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Abstract: Cryopreservation is considered an ideal strategy for the long-term preservation of plant
genetic resources. Significant progress was achieved over the past several decades, resulting in
the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation
procedures often employ in vitro culture techniques and require the precise control of several steps,
such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle,
unloading, and post-culture for the recovery of plants. These processes create a stressful environment
and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth
and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses
were documented to induce (epi)genetic and somatic variations. Therefore, the development of
true-to-type regenerants of the source germplasm is of primary concern in the application of plant
cryopreservation technology. The present article provides a comprehensive assessment of epigenetic
and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in
the past decade. Potential areas and the directions of future research in plant cryopreservation are
also proposed.

Keywords: cryopreservation; (epi)genetic integrity; field performance; metabolic stability; reactive
oxygen species; shoot tips; tissue culture

1. Overall Developments and Progresses in Plant Cryopreservation

Cryopreservation refers to the storage of biological samples, such as cells, tissues, and
organs, in liquid nitrogen (LN) at extremely low temperatures, usually −196 ◦C. The motive
of initial studies was to establish cryopreservation methods for the long-term preservation
of plant genetic resources [1,2]. Since the first success of plant cryopreservation using the
two-step freezing of mulberry (Morus alba) by Sakai [1], considerable progress has been
made in the field over the past 65 years [3–6]. Successful cryopreservation studies resulted
in a number of technical advancements, including the development of various cryop-
reservation methods, such as vitrification [7–9], encapsulation-vitrification [9,10], droplet-
vitrification [11], encapsulation-dehydration [10,12] and the use of cryo-plates [13,14]. Of
these, the droplet-vitrification method, described by Panis et al. [11], is noteworthy as
it has largely helped to remove the genotype-specific barriers, which had impeded the
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potential application of cryopreservation technology across diverse species. These tech-
nical refinements led to the successful cryopreservation of a wide range of genotypes in
many plant species, such as Malus [15], Vitis [16,17], and Lilium [18]. The cryopreservation
technology is considered an ideal strategy for the long-term preservation of plant genetic
resources [3–6].

Diverse plant species have been successfully cryopreserved, including tuber crops [19,20],
fruit crops [15,21], ornamental species [22], medicinal herbs [23], and forest species [24], as
well as endangered and endemic plants [25–29]. Cryo-banks using shoot tips have been set
up in several countries for economically important plant species [3,4,20,23,30,31]. Studies
have also advanced in the evaluation of the performance of cryo-derived plants when they
are re-introduced from laboratories to their natural habitat [25,28,32].

Cryopreservation has been shown to retain or even promote the regenerative capacity
of embryogenic tissues, which were widely used in genetic transformation in various plant
species [31,33]. The use of cryopreserved embryogenic tissues for genetic transformation
improved the transformation efficiency and regeneration frequency of transformed plant
tissues [34]. Cryopreservation was shown to maintain the transgenes in transformed
materials, providing a safe and reliable strategy for the long-term preservation of trans-
genes [31,33,34]. These studies demonstrated the usefulness of cryobiotechnology in plant
genetic engineering.

Shoot tip cryotherapy, which was refined based on shoot tip cryopreservation, has been
established as a novel method for the efficient eradication of plant pathogens, including
viruses, phytoplasma, and bacteria [31,35,36]. Cryopreservation has also been successfully
applied to cryopreservation of plant viruses and viroids in cryopreserved shoot tips [37–39],
opening a new avenue for the long-term preservation of plant obligate pathogens, which
are otherwise difficult-to-preserve for long periods with the traditional methods. Thus,
cryobiotechnology offers the dual advantage in the preservation as well as eradication of
plant pathogens [38,40].

A number of plant species have been threatened and are currently facing extinction,
mainly by anthropogenic processes, such as deforestation, land clearing for agricultural,
industrialization, and urbanization, as well as through plant diseases and pests [41,42].
Global warming has further worsened the situation. A recent report warned that about
21% of total global plant species (approximately 390,900 plants) are at risk of extinction [43].
Therefore, special attention should be paid to the cryopreservation of these endangered
and rare species [41,42,44,45]. However, studies on cryopreservation of endangered and
rare plant species are far behind those of horticultural species, ornamental plants, tuber
crops, and forest species [6,15,19–29,41,42].

2. Major Concerns in Recovery of Plants from Cryopreserved Tissues

For the preservation of plant genetic resources, it is necessary to not only ensure
viability and quality of the preserved plants, but to also ensure the true-to-type status
of the regenerants (Figure 1). Shoot tips or buds are able to develop into plants that are
generally genetically stable and identical to the source plants, and are therefore preferred
over other tissues, such as cell suspensions, embryogenic tissues, and callus for preserving
plant genetic resources [6,31,46–48].

In vitro tissue culture has become an integral part of the cryopreservation technology
currently used for the establishment and maintenance of stock cultures, and the post-
culture process for the recovery of shoot tips, cell suspensions, and embryogenic tissues,
in a number of plant species [6,31,46,48]. However, in vitro tissue cultures are prone to
somaclonal and (epi)genetic variations [49–52]. It is well documented that in vitro tissue
culture imposes stressful conditions and induces the generations of reactive oxygen species
(ROS), thus resulting in ROS-induced oxidative stress [49–51]. Cryopreservation requires
the use of plant tissue culture methods in several essential steps, including the excision of
explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading,
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and the re-initiation of cultures for plant recovery. All of these steps have been shown to
cause ROS-induced oxidative stress [4,26,47,53–55].

Figure 1. General cryopreservation procedures (black arrows), post-culture for recovery and re-establishment of plants
in vivo (blue arrows), assessments of (epi)genetic stability and evaluations of field performance in cryo-derived regener-
ants/plants (red arrows), and measures taken to ensure (epi)genetic stability and true-to-type regenerants/plants recovered
after cryopreservation (green arrows). DMSO, dimethyl sulfoxide; LN, liquid nitrogen; PGRs, plant growth regulators.

ROS are highly reactive and toxic by-products of aerobic metabolism. ROS include the
superoxide anion, hydrogen peroxide, and hydroxyl radicals, all of which have inherent re-
activity to different biological targets, playing a dual role of inducing cellular toxicity, while
also serving as signaling transduction stimuli in plant responses [56,57]. The ROS-induced
oxidative stresses have proven to induce the somaclonal and (epi)genetic variations in
in vitro-derived regenerants [49–51,58] and in cryo-derived regenerants [4,26,47,53–55].
Therefore, it is necessary to assess and monitor the (epi)genetic integrity and field per-
formance of cryo-derived regenerants. Literature (up to 2010) on relevant aspects of
such genetic variations in plants originating from in vitro and cryopreserved cultures was
comprehensively reviewed previously [31,41,42,47,53–55].

The present review focuses on the advances made in the past decade in the assessment
and improvement of the (epi)genetic integrity, metabolic efficiency, and field performance of
cryo-derived plants. Research areas and applications that may benefit from further studies
on plant cryopreservation are also discussed. These efforts would certainly promote further
studies on cryopreservation of endangered and rare plant species.

3. Assessments of Epigenetic and Genetic Integrity
3.1. Epigenetic Integrity

Epigenetics refers to heritable changes in gene expression that is not associated with
changes in the underlying DNA sequence [59]. Major types of epigenetic changes include
DNA methylation, histone modification, and changes in chromatin structure [60]. DNA
methylation has been widely used for the assessments of epigenetic integrity in cryo-
derived plants [47,53–55] and methylation-sensitive amplified polymorphism (MSAP)
is the most frequently used marker for the assessments of epigenetic stability in plant
populations of cryogenic origin.

Hao et al. [61–63] were the first to assess epigenetic stability in cryo-derived regener-
ants. Changes in DNA methylation were detected in plants recovered from the cryopre-
served shoot tips of Malus pumila “M2” and Fragaria gracilis “Joho” [61,63], and somatic
embryogenic calli of Citrus sinensis “Newhall” [62]. Some representative examples of the
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use of DNA methylation-induced changes in cryopreservation research in the past decade
are listed in Table 1.

Peredo et al. [64] assessed epigenetic integrity in Humulus lupulus plants recovered
from shoot tips cryopreserved for three years. Changes in DNA methylation were detected
in 36% of the loci. Further analysis showed that only 2.6–9.8% of the changes were induced
by cryopreservation procedure and the rest were attributed to the in vitro culture processes.
In vitro culture-induced DNA methylation was also found in the regenerants recovered
from cryopreserved Carica papaya shoot tips [65] and Theobroma cacao somatic embryos [66].
DNA methylation levels were higher in in vitro stock somatic embryos of Theobroma cacao
than those regenerated after cryopreservation [66]. Therefore, the manipulations of in vitro
culture procedures, particularly for regeneration via somatic embryogenic, are needed to
reduce the probability of alternations in DNA methylation.

Alternations in DNA methylation varied with cryogenic steps and cryopreservation
durations: 0.12% following PVS2 treatment, 0.12% after 2 h of cryo-storage, and 5.5% after
10 years of cryo-storage in Wasabia japonica [67]. Variations in DNA methylation varied
among three Ribes species, including R. ciliatum, R. sanguineum and R. nigrum [68], and
Humulus lupulus [64], and Carica papaya genotypes [65] subjected to cryopreservation. The
assessment of epigenetic stability in the regenerants of the same Carica papaya genotype Z6
following cryopreservation detected higher levels of DNA methylation in DNA extracts
pooled from mixed leaves of several plants [65] than in those from single leaves of single
plants [69]. These data indicated that variations in DNA methylation differed among clones
resulted from the same cryopreservation experiment.

Johnston et al. [68] reported DNA methylation in regenerants recovered from Ribes cilia-
tum shoot tips cryopreserved by encapsulation-dehydration. They found that DNA methy-
lation initially occurred during sucrose preculture and progressively increased during
successive steps of the encapsulation-dehydration protocol. However, DNA methylation
values were similar between the controls and the regenerants recovered from cryopre-
served shoots after 18–20 weeks of post-recovery, including two subculture cycles. These
data indicate that cryopreservation-mediated DNA methylation is a reversible epigenetic
mechanism [68]. Such reversible epigenetic mechanism has also been noted in the regener-
ants recovered from cryopreserved shoot tips of Carica papaya [65], Mentha × piperita [70],
and Actinidia chinensis var. deliciosa [71], and from the cryopreserved somatic embryos of
Bactris gasipaes [72] and Theobroma cacao [66]. As speculated by Harding et al. [54], changes
in DNA methylation may be an adaptive response to oxidative stress induced during
cryopreservation. Therefore, once the stress is removed, DNA demethylation occurs and
the regenerants can gradually revert to the normal DNA status.

In contrast with the studies addressed above, no marked alternations in DNA methy-
lation were found in the regenerants recovered from Quercus robur plumules cryopreserved
by desiccation [73], Solanum tuberosum plants from shoot tips preserved with dimethyl
sulfoxide (DMSO)-droplet method and cryo-stored for nearly 7 years [74], Wasabia japonica
plants from vitrified shoot tips cryo-stored for 10 years [68], and Gentiana cruciata regener-
ants from embryogenic cell suspensions cryopreserved by encapsulation-dehydration [75].
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Table 1. Some examples from the past decade of epigenetic integrity assessments by DNA methylation in regenerants recovered after cryopreservation.

Plant Species Explants Cryopreservation
Method * Molecular Methods ** DNA

Methylation (%) Causes Reference

Actinidia chinensis var. deliciosa Shoot tips Drop-vitri MSAP 1.6 and 12.8 Cryoprocedures and in vitro cultures [71]
Bactris gasipaes Somatic embryos Drop-vitri The global DNA methylation 25.2–29.7 Cryoprocedures [72]
Carica papaya Shoot tips Vitri AMP 0–0.22 Genotypes and cryoprocedures [65]

Gentiana Shoot tips Encap-dehy MSAP 16.61–16.88 in vitro culture [75]
Mentha × piperita Shoot tips Encap-dehy MSAP 17.1–32 Cryoprocedures [70]

Quercus robur Seed plumules Desiccation The global DNA methylation 8.7–11 Cryoprocedures [73]
Solanum tuberosum Shoot tips DMSO droplet MSAP 0.9 Cryoprocedures and in vitro cultures [74]

Theobroma cacao Somatic embryos Encap-dehy MSAP 3.6 Cryoprocedures [66]
Wasabia japonica Shoot tips Vitri MSAP 0.12–5.5 Cryoprocedures [67]

* Dehy, dehydration; DMSO, dimethyl sulfoxide; Drop, droplet; Encap, encapsulation; Vitri, vitrification. ** AMP, amplified DNA methylation polymorphism; MSAP, methylation sensitive amplified polymorphism.
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3.2. Genetic Integrity

Molecular markers were widely used for assessments of genetic stability in cryo-
derived plants, including random amplified polymorphic DNA (RAPD), inter-simple
sequence repeats (ISSR), amplified fragment length polymorphism (AFLP), and single
sequence repeats (SSR) [53–55]. The RAPD amplifies some areas of the genome and screens
a low fraction of the genome, whereas the ISSR amplifies DNA segments between two
microsatellite regions [54]. The AFLP technique is based on the selective amplification
of restriction fragments from a total digest of genomic DNA [76], and the SSR can detect
differences in the length of a particular locus [77,78]. Since different DNA markers detect
polymorphisms in different genomic regions, use of more than one molecular marker would
provide more reliable results of genetic integrity assessments [31,79]. Therefore, most of
the studies conducted in the past decade employed more than one molecular marker for
assessments of genetic stability in the regenerants recovered from cryopreservation. Flow
cytometry (FCM) was usually used for assessments of DNA ploidy levels in cryopreserved
plants [80–82].

Krajnáková et al. [83] reported some changes in the RAPD profiles of Abies cephalonica
embryogenic cells after six years of cryopreservation. However, proliferation and matu-
ration abilities were maintained in the cryopreserved cells. Applying microsatellite and
sequence-related amplified polymorphism (SRAP) for assessments of the genetic stability
in the cryo-derived plants of Hedeoma todsenii after 13 years of cryo-storage, Pence et al. [84]
did not find any DNA variations in the same genotypes, but found an average of 10.4%
variation between the replicate samples. Genetic variations were observed in the regen-
erants recovered from cryopreserved shoot tips of Chrysanthemum morifolium, with 40%
and 6% of polymorphic bands detected by AFLP and RAPD, respectively [85]. Further
analysis found that the genetic variations detected by RAPD were induced in the sucrose
preculture step (0.3 M sucrose at 5 ◦C for 3 days), while those detected by AFLP were in
the cold-hardening of the in vitro stock shoots (10 ◦C for 3 weeks). Freezing in LN induced
the highest levels of genetic variations analyzed by both RAPD and AFLP [85]. Applying
RAPD to assessments of genetic stability in the regenerants recovered from cryopreserved
shoot tips of Mentha × piperita, Martín et al. [86] reported that genetic stability varied with
genotypes and cryoprocedures: 97% by droplet-vitrification and 87% by encapsulation-
dehydration in “MEN 198” (stable genotype), and 80% by droplet-vitrification and 24%
by encapsulation-dehydration in “MEN 186” (sensitive genotype). In the analysis of the
genetic stability by FCM, RAPD, and ISSR in the cryo-derived plants of three Chrysanthe-
mum chimeric cultivars grown in greenhouse conditions, Kulus et al. [80] reported that
FCM did not detect any differences in DNA ploidy levels among the three cultivars. RAPD
detected no polymorphic bands in “Richmond” (a solid mutant), but detected 7.8% and
3.2% polymorphic bands in “Lady Orange” and “Lady Salmon” (periclinal chimeras). ISSR
markers detected 15% polymorphic bands in “Lady Orange” and no polymorphic bands in
“Lady Salmon” and “Richmond” [80].

González-Benito et al. [87] tested the effects of adding vitamin E in the pretreatment
medium on cryopreservation and genetic stability in “MEN 186” and “MEN 198”. They
found that although it did not have significant effects on recovery, vitamin E improved the
genetic stability in the regenerants recovered after cryopreservation, particularly in the
sensitive genotype “MEN 186”.

In the cryopreservation of Rubus grabowskii shoot tips, Castillo et al. [88] reported that
the SSR did not detect any polymorphic bands in the cryo-derived regenerants immediately
after cryopreservation and those that were subcultured in vitro for seven months after the
recovery. The AFLP did not detect any polymorphic bands in the cryo-derived regenerants
immediately after cryopreservation, but detected polymorphic bands in the cryo-derived
shoots that were subcultured in vitro for seven months. However, when these in vitro
cultured shoots were re-established in the field conditions, polymorphic bands were no
longer detected [88]. These results indicated that there might be a transitory phase of the
polymorphism when the cryopreserved plants were transferred to the field conditions.
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Similar results were also found in the cryo-derived plants of Abies cephalonica [89] and
Carica papaya [65]. Nevertheless, further studies are needed to verify these findings of
varied polymorphism in plants from cryopreserved tissues.

A number of studies showed that cryopreservation did not cause or caused minor
changes in genetic stability of the regenerants. Genetic stability assessments in the re-
generants of Wasabia japonica following shoot tip cryopreservation detected only 0.27%,
0.95%, and 2.2% variations in AFLP profiles in the samples following exposure to PVS2,
cryo-storage in LN for 2 h, and for 10 years, respectively [67]. RAPD and ISSR did not detect
any polymorphic bands in the plants recovered from cryopreservation of Passiflora pohlii
nodal segments [90]. The maintenance of genetic stability was reported in the regenerants
recovered after shoot tip cryopreservation in various plant species, including tuber crops
such as Solanum tuberosum, analyzed by ISSR and FCM [91] and by AFLP and ISSR [79].
The ornamental plant analyses included Oncidium flexuosum by FCM [92], Chrysanthemum
morifolium by SSR and FCM [82] and RAPD and ISSR [93], Argyranthemum by AFLP and
ISSR [94], Torenia fournieri by FCM and ISSR [95], and Pleione bulbocodioides (protocorm-like
bodies) by ISSR [96]. Similar results were obtained in vegetable crops, such as Phaseolus
vulgariss (seeds) by SSR [97], Asparagus officinalis (rhizome buds) by EST-SSR and FCM [98],
and Allium by SSR [81], AFLP and ISSR [99]. Examples of analyses of other crops included
fruit trees, such as Musa (suck meristem) by SSR [100], Malus by FCM and ISSR [101,102],
Vaccinium corymbosum by RAPD and ISSR [103,104], Vitis by RAPD and ISSR [17], and
Actinidia chinensis by AFLP and ISSR [71], and medicinal species, such as Rabdosia rubescens
by FCM and SRAP [105] and Bacopa monnieri by RAPD [106].

Thus far, there were only a few studies that assessed the genetic stability in pathogen-
free plants recovered after shoot tip cryotherapy. FCM did not detect any variations in
ploidy levels in Chinese jujube plants (Ziziphus jujuba), free of Jujube witches’ broom
phytoplasma [107], and artichoke plants (Cynara scolymus), free of artichoke latent virus,
produced by shoot tip cryotherapy [108]. The SSR and AFLP did not detect any polymor-
phic bands in cryo-derived potato plants (Solanum tuberosum) free of potato leafroll virus,
potato virus S, and potato virus Y [109].

Cryopreservation was reported to maintain the NPTII and GUS genes in transgenic
Oryza sativa protoplasts [110], hCTlA4Ig in the transgenic cell suspensions of O. sativa [111],
Escherichia coli heat labile enterotoxin (LT) protein in the transgenic cells of Nicotiana tabacum [112],
and npt II and Gus genes in the transgenic sweetgum (Liquidambar) embryogenic cul-
tures [113]. Similar examples of genes maintained in other species included the GUS
gene in the transgenic Citrus callus [114], npt II gene in the transgenic shoots of Betula
pendula [115] and Populus tremula × P. tremuloides [116], human serum albumin in the trans-
genic BY-2 cell cultures [117], uidA gene in the transgenic plants of Castanea sativa [118], and
the Cry 1Ab in the transgenic plantlets of Torenia fournieri [95]. The successful cryopreser-
vation of transgenes provides a safe and reliable strategy for long-term preservation of the
transgenic plant materials, which otherwise may be lost by preservation through in vitro
cultures and environmental contamination or gene flow by preservation in vivo [33,34].
Some examples of genetic integrity assessments in cryo-derived regenerants are listed in
Table 2.
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Table 2. Some examples from the past decade of genetic integrity assessments by molecular markers and FCM in regenerants recovered after cryopreservation.

Plant Species Explants Cryopreservation
Method * Molecular Markers ** Polymorphism (%) Causes Reference

Abies Embryogenic cells Vitri RAPD Not specified Cryoprocedures and
in vitro culture [83]

Actinidia chinensis var. deliciosa Shoot tips Drop-vitri AFLP and ISSR None [71]

Allium cepa var. aggregatum Shoot tips Drop-vitri AFLP and ISSR None [99]

Allium sativum Shoot tips Vitri SSR and FCM None [71]

Arachis glabrata Leaflets Drop-vitri RAPD 0–3.4 Cryoprocedures [119]

Asparagus officinalis Rhizome buds Encap-dehy EST-SSR and FCM None [98]

Bacopa monnieri Shoot tips Vitri RAPD None [106]

Carica papaya Shoot tips Vitri RAF 0–0.7 Genotypes and
cryoprocedures [66]

Chrysanthemum × grandiforum Shoot tips Encap-dehy

ISSR 0–2 Genotypes and
cryoprocedures [80]RAPD 0–7.8

FCM None

Chrysanthemum × morifolium Shoot tips

Encap-dehy
AFLP 40.1

Sucrose preculture [85]
RAPD 5.78

Drop-vitri
SSR None

[82]
FCM None

Drop-vitri ISSR and RAPD None [93]

Cynara scolymus Shoot tips Vitri FCM None [108]

Hedeoma todsenii Shoot tips
Encap-dehy and

Encap-vitri

Microsatellite 5.36–13.04 Genotypes and
cryoprocedures

[84]
SRAP 4.55–20.45 Genotypes and

cryoprocedures

Lotus tenuis Adventitious buds clusters Vitri ISSR 63 Cryoprocedures [120]
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Table 2. Cont.

Plant Species Explants Cryopreservation
Method * Molecular Markers ** Polymorphism (%) Causes Reference

Malus spp. Shoot tips
Encap-dehy ISSR None [101]

Drop-vitri or
Encap-dehy ISSR and RAPD None [102]

Mentha × piperita Shoot tips

Drop-vitri
RAPD 30–40 Genotypes and

cryoprocedures [121]

RAPD 1–20 Genotypes and
cryoprocedures

[86]

Encap-dehy

RAPD 13–76 Genotypes and
cryoprocedures

AFLP 0–85.7 Genotypes,
cryoprocedures, and

in vitro culture
[87]

RAPD 0–62

AFLP 2.65 Sucrose preculture and
encapsulation [70]

RAPD None

Musa spp. Sucker meristems Vitri SSR None [122]

Passiflora pohlii Nodal segments
Encap-vitri ISSR and RAPD None [90]

Vitri ISSR and RAPD None

Phaseolus vulgaris Seeds Direct immersion into
LN SSR None [123]

Picea abies Embryogenic tissues Vitri SSR None [124]

Pinus nigra Embryogenic tissues Slow-freezing RAPD None [125]

Pistacia vera Shoot tips Vitri RAPD 5.4 Cryoprotants and
post-culture [126]

Pleione bulbocodioides Protocorm-like bodies Vitri ISSR None [96]

Rabdosia rubescens Shoot tips Encap-dehy
SRAP 0.01 Cryoprocedures

[105]
FCM None
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Table 2. Cont.

Plant Species Explants Cryopreservation
Method * Molecular Markers ** Polymorphism (%) Causes Reference

Saccharum spp. Shoot tips Drop-vitri ISSR 1.5 Cryoprotection [127]

Solanum tuberosum Shoot tips

Vitri AFLP and ISSR None [79]

Drop-vitri
ISSR and RAPD None [91]

Encap-vitri

Thymus lotocephalus Shoot tips Drop-vitri RAPD 0.06 Cryoprocedures [128]

Torenia fournieri Shoot tips Drop-vitri ISSRFCM None [95]

Triticum aestivum Calli Dehy
ISSR None

[129]
REMAP 0.3 Cryoprocedures

Vaccinium corymbosum
Shoot tips Drop-vitri ISSR and RAPD None [103]

Adventitious buds Drop-vitri ISSR and RAPD None [104]

Vitis spp. Shoot tips Drop-vitri ISSR and RAPD None [17]

Wasabia japonica Shoot tips Vitri AFLP 0.27–2.2 Cryoprocedures [67]

Ziziphus jujuba Shoot tips Drop-vitri FCM None [107]

* Dehy, dehydration; Drop, droplet; Encap, encapsulation; LN, liquid nitrogen; Vitri, vitrification. ** AFLP, amplified fragment length polymorphism; EST-SSR, expressed sequence tags-simple sequence repeats;
FCM, flow cytometry; ISSR, inter-simple sequence repeats; SRAP, sequence-related amplified polymorphism; SSR, simple sequence repeats; RAF, randomly amplified DNA fingerprinting; RAPD, random
amplified polymorphic DNA; REMAP, retrotransposon-microsatellite amplified polymorphism.
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4. Metabolic Stability

For plant species that contain special biochemical compounds, the assessment of
metabolic abilities is an important issue in cryo-derived plants. Chrysanthemum morifolium
“Hangju” contains valuable biochemical compounds, such as anthocyanins and carotenoids,
and has long been used as a medicine in China [93]. Applying high performance liquid
chromatography (HPLC) for quantitative analyses of biochemical compounds in the cryo-
derived plants grown in greenhouse conditions, Bi et al. observed no differences in the
levels of the five selected biochemical compounds produced between the cryo-derived
plants and in vitro-derived plants in the control [93]. No differences were found in the
contents of anthocyanins and carotenoids in the inflorescences of the cryo-derived plants
and the control of three Chrysantemum chimeric cultivars grown in greenhouse conditions,
except for reduced chlorophyll contents found in the cryo-derived plants [80]. In Bacopa
monnieri, HPLC analysis detected no differences in the level of bacoside A, a functional
biocompound in Bacopa monnieri, in the cryo- and in vitro-derived (control) plants [106].
More recently, Wang et al. [99] observed no significant differences in the levels of carbohy-
drates and flavanols in bulbs produced by cryo- and in vitro-derived shallots plants grown
in greenhouse conditions. These results indicate that metabolic stability can be maintained
in the plants derived from cryopreserved tissues.

5. Field Performance
5.1. Seed Germination and Seedling Growth

Seed conservation provides a useful and relatively easy strategy for preserving genetic
resources in seeded plants [41,130]. Three categories of seed storage behavior are generally
recognized among species: orthodox, intermediate, and recalcitrant [41,130]. Seeds of most
species belong to the orthodox category, and can be dried to low water contents and thus
stored at low temperature for extensive periods [4,26,29,130]. Intermediate seeds can with-
stand partial dehydration, while recalcitrant seeds are sensitive to dehydration. Therefore,
they cannot be stored under the desiccation and low temperature conditions for a long
period of time [4,26,29,41,130]. The intermediate and recalcitrant seeds contain numerous
important tropical and tropical rain forest species [26,29,130]. Cryopreservation is the
only technique available for long-term germplasm preservation of these two categories of
seeds [4,26,29,130]. There were several studies conducted over the past decade on seed
germination and seedling growth in cryopreserved seeds.

No significant differences in seed germinations were obtained between cryopreserved
and non-cryopreserved (control) seeds in Phaseolus vulgaris [97,131], Solanum lycoper-
sicum [132], and Zea mays [133]. However, reduced seed germinations were reported in the
cryopreserved seeds of Zea mays and Glycine max [133,134]. In the study of cryopreservation
of Solanum lycopersicum seeds, Zevallos et al. [135] reported that cryopreservation increased
the germination percentage of cryopreserved seeds at day 5 of germination, albeit with
no significant differences at day 7. Increased seed germinations were also observed in
the cryopreserved seeds of Teramnus labialis at 7 and 28 days of germination [136]. The
increased seed germinations were attributed to the breaking of physical dormancy by
increased malondialdehyde levels induced during cryopreservation [97,132,135,136].

More than 90% and 94% seedlings from the cryopreserved seeds of Oncidium flexuo-
sum [92] and Hibiscus sabdariffa [137], respectively, survived after transfer to greenhouse
conditions. The morphology of the seedlings developed from cryopreserved seeds were
similar to those from the control in Phaseolus vulgaris [97,131], Solanum lycopersicum [135],
Zea mays [134], Glycine max [134], and Hibiscus sabdariffa [137]. Seedling growth, measured
by the fresh weight of roots, stem, and leaves, was markedly delayed in cryopreserved
seeds of Zea mays [133]. Seedling growth, including plant height and fresh and dry mass,
was greater in seedlings recovered from cryopreserved seeds than in those from the con-
trol during the four-week growth [136]. No differences were found in vegetative growth,
including shoot length, number of leaves, number and length of roots, and fresh and dry
weight, between the cryo-derived and the control seedlings in Oncidium flexuosum [92].
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Evaluating vegetative growth and grain production in cryo-seed-derived plants of Phaseo-
lus vulgaris, Cejas et al. [123] did not find significant differences in all parameters tested,
including the number of stem internodes, plant height, fruit number, grain number per
plant, and weight per grain between the cryopreserved and the control seeds. In addition,
Cejas et al. [131] reported that seed cryopreservation decreased Cu, Cd, and Na uptake,
and increased the absorption of B and Al in the cryo-derived seedling (10 days old) of
Phaseolus vulgaris.

5.2. Field Performance of Cryopreserved Plants

Field performance is critical for evaluating the true-to-type cryopreserved plants in
comparison to the source plants (Figure 1). Similar survival percentages and vegetative
growth were obtained for the cryo- and in vitro-derived (control) plants of Actinidia chi-
nensis var. deliciosa after their re-establishment in greenhouse conditions [71]. Agrawal
et al. [100] compared the field performance of cryo-derived, micropropagated, and field
sucker-propagated Musa plants and found that greater than 90% of the cryo-derived and
in vitro micropropagated plants survived and were established in field conditions. Veg-
etative growth (plant height and leaf number) and reproductive growth (flowering and
fruit production) were similar among the three sources of plants [100]. Vegetative growth
patterns, and morphologies of leaves and flower production, were identical in the cryo-
and in vitro-derived plants of Torenia fournieri [95] and Chrysanthemum morifolium [88]
when grown under greenhouse conditions. Wang et al. [99] reported that there were no
significant differences in rooting, vegetative growth, and bulb production between the cryo-
and in vitro-derived plants of Allium cepa var. aggregatum when grown in the greenhouse.

Zhang et al. [94] reported that, although root formation and vegetative growth in
cryo-derived plants was reduced to a certain degree, the quantity and quality of the flowers
were similar in both the cryo- and in vitro-derived plants of perennial ornamental species
Argyranthemum grown in greenhouse conditions. Vegetative regrowth at the early stage was
lower in cryo-derived plants of Chrysanthemum morifolium grown in the greenhouse [93]
and Solanum tuberosum cultured in vitro [91] than their corresponding controls. Vegetative
growth markedly increased, however, in the cryo-derived plants of Solanum tuberosum after
6 months of in vitro culture [91]. Furthermore, in vitro microtuber production in Solanum
tuberosum was significantly greater in cryo-derived shoots than in the control [91].

Evaluating the field performance of cryo-derived plants of three Chrysanthemum ×
grandiforum chimeric cultivars Lady Orange, Lady Salmon, and Richmond, Kulus et al. [80]
found that some cryo-derived plants had shorter internodes and shorter and/or narrower
leaves than the control plants. The inflorescences of Lady Salmon opened slower, but faded
faster than the control. However, flower traits, including color, diameter, fresh weight, and
length of ray florets, were similar between the cryo-derived plants and the control in all
three cultivars.

5.3. Reintroduction of Cryo-Derived Plants to Nature

Castilleja levisecta, a hemiparasitic herbaceous plant, naturally inhabits British Colom-
bia, Canada and the USA. This species is currently listed as an endangered plant in Canada
and the USA. Recently, a cryopreservation method was described for this plant [32]. Cry-
opreserved plants were successfully acclimated in greenhouse conditions. Acclimatized
plants were reintroduced to their natural habitats in Canada and 21% of the reintroduced
plants survived the transit from lab to the natural habitat and also showed flower develop-
ment [32].

Hill’s thistle (Cirsium hillii) is also listed as a threatened species in Canada and its
populations are restricted to alvars of Southern Ontario. Cryopreservation was applied for
preserving germplasm of Hill’s thistle and cryopreserved plants were reintroduced to their
natural habitats [25]. Field performances, including survival, vegetative growth, and plant
developments, over 10 months were comparable or even better than the micropropagated
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plants (the control), although site-specific differences in the percent flowering and amount
of indole amines compounds were observed among the plants [25].

These two studies provide a paradigm for the use of cryopreservation for the long-term
preservation of plants at risk and their reintroduction in natural habitats.

6. Conclusions and Perspectives

Significant progress was made in the development of plant cryopreservation tech-
nology. A wide range of genetically diverse plants that are propagated sexually through
seeds and vegetatively through shoot tips have now been successfully cryopreserved. The
reintroduction of plants from cryobanks into natural habitats and assessments of field
performance, including growth, reproduction, and adaptation to natural environments,
was also achieved in many species. The plants from cryopreserved sources survived as
well as those from non-cryopreserved tissues when established in vivo conditions. Overall,
morphologies, vegetative growth, and reproduction of the cryopreserved plants were
comparable to those of the non-cryopreserved ones. However, certain changes in DNA
methylation were detected in the regenerants recovered after cryopreservation in some
plant species. Some of these changes were attributed to in vitro culture processes, particu-
larly in the cases of embryogenic tissues. The reversible epigenetic mechanism indicates
that DNA methylation is temporary and plants can revert to normal DNA status when
in vitro cryopreserved plants are established in the field conditions. Therefore, DNA methy-
lation was not closely related to genetic variations in cryopreserved plants. Although the
genetic variation was detected in the regenerants recovered after cryopreservation in some
plant species, such variations were small in locus and low in frequency, and some of the
variations were attributed to in vitro culture processes. Analyses by FCM and molecular
markers proved that overall genetic stability was maintained in the regenerants recov-
ered after cryopreservation in many of the plant species. Therefore, cryopreservation can
maximally maintain genetic stability of cryo-derived plants compared to other traditional
methods. Cryopreservation of transgenes provides a safe and reliable strategy for the
long-term preservation of transgenic plant materials. Cryopreservation processes do not
adversely affect the metabolic stability of plants of cryogenic origin and biochemical pro-
files are also maintained in the regenerated progeny. In addition, cryopreservation can
preserve transgenes in the transformed materials.

Nevertheless, manipulations of in vitro stock cultures and cryogenic procedures are
still needed to ensure genetic stability in the cryo-derived plants, and assessments of epige-
netic and genetic stability in cryo-derived plants are necessary before any cryopreservation
protocols are used for establishing cryobanks (Figure 1). Manipulations of in vitro stock
cultures can be performed by shortening the time periods from establishing in vitro stock
cultures to implementing cryopreservation as much as possible, and minimizing the use
of plant growth regulators for the maintenance of in vitro stock cultures and post-culture
of cryopreserved samples for plant recovery (Figure 1). Manipulations of cryoprocedures
can be performed by avoiding or minimizing the use of toxic substances, such as DMSO,
polyethylene glycol, and glycerol (Figure 1). Due to the low fraction of the genome screened
in the analysis of genetic fidelity using available molecular markers, new methods are
needed for broader screening of the genome in the regenerants recovered after cryopreser-
vation. Next generation sequencing provides an ultra-high throughput platform by which
the sequence of the entire genome of DNA or RNA can be determined and epigenetic
variations can be detected, thus providing a solid evidence of epigenetic and genetic fidelity
in the regenerants recovered after cryopreservation.

In conclusion, the process of cryopreservation seems to preserve the genetic make-
up of plants and the plants regenerated from cryopreserved tissues demonstrate the
ability to adapt through transient adaptation and through DNA methylation. It would
be interesting to investigate the impact of stress ameliorating treatments before, during,
and after cryotreatments at the biochemical and molecular level. Stress mitigation during
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the culture process prior and after vitrification may further improve the cryopreservation
technology and reduce incidences of genetic and epigenetic variations.
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