrast to mPR-β, similar treatment with TGF-β1 resulted
in a dose- and time-dependent inhibition of mPR-β
mRNA levels. The inhibitory effect was observed at 18 and
24 hours after treatment and all doses of TGF-β1 tested
caused a significant decrease in mPR-β mRNA levels (Fig.
7A, B). Incubation of follicles with hCG resulted in a
strong stimulation of mPR-β mRNA expression. The stim-
ulatory effect of hCG on mPR-β mRNA expression of was
partially blocked by TGF-β1 (Fig. 7C).

Discussion
Currently, little is known about the role of TGF-β in regu-
lating ovarian functions in lower vertebrates, such as fish.
Recent studies have suggested that TGF-β inhibits steroid
production in the goldfish ovary [9] and oocyte matura-
tion in zebrafish [8]. In the present study, we further
examined the cellular mechanisms underlying the inhibi-
tory effect of TGF-β in oocyte maturation. We have shown
that TGF-β1 inhibits mRNA expression of 20β-HSD, the
key enzyme involved in MIH production, as well as LHR
and mPR-β. These novel findings suggest that TGF-β1
inhibits multiple targets in the oocyte maturation path-
way, both upstream and downstream of MIH.

One of the potential targets of TGF-β1 identified in this
study is 20β-HSD. We found that TGF-β1 inhibited basal
and hCG-induced 20β-HSD mRNA levels. TGF-β1 alone
induced a dose- and time-dependent inhibitory effect on
20β-HSD mRNA expression. Treatment with hCG
increased 20β-HSD mRNA levels; however, in the pres-
ence of TGF-β1, the effect of hCG was blocked. 20β-HSD
activity in the ovary and its stimulation by gonadotropins
and cAMP-enhancing drugs has been demonstrated in
many species [10,11,24-28]. Our finding that hCG stimu-
lates 20β-HSD is consistent with studies in mammals
[24,28] and a recent study in Nile Tilapia, which reported
an increase in the mRNA expression of 20β-HSD in
response to hCG treatment [26]. The observation of
decreased 20β-HSD mRNA levels after TGF-β1 treatment
suggests that TGF-β1 may inhibit 20β-HSD activity,
leading to a decrease in MIH production. This notion is
supported by a recent report that TGF-β1 inhibits the con-
version of 17α-HP to DHP in the goldfish [9]. It is possi-
ble that one of the actions of TGF-β1 is to decreases MIH
production, and thus inhibits oocyte maturation.

In this study, we observed that hCG increased LHR but
had no effect on FSHR mRNA levels. Several studies con-
ducted in fish on the effect of gonadotropin on LHR and
FSHR expression have yielded inconsistent results. In

African and Channel catfish, it has been reported that
hCG treatment caused an activation of the LHR and cAMP
mediated pathways, as well as a slight increase in FSHR
mRNA levels [29-31]. However, a two-fold increase in
FSHR expression, but no change in LHR expression in pre-
maturational follicles of rainbow trout in response to
treatment with partially purified gonadotropins has also
been reported [32]. The reason for such discrepancy is
unclear, however, it could be due to species specificity or
variation in treatment conditions.

An interesting finding from this study is that TGF-β1 dif-
ferentially regulates FSHR and LHR mRNA levels. We
observed that basal FSH receptor mRNA levels were
increased, while basal- and hCG-induced LH receptor
mRNA levels were decreased, upon incubation of follicles
with TGF-β1. TGF-β1 has been reported to regulate LH
and FSH binding sites in mammals, however, whether
TGF-β1 has a stimulatory or inhibitory effect appears to be
species-dependant. TGF-β1 decreased basal and FSH-
induced LH binding sites in porcine granulosa cells but
enhanced FSH-induced LH binding in rat granulosa cells
[33]. FSH induced FSH binding in porcine granulosa cells
and this effect was attenuated by TGF-β1. On the other
hand, FSH decreased its own binding levels in rat granu-
losa cells and this effect was also blocked by TGF-β1 [33].
Our finding that TGF-β1 increased FSHR mRNA levels is
consistent with previous studies in rat granulosa cells
[34,35]. However, our observation that TGF-β1 decreased
LHR mRNA levels is opposite to studies in rat [36] and
chicken [37] granulosa cells. In these studies, it was
reported that TGF-β1 induced LHR mRNA expression.
Whether this is due to species variation as in the case of rat
and pig or to the difference in follicle development
between fish and higher vertebrates awaits more studies in
fish species. The finding that TGF-β1 inhibited LHR
mRNA expression suggests that the inhibitory effect of
TGF-β1 on hCG-induced oocyte maturation may be due,
in part, to the downregulation of LH receptor by TGF-β1.
Since FSH is known to be a major regulator of oocyte
growth [10,11], by stimulating FSH receptor expression
TGF-β1 may play a role in promoting follicle growth.
These findings, together with our previous observation
that TGF-β1 mRNA levels are higher in growing follicles
than in maturing follicles, suggest that TGF-β1 may stim-
ulate follicle development and inhibit precocious oocyte
maturation in the zebrafish ovary. This possibility will be
investigated further in the future.

A recent study has shown that microinjection of zebrafish
oocytes with antisense oligonucleotides to either mPR-α
or mPR-β or both causes similar marked decreases in the
rates of oocyte maturation, suggesting that both subtypes
are obligatory for oocyte maturation in zebrafish [17]. In
this study, we observed a strong induction of mPR-β
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mRNA levels by hCG and an inhibitory effect of TGF-β1
on both basal and hCG-induced mPR-β mRNA
expression. These findings support the role of mPR-β in
oocyte maturation and suggest that one of the mecha-
nisms by which TGF-β1 inhibits hCG- and MIH-induced
oocyte maturation is by the downregulation of MIH
receptors, specifically mPR-β. However, we found that
neither hCG nor TGF-β1 had an effect of mPR-α mRNA
levels, suggesting that the two membrane progestin recep-
tors are under differential regulation. It has been reported
that hCG caused an increase in the mPR protein expres-
sion in sea-trout oocytes [18]. The sea-trout mPR has a
higher homology to mPR-α (80%) than to mPR-β (46%).
It remains to be determined if hCG regulates mPR-α and
mPR-β protein levels in the zebrafish. Recently, Kazeta et
al. (2005) reported that hCG did not change mRNA levels
of mPR-α and mPR-β at 5 and 10 h after hCG treatment
[38]. The difference between this and our studies may be
due to the duration of hCG treatment as 18 h was used in
our study.

Conclusion
Based on our findings that TGF-β1 downregulates basal
and hCG-induced LHR, 20β-HSD, and mPR-β mRNA
levels, we propose that TGF-β1 acts upon multiple targets
to exert its inhibitory effect on oocyte maturation. TGF-β1
may downregulate LHR, leading to decreased signal
transduction and decreased production of 17α-hydroxy-
progesterone. TGF-β1 may inhibit basal and gonadotro-
pin-induced MIH production by inhibiting 20β-HSD.
Finally, TGF-β1 may inhibit the expression of the MIH
receptor, such as mPR-β, on the oocyte surfaces, leading to
a reduction of MPF activation and subsequent oocyte mat-
uration. This model can be tested in the future by examin-
ing the protein levels on these molecules once antibodies
become available. Similarly, the physiological signifi-
cance of TGF-β on oocyte maturation will be confirmed
using loss-of-function approaches.
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