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Abstract: Plants constantly fight with stressful factors as high or low temperature, drought, soil salinity
and flooding. Plants have evolved a set of stress response mechanisms, which involve physiological
and biochemical changes that result in adaptive or morphological changes. At a molecular level,
stress response in plants is performed by genetic networks, which also undergo changes in the
process of evolution. The study of the network structure and evolution may highlight mechanisms of
plants adaptation to adverse conditions, as well as their response to stresses and help in discovery
and functional characterization of the stress-related genes. We performed an analysis of Arabidopsis
thaliana genes associated with several types of abiotic stresses (heat, cold, water-related, light, osmotic,
salt, and oxidative) at the network level using a phylostratigraphic approach. Our results show that a
substantial fraction of genes associated with various types of abiotic stress is of ancient origin and
evolves under strong purifying selection. The interaction networks of genes associated with stress
response have a modular structure with a regulatory component being one of the largest for five of
seven stress types. We demonstrated a positive relationship between the number of interactions of
gene in the stress gene network and its age. Moreover, genes of the same age tend to be connected in
stress gene networks. We also demonstrated that old stress-related genes usually participate in the
response for various types of stress and are involved in numerous biological processes unrelated to
stress. Our results demonstrate that the stress response genes represent the ancient and one of the
fundamental molecular systems in plants.

Keywords: abiotic stress; A. thaliana; phylostratigraphic analysis; gene network; network structure;
gene family evolution; divergence; multifunctional genes

1. Introduction

Being sessile organisms, plants cannot avoid being exposed to stressful conditions. They constantly
fight with stressful factors such as high or low temperature, drought, soil salinity, and flooding. Plants
have evolved a set of stress tolerance mechanisms, which are different processes involving physiological
and biochemical changes that result in adaptive or morphological changes. The study of the mechanisms
of plants adaptation to adverse conditions, as well as their response to stresses, is of great interest in
the selection of stress resistant varieties [1,2].

The response of plants to stress factors is complex, both in terms of the physiological and molecular
systems involved [3,4]. For example, a turgor pressure in plant cells decreases under drought stress,
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and pH is changed as well as cell size. The pressure drop is captured by receptor kinases and they
activate the abscisic acid signaling which regulate a series of effector genes [5]. This leads to a
physiological reaction of the plant: stomata closure and osmoprotectant synthesis, which ensures the
adaptation of the plant to stressful conditions. As a result of the heat stress action, the activation of a
series of regulatory pathways occurs: kinase cascades, sumoylation, protein–protein interactions, Ca2+,
etc. They eventually activate heat shock transcription factors [6,7], which leads to the expression of
chaperones and enzymes that provide acclimation, the primary adaptation to stress. Thus, the response
to stress has several stages involving different genetic components. These components are common and
include stress sensing, hormonal signal transduction [8], specific transcription factors [7], and protein
kinase cascades [9], leading to phenotypic and physiological changes in plant [5,10]. All these multilevel
processes can be described using gene networks in which many genes are involved [11,12]. Analysis
of the structure of stress gene networks reveals hub genes that may be important for the response to
stress [13,14], thus greatly expediting the progress of discovery and functional characterization of the
stress-tolerant genes/QTLs [15].

The stress response gene networks also change in the process of evolution; therefore, analysis
of the systems of interacting genes, taking into account evolutionary patterns and expression data,
allows the identification of features of the organization of response systems to stress factors and their
most significant components promising for gene prioritization [16–19]. One promising approach in
this regard is phylostratigraphic analysis. It is of great interest in relation to identification of important
stages of genome evolution, where appearance of new genes took place, and to identification of lineage
specific genes [20]. This analysis allows the determination of the time of occurrence of genes, assess
their age and correlate these ages with the functional role of genes in an organism tissues [21]. On the
other hand, a close relationship between the age of genes and the level of their expression in the
process of embryogenesis (‘hourglass-like pattern’) was shown for both animals [22] and plants [23].
Interestingly, an hourglass-like pattern of gene expression by age was also identified in the response of
tobacco plants to biotic stress [24]. One of the interesting tasks is to find functional features of genes
that differ in age. In particular, several data suggest that genes associated with fundamental processes
in cells usually are older than other genes. For instance, the study [20] reported that human genes
referring to such phylostrata as Cellular organisms and Eukaryota are generally associated with basal
cellular functions (metabolic processes, transcription regulation), while the genes originating in the
later stages of evolution are associated with the genes of the immune response and reproduction.

Phylostratigraphic analysis is a promising method for analyzing the evolution of gene networks.
In addition to the structural features of networks, it allows one to identify important details of their
evolution, in particular to locate functional modules in networks [25]. This approach was used for
large-scale analysis of the evolution of A. thaliana gene co-expression networks [26]. The authors
showed that genes originating in the same evolutionary period tend to be connected, but extremely
old and young genes tend to be disconnected.

As it was previously shown, the molecular mechanisms of response to stresses of different types
are various and complex, both in the composition of genes involved in response to stress, and in the
molecular mechanisms of this response. With this in mind, a more detailed study of phylostratigraphic
indices for genes of stress response in plants and their relationship to the structure and functional role
of gene networks is of great interest.

In this work, we used the Orthoscape application [27] to carry out phylostratigraphic analysis of
genes of plant stress, including the assessment of the distributions of these genes according to their
evolutionary age as well as the reconstruction and structural analysis of gene networks by the example
of the network of the heat stress response. Our results show that the substantial fraction of genes
associated with various types of abiotic stress is of ancient origin and evolves under strong purifying
selection. The interaction networks of genes associated with stress response have modular structure
with regulatory component being one of the largest for five of seven stress types. We demonstrated a
positive relationship between the number of interactions of gene in the stress gene network and its age.
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Moreover, genes of the same age tend to be connected in gene networks. We also demonstrated that
old stress-related genes usually participate in the response for various types of stress and involved in
numerous biological processes unrelated to stress. Our results demonstrate that stress response genes
represent one of the most ancient and fundamental molecular systems in plants.

2. Materials and Methods

2.1. Gene Sets Preparation

We analyzed sets of genes associated with seven types of abiotic stress for Arabidopsis thaliana:
heat, cold, light, osmotic, salt, oxidative stress and water-related stress. Gene sets for each type of
stress were formed on the basis of Gene Ontology (GO) terms [28], represented in the TAIR v. 10 [29]
annotation. When selecting an annotation, only the terms of the following confidence levels were
used: inferred from direct assay (IDA), inferred from mutant phenotype (IMP), inferred from genetic
interaction (IGI), inferred from physical interaction (IPI).

In the first step, extended lists of GO terms associated with each type of stress were formed. To do
this, we selected all the terms that contained the keyword “stress” in either title or description, as well
as all their child terms. After the formation of the initial list, its refinement was carried out, the terms
GO not associated with this type of stress were removed. Subsequent analysis showed that the lists of
terms associated with the keyword ‘water’ and ‘drought’ were substantially overlapped: 25 terms
were associated with the keyword ‘water’ and 10 with ‘drought’, 6 terms were common. Therefore,
these two lists in our analysis were combined under the name “water stress”.

The similarity of gene lists was analyzed using the relation tree reconstructed with UPGMA
method based on distances calculated using the Ochiai coefficients [30].

To avoid bias due to multiple occurrence of some genes in several gene lists we have used an
additional non-redundant stress-related gene list, which includes the genes for all types of stress but in
a single occurrence (‘all stresses nr ‘ dataset).

2.2. Network Reconstruction for Gene Sets

To reconstruct gene networks for the set of genes, interactions with a level of confidence above
0.7 were searched using the STRING database [31]. It should be noted that the search in the STRING
database can change the composition of genes in the reconstructed gene network both by excluding
genes from the input list for which no interactions were detected, and by adding new genes (in this
paper, we made it possible to add no more than ten additional genes to the existing list). Generated
STRING tables were then loaded into Cytoscape [32] for visual network reconstruction and analysis
via Orthoscape application [27].

2.3. PAI/DI Calculation and Network Visualization

We used the Orthoscape application [27] for analysis for gene sets of plant stress response and
visualization of their reconstructed networks. Orthoscape loads lists of genes and their network
relationships either from KEGG database or user-defined file. For each gene in the network,
the Orthoscape calculates two evolutionary indices. First, the phylostratigraphic age index (PAI),
order number of a phylostratum, indicating the evolutionary age of a gene based on the finding of
the most basal taxon, common for the gene and every of its orthologs [21]. The lower PAI is, the
lower the phylostratum number is, and the earlier the gene appeared in the course of the organismal
evolution [21]. The Orthoscape uses the KEGG Organisms database [33] to get taxonomic trees.
It performs a search of orthologous genes, populates the tree of species these genes belong to and
then analyses the resulting tree [27]. In the KEGG database, the taxonomic tree for A. thaliana contains
18 taxa; they and their corresponding PAI values are shown in Figure 1. However, it was found that
some of the taxonomic groups (Streptophyta, PAI = 3; Spermatophyta, PAI = 6; Gunneridae, PAI = 9)
have only a single daughter taxon. For example, for Streptophyta it is Embryophyta, for Spermatophyta
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it is Magnoliophyta, for Gunneridae it is Pentapetalae. Therefore, these taxa were excluded from
further analysis. However, we retained the PAI values for remained taxa unchanged. For example,
we did not decrease the PAI for Embryophyta and younger taxa by 1 after removing Streptophyta
with the PAI = 3, etc. An alternative is also possible: reducing the PAI values of all daughter taxa after
excluding Streptophyta, Spermatophyta, and Gunneridae. In this case, for example, the PAI value for
A. thaliana would be 17 − 3 = 14. Such a shift in PAI values can affect the evaluation of the significance
of parametric distribution comparison tests (mean, variance, Pearson’s correlation coefficients, etc.).
However, in our study, despite the fact that we provide estimates of the mean values for samples of
stress genes, the main conclusions about the differences in the age of stress genes are made on the basis
of nonparametric tests (see Section 2.4). In this case, the results will not depend on specific PAI values
for taxa.

The A. thaliana gene list included 27,636 genes, and below it is assumed as the background A.
thaliana genes list.

Figure 1. The phylostratigraphic map of A. thaliana and phylogeny used in the search for the evolutionary
origin of A. thaliana genes, 18 genomic phylostrata that correspond to the phylogenetic internodes.
An asterisk (*) indicates three phylostrata that were excluded from the statistical analysis.

Second evolutionary index is the divergence index (DI) of a gene indicating the influence of natural
selection on gene evolution [23]. It is based on the estimation of the Ka/Ks ratio between the gene
from the analyzed organism and the most similar ortholog from relative organism [34]. In this work,
we use the closest A. thaliana relative, Arabidopsis lyrata. The DI value above 1 indicates the evolution
of the gene under positive Darwinian selection. The DI close to 1 indicates that a gene evolves under
neutral regime. The values of the DI close to 0 indicate strong purifying selection acting on a gene.
The DI measure is often used to estimate the level of the selective pressure on the transcriptomes in
phylostratigraphic transcriptome analysis [24,35–38].

The Orthoscape reports the following results: a graphical representation of a gene network graph
in which each node of the network corresponding to a gene is colored according to PAI or DI; the PAI
values for genes in the gene network, and the result of Ka/Ks ratio evaluation for genes. Orthoscape
also provides its output in HTML format along with the generated R scripts that can be used for
drawing violin plot for all the distributions obtained. HTML reports contain also the data of specific
PAI calculated using weights according the node connectivity.

2.4. Significance of the Differences between PAI/DI Distributions in A. thaliana and Stress Gene Sets

To assess the age and the mode of evolution of the abiotic stress genes, we compared the distribution
of the PAI and DI values for them with the distribution obtained for background list of protein-coding
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genes of A. thaliana. Differences in distributions were characterized by several parameters. First, we
compared the mean PAI and DI values for all A. thaliana genes and stress genes. Secondly, we evaluated
Chi-square statistics (ChiSqPAI/ChiSqDI) when comparing PAI/DI distributions of all A. thaliana genes
and each of the stress gene sets. Third, for each PAI value, we evaluated the difference in proportion
of genes corresponding to these values in the sets of stress genes and the complete set of genes of
A. thaliana: dfPAIi = fPAIi stress − fPAIi At, where fPAIi stress is the proportion of genes with PAIi in
the samples of stress genes, and fPAIi At is the proportion of such genes in the sample of all genes.
The parameters of dfDIi, differences in the frequency of genes in a certain range of values (bin) in the
sets of stress genes and the complete set of A. thaliana genes, were calculated in the same way. As a
null hypothesis, it was assumed that the estimated distributions of the sets of stress genes are identical
to those in the sample of all A. thaliana genes.

To assess the statistical significance of the differences between the obtained characteristics of
stress gene distributions and the whole set of genes, we performed a shuffling test. For each type
of stress, from the pool of all protein-coding genes, we randomly selected without replacement as
many genes as were represented in the corresponding set. After that, PAI/DI distributions for this
random set of genes were constructed and compared with the distribution for the complete set
of genes according to the parameters described above (mean value, Chi-square statistics and the
difference in frequencies in bins). Random sets of genes for each type of stress were generated 105

times. The characteristics obtained for random samples were compared with those corresponding to
the initial stress sample. For each characteristic, the number of nrand samples was calculated, such
that (1) the average value of PAI < PAIrand and; (2) ChiSqPAI < ChiSqPAIrand; (3) for each PAI value
dfPAIi < dfPAIirand. The significance of deviations of the corresponding characteristics from those for
the null hypothesis was estimated as p = nrand/105. For example, if we obtained nrand = 500 (p = 0.005)
for the average PAI score, it would mean that the average age of the stress genes is significantly greater
than the age for all A. thaliana genes (corresponding to lower PAI values). If a similar estimate is
obtained for the ChiSq parameter, it means that the distribution of gene frequencies of different ages
in the stress gene set is significantly different from that for a set of randomly selected genes. Hence,
if similar estimates of p are obtained for some value i of the PAI, it means that genes with the age i are
significantly more frequent in the sample of stress genes than can be expected for random choice for a
set of randomly selected genes of A. thaliana.

A similar statistical test was applied to DI distributions in stress gene sets.

2.5. Gene Ontology Annotation Enrichment for Stress Gene Sets

The enrichment analysis of stress gene sets with the GO terms for dictionaries ‘Biological process’,
‘Cellular component’ and ‘Molecular function’ was carried out with the help of DAVID service v6.8 [39].
The significance of association of the term GO with any set of genes was determined at p-value < 0.05
with Benjamini correction for multiple comparison [40].

2.6. Relationship between Gene Network Structural and Evolutionary Characteristics

We distinguished clusters in the structure of gene networks on the basis of visual analysis.
We evaluated the quality of the network graph partitioning into clusters using the internal degree of the
node (degint), the average value of the edges connecting nodes within cluster and external degree for
the node (degext), the average value of the edges connecting nodes from the cluster to other nodes in
the network [41]. The higher degint and the lower degext are, the better is node selection for the cluster.
For each cluster, we have separately identified the significantly associated GO terms as described in
Section 2.5.

To assess the relationship between the structure of gene networks of stress response and the
evolutionary characteristics of genes, we used the following graphs characteristics for each networks:
the degree of node, i.e., the number of other connected nodes, k [42]; list of pairs of interacting nodes;
lists of pairs of nodes, the shortest path between which has two edges or more. To calculate the shortest
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path between nodes, we used the NetworkX [43] library’s method all_pairs_shortest_path() without
limiting cutoff on the maximum length of the shortest path.

To assess the relationship between the structural characteristics of nodes and their evolutionary
characteristics, we calculated: (1) the Pearson correlation coefficient between the degree of node i, ki,
and its age PAIi; (2) the scalar assortativity coefficient [44] for PAI values in pairs of interacting genes.
Assortativity coefficients, ra, were estimated using graph-tool package [https://graph-tool.skewed.de/],
graph_tool.correlations function. The graph_tool.correlations function additionally returns the variance
of the assortativity coefficient estimated by jack-knife test [44]. This allowed us to estimate the standard
deviation of the coefficient, σ(ra) and to evaluate the significance of the ra deviation from 0. We also
calculated the distributions of the absolute difference between PAI values, |dPAI| for gene pairs
separated in the network structure by 1, 2 and 3 and more edges.

2.7. Evolutionary Changes of Gene Functions in Stress-Related Gene Networks

The difference in the ages of genes within the network implies a change in the composition of
genes in the process of its evolution. Together with the change in the composition of genes, the set
of functions of genes (GO terms) involved in the network changes respectively. To track changes in
the composition of GO terms during the evolution of the gene network, we conducted the following
analysis. For each term associated with a stress gene network, we defined a set of genes whose
annotations contained this term. For a set of these genes, we built a distribution of frequencies of
occurrence by age. For example, if all genes in the gene network of stress annotated with the GO
term ‘Seed development’, the most ancient was consistent with the phylostratum Magnoliophyta,
which meant that at the stage of evolution corresponding to the emergence of flowering plants, some
genes along with the response to stress became involved in the development process of seeds. Such
distributions were constructed for all GO terms significantly associated with sets of genes of different
types of stress (see Section 2.5).

3. Results

3.1. GO Terms and Genes Associated with Abiotic Stress

Using GO terms processing (see Section 2.1), we selected 161 terms that characterize particular
types of stress. The list of GO terms associated with stress and the list of A. thaliana genes, annotations
of which contain these terms, are presented in Supplementary file 1. It turned out that the number
of GO terms that characterize stress varies among different types of stress. Among the GO terms we
found 48 terms associated with light stress, and only 4 terms associated with cold stress. For other
types of stress, the number of terms associated with them varied from 14 to 28.

Despite the strong difference in the number of terms associated with different types of stress,
the number of genes in the TAIR database that were identified based on annotations for different
types of stress differed by no more than 2.5 times (Table 1). The minimum number of genes (102) was
associated with heat stress, the maximum (231) with salt stress. There was no significant correlation
between the number of GO terms and the number of genes associated with these terms (Pearson
correlation coefficient between these values was found to be 0.09).

To identify orthologs via the Orthoscape and to perform the subsequent analysis, we used
data from the KEGG database [https://www.genome.jp/kegg/]. It was found that not all sequences
of A. thaliana genes from the TAIR database, which served as the initial source of stress gene lists,
are represented in KEGG. However, the differences in the number of genes for different types of
stress were no more than 14 (the difference for light stress, 10% of the total list of genes for this stress,
see Table 1). For other types of stress, the differences ranged from 0 to 6 genes.

https://graph-tool.skewed.de/
https://www.genome.jp/kegg/
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Table 1. Number of GO terms and genes that have identified associations with studied stress types.

Stress Type Number of GO Terms Number of Genes KEGG Number of Genes

Cold 4 150 144
Heat 14 102 102
Light 48 155 141

Osmotic 23 116 114
Oxidative 28 154 152

Salt 17 231 230
Water 27 215 211

There are genes common to different gene sets. For example, 13 genes of salt stress (5.6% of
the total number, 231) included in the heat stress dataset (TAIR annotation). The number of genes
in common between pairs of stress datasets provided in Table 2, along with the number of unique
genes for each stress. It is apparent from the table that the gene set for osmotic stress shares largest
fraction of genes with other datasets (40% with salt, 25% with water-related, 15% with cold and 10%
with oxidative stresses). On the other hand, a large fraction of gene sets has several genes common
with the salt stress dataset (5 out of 6 types have more than 10% of genes in common with this type of
stress). However, the majority of comparisons yield less than 10% of common genes (28 out of 42).
The fraction of unique genes for the datasets was lower than 50% for only one type of stress, osmotic
(30%); for three datasets, it was greater than 70%, and for another three datasets it was greater than
50% (Table 2). The ratio of the number of common genes among all eight sets of genes is shown in the
form of a tree, which was built with the UPGMA method using distances calculated on the basis of
the Ochiai coefficients (Figure S1, Supplementary file 2). The tree reflects the above results properly:
the proximity of gene sets of osmotic and salt, heat and light stress is well shown. These results
demonstrate the polyfunctionality of stress response genes: some genes participate in the response to
more than one stress.

Table 2. The number of common genes between pairs in stress-related gene sets. Each cell in the table
represent the fraction (and number, in parentheses) of genes from the set of the row common with the
set of the column. The last column represents the number of unique genes for the stress in the row.

Salt Heat Light Water Cold Osmotic Oxidative Unique
Genes

Salt 232
13 7 (0.03) 41 * 18 47 18 126
−0.06 (0.18) −0.08 −0.2 −0.08 −0.54

Heat
13

102
8 11 8 8 6 72

−0.13 −0.08 −0.11 −0.08 −0.08 −0.06 −0.71

Light 7 8
155

12 9 3 6 120
−0.05 −0.05 −0.08 −0.06 −0.02 −0.04 −0.77

Water
41 11 12

216
18 29 11 124

−0.2 −0.05 −0.06 −0.09 −0.14 −0.05 −0.59

Cold
18 8 9 (0.06) 18

150
17 6 93

−0.12 −0.05 −0.12 −0.12 −0.04 −0.64

Osmotic
47 8 3 29 17

117
12 35

−0.41 −0.07 −0.03 −0.25 −0.15 −0.1 −0.3

Oxidative
18 6 6 11 6 12

154
118

−0.12 −0.04 −0.04 −0.07 −0.04 −0.08 −0.77

* The cells with fraction of genes larger than 0.1 are shown in bold.

The lists of genes from each specific stress type dataset are provided in Supplementary file 3.
In our work, we will analyze the seven types of gene sets separately.
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3.2. Analysis of PAI Distribution

We calculated PAI indices for the background list of protein-coding genes in the A. thaliana genome
and built their distribution (Figure 2, grey bars; see also Supplementary file 4 for the full data for
A. thaliana genes). The Identity parameter for the identification of homologues in the Orthoscape
program was set to 0.5. The PAI distribution for all A. thaliana genes is multimodal and has three
distinguished peaks at Cellular Organisms-Eukaryota, Magnolyophyta and Brassicacea phylostrata.
he first peak is the largest; almost 50% of genes in A. thaliana genome have PAI 0 or 1. The second
peak comprises 15% of genes and the third one covers more than 6%.

Similar PAI distributions were calculated for gene samples of each type of stress. Next, we calculated
the difference between frequencies of occurrence of genes at each PAI values in the stress dataset and
all A. thaliana genes (dfPAI). Figure 2 shows this difference as colored lines for each type of stress.

Figure 2. The distribution of frequencies of A. thaliana protein-coding genes (y-axis) by PAI (X-axis)
is shown as grey bars. Solid lines indicate the values of the difference between the frequencies of
occurrence of PAI values in stress dataset and all A. thaliana genes (dfPAIi). Correspondence of the line
color and stress type is shown in the box in the upper right corner.

This diagram clearly demonstrates that PAI for genes from the analyzed stress datasets have a
higher fraction of genes with lower PAI values in comparison to the distribution of the background
genes. For instance, a large excess of genes from stress datasets is observed for Cellular organisms
(all difference values in stress datasets are positive). For Eukaryota phylostratum, the values are
positive for all types of stress except oxidative. For large PAI values (>12, malvids) all of the difference
values are below zero. The combined list of genes ‘All stresses nr’ demonstrates a pattern of differences
between background dataset similar to specific ones: positive values for earliest phylostrata and
negative for the latest. It should be noted that similar patterns (the prevalence of positive values of the
difference in frequencies in the samples of stress genes and all genes for small PAI values and negative
for large PAI values) are typical for PAI estimates obtained with the values of Identity parameter of 0.7
and 0.6 (Figure S2, Supplementary file 2).

To assess the significance of deviations between PAI distributions in stress gene sets and in all
A. thaliana genes, we performed a Monte Carlo randomization test (see Methods, Section 2.4). Its results
are presented in Table 3 (PAI estimates at Identity = 0.5). The table shows that in all random samples
of the same size as the stress gene samples, the average PAI value exceeded the values for stress genes,
i.e., the average PAI values for stress genes are significantly (p < 10−5) less than would be expected for
random samples from the whole set of A. thaliana genes. Table 3 also shows the Chi-squared values that
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characterize the degree of difference between PAI distributions in stress gene sets and PAI distributions
of all A. thaliana genes. For stress genes, these values are higher than for random samples (the value
of ChiSqstress < ChiSqrand is less than 5000 samples out of 105, i.e., p < 0.05). This suggests that PAI
distributions in stress genes are significantly different from those in random gene sets.

The randomization test also has shown that the number of genes represented in Cellular Organisms
phylostratum in the sets of stress genes is significantly higher than expected by chance for randomized
samples (Table 3). For heat, salt and oxidative stress, this number was exceeded in none of the random
samples, and in the rest, the number of random samples with excess of the proportion of genes of
this phylostratum ranged from 10 to 1051 (p < 0.05). A similar situation was observed in Eukaryota
phylostratum for osmotic, salt and water stress genes, in Viridiplantae phylostratum for water stress,
in Embryophyta for heat and in Tracheophyta for cold stress. All these facts are in good agreement with
the data shown in Figure 2 and argues for the genes, the origins of which are associated with ancient
phylostrata, being more often represented in sets of stress response than the average for the genome.

Table 3. The comparison of the PAI distribution of genes in the gene networks of A. thaliana stress
response with the corresponding distribution of the complete set of A. thaliana genes according to the
results of the permutation test. First line: types of stress. Second line: the proportion of random samples
for which the average PAIrand value for a set of genes, the same size as the stress network, exceeds the
PAIstress value for the corresponding stress network. Third row: fraction of random samples of genes in
which the value of the quadratic deviation ChiSqrand distribution of ages the distribution for all genes
is higher than in the corresponding gene networks (ChiSqstress). The fifth and subsequent lines: the
fraction of random samples of genes in which the difference between the proportions of genes of i-th
phylostratum dfPAIi among stress genes exceeds the corresponding proportion among random sample
formed from the whole gene set. All values in the cells must be multiplied by 10−5. PAI is calculated at
the level of similarity of the sequences of ID = 0.5.

Stress Cold Heat Llight Osmotic Oxidative Salt Water All
Stress nr

p(PAIstress < PAIrand) 100,000 * 100,000 100,000 100,000 100,000 100,000 100,000 100,000
p(ChiSqstress < ChiSqrand) 163 153 303 2132 20 1 1 0 **

p (dfPAIi stress < dfPAIi rand) for specific phylostratum

00_Cellular organisms 28 0 ** 11 1051 0 ** 0 ** 153 0 **
01_Eukaryota 11,218 35,449 34,137 2009 75,372 194 34 78

02_Viridiplantae 15,729 11,571 6603 32,387 18,710 83,664 96 6394
04_Embryophyta 47,489 3778 12,708 51,099 11,320 87,444 26,046 25,790
05_Tracheophyta 2181 65,732 32,104 51,865 99,386 22,936 39,481 53,618

07_Magnoliophyta 38,170 97,432 26,294 23,881 49,013 45,825 82,207 100,000
08_eudicotyledons 94,830 62,021 78,520 8542 60,328 69,323 80,882 100,000

10_Pentapetalae 69,619 72,175 68,242 31,311 52,357 50,365 60,197 97,992
11_rosids 91,840 79,304 91,447 83,906 81,256 99,084 72,339 99,935

12_malvids 15,610 39,144 49,460 42,420 16,775 67,429 63,996 78,703
13_Brassicales 89,388 94,844 61,746 89,433 96,971 97,955 98,746 100,000

14_Brassicaceae 99,913 89,314 99,872 99,981 99,765 99,998 100,000 100,000
15_Camelineae 89,271 74,850 97,699 80,248 56,525 99,796 99,627 100,000
16_Arabidopsis 74,084 61,724 73,454 65,695 41,687 88,476 86,494 99,736
17_A. thaliana 99,520 97,657 99,446 98,525 97,458 99,811 99,948 100,000

* The values with p < 0.05 are bold and underlined; the values with p > 0.95 are underlined. ** p < 10−5.

Table 3 also shows that the genes of the young phylostrata are underrepresented in the lists of
genes of stress response. In the vast majority of random samples, the proportion of such genes is higher
for A. thaliana phylostratum (with p < 0.05 for all types of stress). For Brassicaceae phylostratum, it is
observed in all types of stress except heat, for Camelineae phylostratum it is observed in light, water
and salt stresses, for rosids it is salt stress, and for Brassicales phylostratum, it is oxidative, salt and
water stresses.
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Again, the combined list ‘All stresses nr’ demonstrates a similar pattern of p-values based on the
randomization test: significant low values are observed for Cellular Organisms and for Eukaryota
phylostrata, while high values are observed for phylostrata with higher PAI.

It should be noted that the results described above were obtained in determining orthologs with
the threshold for the identity of sequences of 50%. We performed a similar analysis by establishing
the identity thresholds for comparing sequences of 60% and 70%. The results are presented in Tables
S1 and S2 (Supplementary file 2) and show a good agreement with the above: genes, whose origin is
connected with ancient phylostrata, are overrepresented in stress samples of genes than in random
samples, and the genes that occurred recently, on the contrary, are underrepresented in stress ones.

These data show that the frequency distribution representation of genes with different PAI values
in genes associated with different types of stress and all genes are significantly different; additionally,
stress response genes are characterized by elder age than for all A. thaliana proteome on average.

3.3. Analysis of DI Distribution

A similar analysis was conducted in order to compare the index of sequence divergence, the DI,
for the stress genes and for all genes of A. thaliana (as described in Section 2.3). Those genes of A.
thaliana that had no synonymous substitutions (Ks = 0, 1147 genes) were excluded from the analysis.
2679 genes had a zero value of the parameter DI (Ka = 0, Ks , 0), which was approximately 10% of the
total number of genes. 391 genes (1.4%) had a value of DI > 1, indicating evolution under positive
Darwinian selection. Interestingly, we found only two genes with DI > 1 among the stress genes. These
genes were RCI2A/AT3G05880 (low temperature and salt responsive protein family, associated with the
cold stress, DI = 1.8019) and DREB2B/AT3G11020 (DRE/CRT-binding protein 2B, DI = 1.0176). This is a
relative fraction of at least 2 times less than for all A. thaliana genes. The histogram of the distribution
of all genes by the DI value and the difference in frequencies in the bins between all A. thaliana genes
and the stress genes is shown in Figure 3.

Figure 3. The distribution of frequencies of A. thaliana protein-coding genes (y-axis) by the DI value
(x-axis) is shown by grey columns. Solid lines show the difference between the frequencies of occurrence
of DI values in the stress dataset and all A. thaliana genes. Correspondence between the line color and
the stress type is shown in the box in the upper right corner.

The figure shows that the genes with lower values of DI (less than 0.3) in the sets of stress genes
are overrepresented, and those with more are underrepresented. However, the peak of differences
corresponds to the DI (0.1, 0.2] bin, not the [0.0, 0.1] bin, which is associated with a reduced proportion of
genes with DI = 0 among stress genes. Thus, although stress genes are under strong purifying selection,
their sequences still contain a small proportion of non-synonymous substitutions. To determine the
significance of the differences in the distributions of DI stress genes and the complete set of A. thaliana
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genes, we carried out a randomization test similar to the test to check the significance of deviations of
the PAI. The results are presented in Table 4. The table shows that the differences observed in Figure 3
in the DI distributions are significant.

In particular, the mean DI values in random gene samples exceeded those for stress gene sets
in more than 95% of cases. Significant (p < 0.05) deviations in distributions estimated on the basis
of Chi-square statistics are observed for the gene sets of light, osmotic, salt and water stress types.
Excess of the proportion of genes with DI within the range 0–0.1 compared with the proportion for
all A. thaliana genes was observed for all types of stress, except cold and salt, but was not significant.
A significant excess was observed for all types of stress in the DI range of (0.1–0.2). Table 4 shows
that a significant excess of the proportion of genes with values DI > 0.3 in random samples of genes
compared to the stress-related is a frequent phenomenon (numerical values in the table are underlined),
although not systematic.

Table 4. Comparison of the divergence index (DI) distribution of genes in the gene networks of A.
thaliana stress response with the corresponding distribution of the complete set of A. thaliana genes
according to the results of the permutation test. First line: types of stress. Second line: the proportion
of random samples for which the average DIrand value for a set of genes, the same size as the stress
network, exceeds the DIstress value for the corresponding stress network. Third line: fraction of random
samples of genes in which the value of the quadratic deviation ChiSqrand distribution of DI from such
distribution for all genes is higher than in the corresponding gene networks (ChiSqstress). The fifth and
subsequent lines: fraction of random samples of genes in which the difference between the proportion
of genes of i-th phylostratum dfDIi among stress genes exceeds the corresponding proportion among a
random sample formed from the whole gene set. All values in the cells must be multiplied by 10−5.

Stress Cold Heat Light Osmotic Oxidative Salt Water
All

Stresses
nr

p(DIstress < DIrand) 96,272 * 99,700 99,993 99,993 98,140 100,000 99,999 100,000
p(ChiSqstress < ChiSqrand) 7010 43,398 4707 589 52,740 10 77 0 **

p(NDI stress < NDI rand) for specific DI bin

[0, 0.1] 93,375 28,064 6137 53,230 38,498 10,701 38,527 3109
(0.1, 0.2] 67 2567 440 25 2633 0 ** 3 0 **
(0.2, 0.3] 15,832 38,676 66,383 3174 64,490 32,404 9731 18,452
(0.3, 0.4] 49,562 40,493 90,569 96,058 69,027 97,027 96,333 99,395
(0.4, 0.5] 71,783 75,719 58,004 92,193 30,113 96,979 94,603 99,451
(0.5, 0.6] 70,023 73,560 68,603 92,023 86,198 99,567 99,808 99,973
(0.6, 0.7] 95,009 84,956 99,071 88,993 22,528 93,999 82,333 99,957
(0.7, 0.8] 76,327 58,418 51,318 88,964 55,802 93,241 77,350 98,435
(0.8, 0.9] 47,813 67,878 79,538 72,465 50,554 92,166 90,674 99,617
(0.9, 1] 61,938 49,902 61,515 53,707 64,025 78,219 75,853 99,712
(1, +∞) 62,703 78,089 87,708 81,801 89,300 96,544 82,213 99,985

* Values with p < 0.05 are bold and underlined; values with p > 0.95 are underlined. ** p < 10−5.

We compared quantile values for DI distributions for stress gene sets and for all A. thaliana gene
set. The results are shown in the Supplementary file, Table S3. The table demonstrates that for quantile
50 (median) and above (q75, q90, q100), all values for stress gene distributions are lower than those for
all A. thaliana gene set. Quantile q25 have lower values in all stress cases except cold stress compared
to the whole set of A. thaliana genes. This holds true also for ‘All stresses nr’ gene set. These results
demonstrate that DI distributions for stress genes are shifted towards smaller values.

It should be noted that the analysis above uses lists of all A. thaliana protein-coding genes (including
both annotated and non-annotated genes in the GO database) as the background lists. At the same time,
it is known that among young genes there is a high proportion of non-annotated ones [27]. This may
lead to a shift in our estimates, since the non-annotated portion of genes that are known to be younger
is excluded from the stress gene sample. It turned out that the number of non-annotated genes in
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the TAIR database was 1738 (6% of the total number of genes). We built the age distributions for
both GO-annotated and non-annotated genes in the TAIR database (Supplementary file 2, Figure S3).
Indeed, the proportion of young genes (PAI > 10, Pentapetalae) in the list of genes without annotations
is systematically higher than for the same PAI values among genes with GO annotation. It should be
noted, however, that this proportion is generally comparable to the proportion of old genes. Thus,
the highest proportions of genes for PAI = 14 (Brassicacea) and 17 (A. thaliana) occurring among
young taxa are 0.14 and 0.16, respectively. These values differ insignificantly from the proportions of
non-annotated genes for Cellular organisms (PAI = 0) and Eukaryota (PAI = 1) phylostrata, 0.13 and
0.16, respectively.

However, to account for this bias, we conducted randomization tests for PAI and DI values using
a sample of A. thaliana protein coding genes of only annotated genes (25,898 of 276,364, 94%) as the
background. Results for PAI (at Identity = 0.5) and DI are shown in Supplementary file 2, Tables S4
and S5. The data of the Table S4 show that the significance of deviations of PAI share on phylostrata
from the sample of annotated A. thaliana genes at the level of p < 0.05 is unchanged compared to the
results of Table 2. Significantly low values are observed for all types of stress in Cellular Organisms.
For Eukaryota phylostratum, significant deviations are observed for osmotic, salt, water stresses as
well as for All stresses nr stress. For Viridiplantae, the water stress is significant. For Embryophyta,
it is the heat stress. Finally, for Tracheophyta it is the cold stress. As for young phylostrata, the results
for them are also consistent for the two types of background lists (high values).

A similar pattern is observed for DI tests. All significant values in Table 4 correspond to significant
values in Table S5; moreover, for the interval DI [0, 0.1], significantly low values were found for light
and water stress genes.

The presented results allow us to conclude that the genes associated with the response to various
types of stress in general are rather more frequently under purifying selection than the average for the
genome of A. thaliana.

3.4. Network Clusters and Their Association with GO Terms

We reconstructed gene networks for genes represented in seven stress gene lists using STRING tool
[https://string-db.org/] (see Section 2.2). The networks contain genes that have at least one relationship
with other genes at a significance level of 0.7 (high confidence). For some genes, interactions of the
required level of significance were not found and these were not included in the network structure.
In addition, STRING added several genes to the network due to their connections with genes from
the stress lists. In some cases, the graphs of networks of the same type of stress included genes,
not presented in the original list, but presented in some of the lists of genes associated with other types
of stress. The list of genes included in the particular type of the stress gene network is presented in
Supplementary file 3.

To verify the clustering of the gene network nodes, for each cluster we calculated: the average
edge number per node within cluster edges (degint, see Section 2.6), the average edge number per node
for edges connecting cluster and non-cluster nodes (degext), and the average degree of the node for all
network, knet. The results for each network and each cluster are represented in Supplementary file 2,
Table S6. The table demonstrated that the majority of clusters have degint > knet and all clusters have
degint > degext (all degext values are below 0.5). These data justify our choice of clusters within stress
gene networks.

The network for heat stress genes was visualized using the Orthoscape application (Figure 4).
In this network, four clusters were identified. Cluster 1 comprises 23 genes. 13 genes are coding for heat
shock proteins performing chaperone functions (gene ID is shown after the slash): BOB1/AT5G53400,
HSBP/AT4G15802, BAG7/AT5G62390, Fes1A/AT3G09350, HSP21/AT4G27670, HSF3/AT5G16820,
BIP2/AT5G42020, AR192/AT4G26780, HSC70-1/AT5G02500, HSP101/AT1G74310, BIP3/AT1G09080,
ATERDJ3A/AT3G08970, HSP81-3/AT5G56010. The 2 genes related to thioredoxin (GRXS17/AT4G04950,
TDX/AT3G17880) and one gene, PP7/AT5G63870 is a housekeeping gene. Functions of other 8 genes

https://string-db.org/
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in this cluster are less clear. It contains the majority of genes with low PAI and they have a dense
network of interactions. Most of these genes are unique for the heat stress gene set. The GO terms
(biological process), associated with this cluster in the largest number of genes, excluding ‘response
to heat’ (Table S7, Supplementary file 2) are protein folding, response to hydrogen peroxide, cellular
response to unfolded protein. The functions of this cluster are related to the mechanisms of cellular
response to unfolded protein. Predominant cellular localization of genes for this cluster are cytosol and
cytoplasm. Molecular function is protein binding, including Hsp70 (Table S7, Supplementary file 2).

Figure 4. Gene network reconstructed for the heat associated gene set using the STRING tool. Node
color corresponds to the PAI index of the gene from 0 (dark blue) to 17 (red). Nodes added to the gene
set by the STRING procedure of network reconstruction are outlined in red color. The four clusters of
genes are shown by rounded rectangles and numbered.

Cluster 2 contains 20 genes. It includes transcription factors of WRKY (WRKY25/ AT2G30250,
WRKY33/AT2G38470) and C2H2 (RHL41/AT5G59820) types, receptors for ethylene (ETR1/AT1G66340,
XRN4/AT1G54490, EBP/AT3G16770), salicylic acid (NPR1/AT1G64280), abscisic acid (ABI1/ AT4G26080),
hormone biosynthesis (ABA1/AT5G67030, ABA3/AT1G16540 are two enzymes controlling the first and
the last steps of abscisic acid biosynthesis, respectively) and chromatin modifying protein ATCHR12/

AT3G06010. Cluster 2 contains more genes with higher PAI values and more genes shared with other
stress types. The interaction network for this cluster is sparser in comparison with Cluster 1. The GO
terms (biological process), associated with this cluster in the largest number of genes, excluding
‘response to heat’ (Table S7, Supplementary file 2) are response to abscisic acid, response to salt stress,
response to water deprivation, response to osmotic stress, response to cold, cellular heat acclimation,
response to ethylene, ethylene-activated signaling pathway. This set of genes is associated with a
greater extent with the functions of the pathway of hormone signals for abscisic acid, ethylene and
gene expression regulation. It significantly intersects with the functions of response to cold, salt, water,
heat and osmotic stresses. No clear association with GO was found for cell localization of genes for
this cluster. Molecular function was found to be protein binding (Table S7, Supplementary file 2).

Clusters 1 and 2 connected via hub gene, TE1 (ERECTA/AT2G26330), a receptor protein kinase,
which is a pleiotropic regulator of developmental and physiological processes, as well as it is a
modulator of responses to environmental stimuli [45], including heat stress [46].

Cluster 3 contains 6 genes. SUMO1/AT4G26840 [47] and SIZ1/ AT5G60410 [48] are related
to ubiquitination. Two genes involved in the repair of strand breaks, and the excision repair in
response to ultraviolet radiation: UVH6/AT1G03190 [49] and UVH3/AT3G28030 [50]. Two remaining
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genes from this cluster are involved in the mitochondrial genome stability, MSH1/AT3G24320
(a plant-specific protein involved in organellar genome stability in mitochondria and plastids [51]) and
RECA3/AT3G10140 [52]. Like the other regulatory cluster, 2, cluster 3 has sparse interactions and large
fraction of genes with medium/high PAI. The GO terms (biological process), associated with this cluster
are mitochondrial genome maintenance, DNA repair. This cluster of genes is probably associated with
maintaining the stability of the DNA structure during the response to heat stress. No clear association
with GO was found for cell localization of genes in this cluster, as well as for molecular functions.

The fourth cluster contains 13 genes, 10 of which are the only genes added to the initial
heat stress gene set by STRING. Genes from this cluster have no connections to other clusters via
STRING interactions. They tightly interconnected within the cluster. All of genes included in
this cluster are proteasomal genes. It is likely that the function of this cluster is related to the
degradation of proteins unfolded due to the heat stress. It is confirmed by the GO terms for this cluster:
ubiquitin-dependent protein catabolic process, ER-associated ubiquitin-dependent protein catabolic
process, proteasome-mediated ubiquitin-dependent protein catabolic process. Cellular localization of
genes for this cluster is primarily cytosol, cytoplasm, proteasome complex, etc. Molecular function
annotation contains protein binding, hydrolase activity, proteasome-activating ATPase activity (Table
S7, Supplementary file 2).

The remaining four genes outside clusters contain a pair of genes associated with the
biosynthesis of ascorbic acid: CYT1/AT2G39770, GDP-D-mannose pyrophosphorylase VTC1 [53]
иVTC2/AT4G26850 [54]. The two other genes, a DEAD box RNA helicase LOS4/AT3G53110 [55] and
exprotin XPO1A/AT5G17020 [56], are associated with the export of mRNA. These four genes have low
PAI values (less than 3).

Thus, the gene network of response to heat stress is segregated into several distinct clusters
(modules), the genes in which perform quite specific functions. One of the clusters, “regulatory”,
is quite large in size, and is characterized by genes of signal response, regulation associated with
hormones (ABA, ethylene), and genes associated with other types of stress responses.

A similar structure of gene networks is typical for other types of stress (see Figures S4–S9,
Supplementary file 2). We have also identified distinct clusters in them (up to 6 PCs), as well as
several non-clustered genes. Perhaps the most remarkable feature of the considered networks is the
isolation of the “regulatory” cluster of genes of response to cold, salt, osmotic and water stresses.
These are the clusters with the number of 1, which include the greatest number of genes in all these
networks except oxidative. The proportion of genes involved in these clusters is greater than that of a
similar cluster in the heat stress network (Figure 4); they are linked by a large number of interactions.
Interestingly, these clusters contain genes associated with known hormone response to abiotic stress
such as ethylene, abscisic acid, jasmonate [57–59]. Among these can be mentioned the genes associated
with the biosynthesis of abscisic acid (ABA1 zeaxanthin epoxidase), regulation of its biosynthesis
(phosphatases ABI1, ABI2, molybdenum cofactor sulfurase ABA3), as well as transcription factors,
which regulate this metabolite (abscisic acid receptor PYR1). Detailed information is presented in
Tables S8–S13 (Supplementary file 2). These regulatory clusters also contain genes associated with
ethylene signaling pathways and signal transduction genes, such as SnRK2 protein kinases, that are
involved into the signal pathway of response to abiotic stress [60]. It is important to note that regulatory
clusters contain mainly ancient genes.

It is interesting to note that the expressed regulatory clusters associated with stress hormones
are not represented in the networks of response to light and oxidative stress. For example, the largest
cluster in the light stress gene network contains the genes of response to light stimuli, regulatory genes,
photomorphogenesis and circadian rhythm genes (Figure S5, Table S9, Supplementary file 2). A small
cluster 2 containing only three genes is associated with auxin, and cluster 3 (6 genes) with abscisic
acid-activated signaling pathway.

For oxidative stress, there is no clear ranking of clusters by the number of genes; they are all
about the same, with rare connections (Figure S7, Table S11, Supplementary file 2). It is also difficult to
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distinguish a separate regulatory component. Genes associated with other types of stress are also rare.
Only a small number of genes is associated with the terms “cellular response to highlight intensity”
and “protein repair, protein folding”.

As for the functions of other clusters in gene networks, they are primarily related to the molecular
mechanisms of stress response. For example, in a cold stress response network, cluster 2 includes cold
shock proteins such as GRP2 (the cell wall glycine-rich protein), CSP3 (an RNA chaperone, cold shock
domain protein 3 [61], GR-RBP2 (glycine-rich RNA-binding protein 2) which participate in DNA/RNA
melting processes. There are also clusters of regulatory proteins and signal transduction, such as
small-size clusters with the number 2 in the osmotic and salt stress networks that contain kinases
(Figures S6 and S8, Supplementary file 2).

Thus, gene networks of response to different types of stress differ both in network topology and in
functions associated with genes. In the networks of response to cold, salt, osmotic and water stress, the
regulatory component is clearly distinguished, which includes a large number of genes, with a large
number of links between them. This component is associated with known abiotic stress hormones,
abscisic acid and ethylene, and contains many genes common to these types of stress, which is in good
agreement with the clustering diagram of stress response gene lists (Figure S1, Supplementary file 2).
In the network of heat stress, such a regulatory component is less apparent, and in the networks of
light and oxidative stress it is almost absent.

3.5. Relationship between Structural and Evolutionary Characteristics of Gene Networks

We checked the relationship between structural characteristics of gene networks such as the
connectivity degree of the node (k) and the evolutionary age of the gene (PAI). The results are shown in
Table 5. The PAI versus k scatterplots for osmotic and oxidative stress are shown in Figure 5 (panels A
and B, respectively).

Table 5 shows that significant negative correlations between the node degree of connectivity and
the age of the corresponding gene are observed only for three types of stress. These are networks
of heat, osmotic and salt stress. Such correlations are due to the presence of nodes in the network
that correspond to ancient genes with a large number of connections, which is clearly seen in the
scattering diagram for the osmotic stress network (Figure 5A, the upper left corner of the graph)
and is not observed for the oxidative stress network (genes are distributed approximately equally
by the age, regardless of the age value, see Figure 5B). In the network of osmotic stress, such nodes
are ABI1/AT4G26080 gene (k = 23) and ABI2/AT5G57050 gene (k = 22), which belong to the Protein
phosphatase 2C family (Figure S6, Supplementary file 2). They contain a large number of edges linked
to the nodes of the PAI equal to 1 (Eukaryota phylostratum). The oxidative stress gene network does
not contain nodes with such a high degree value (the maximum value of 8 is represented for the gene
STZ/AT1G27730, salt tolerance zinc finger; see Figure S7, Supplementary file 2). It should be noted,
however, that Table 5 does not contain significant positive correlation coefficients. Thus, it should be
concluded that in the networks of stress response, young genes do not have node degrees significantly
greater than that of old genes. This is clearly seen in the scatter plots shown in Figure 5 and Figure S10
(Supplementary file 2).

We evaluated the interrelation of the ages of the genes forming the gene networks of various types
of stress. To do this, we calculated the distribution of the absolute value of the gene age difference
(|dPAI|) for pairs of nodes of the gene network connected by edges. For comparison, we calculated
similar distributions for pairs of nodes in a graph separated by the shortest path of 2 and 3 or more
edges. The results are shown in Figure S11 (Supplementary file 2). It can be seen that for all types of
stresses, except for light, for nodes separated by one edge, the most common is the pair with the same
age (|dPAI| = 0). For light stress, these were pairs with a value of |dPAI| = 6. From the graph of the gene
network of the light stress (Figure S5) one can see that it contains a large cluster (#1) including 34 genes,
17 of which are of PAI values equal to 0 (Cellular organisms) or 1 (Eukaryota). The remaining 17 genes
have PAI values > 4 (Embryophyta) and have many interactions with ancient genes. Such a structure
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of the graph gives a high occurrence of pairs of interacting genes, the age difference in which is ranged
from 4 to 9. Presumably, in this network, in the later stages of evolution, there was an intensive
inclusion of new genes, due to the formation of interactions with the already existing backbone of the
network, and not due to the addition of modules of age-homogeneous genes.

Table 5. Pearson correlation coefficients r (k, PAI) between the node degree k and its PAI value in
gene networks of different stresses. The second column shows the value of the correlation coefficient,
the third one shows the significance level of its difference from 0.

Stress r(k, PAI) p-Value

Cold 0.004 0.974
Heat −0.361 * 0.003
Light −0.125 0.248

Osmotic −0.379 0.006
Oxidative 0.019 0.875

Salt −0.266 0.006
Water −0.061 0.524

* Values for p < 0.05 are shown in bold.

Figure 5. The PAI versus k scatterplots for osmotic (A) and oxidative (B) stress gene networks. The
X-axis represents the PAI, the Y-axis shows node degree k.

We estimated the scalar coefficient of assortativity for gene ages in the stress-related networks,
as well as the variance of these estimates by using the package graph_tools [https://graph-tool.skewed.
de/]. This coefficient reflects the correlation of PAI values between pairs of genes forming in interaction
networks. The higher the coefficient is, the stronger is the relationship between the ages of the interacting
genes. The results are shown in Table 6.

The assortativity coefficients occurring were positive for all types of stresses. For cold, heat,
osmotic, oxidative and salt stress, they were high enough. The highest value, 0.567, was found for
oxidative stress, in other types it was above 0.12. Thus, if the age of one of the genes in the interacting
pair is higher, then the age of the second gene will also be higher (and vice versa, if the age of one gene
is less, then the second will be less too). However, these correlation coefficients were comparable with
the values of standard deviations, which makes it impossible to talk about their high significance.

https://graph-tool.skewed.de/
https://graph-tool.skewed.de/
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Table 6. The coefficients of assortativity ra for gene ages in stress-related gene networks and estimates
of their standard deviation σ(ra). Np-number of pairs of interacting genes.

Stress Np ra σ(ra)

Cold 148 0.251 0.345
Heat 196 0.126 0.294
Light 178 0.026 0.348

Osmotic 148 0.192 0.327
Oxidative 111 0.567 0.344

Salt 203 0.143 0.293
Water 213 0.031 0.307

3.6. Evolution of Gene Network Function

The difference in the ages of genes in gene networks suggests that in the process of evolution,
new genes that could introduce new functions for this network were added to the “backbone” of
the initial network, which was formed in the most ancient taxa. We decided to investigate how the
functions of stress-related gene networks changed in the course of evolution, from phylostratum to
phylostratum. To do this, we chose all GO terms significantly associated with the genes of each type
of stress (Supplementary file 5). For each term, we have identified the associated genes. For these
genes, we built a PAI distribution. An example of a diagram integrating such distributions for GO
terms associated with the heat stress is shown in Figure 6. In this diagram, PAI (phylostratum) values
are plotted along the X-axis. Vertically is a list of GO terms. Next to each term and age of the gene a
circle is located, the size of which is proportional to the fraction of genes associated with the term and
having the corresponding PAI value. For example, at the bottom of the diagram, for the term ‘reactive
oxygen species metabolic process’ and PAI = 0 one can see a large circle. This means that in this gene
network, all genes annotated with this term have the same value PAI = 0 (Cellular organism). For the
keyword ‘response to salt stress’, it can be seen that genes associated with this term were added to the
network of heat stress in the stages of formation of such phylostrata as Cellular organisms, Eukaryota,
Embryophyta, Tracheophyta, Magnoliophyta and Brassicales, but the proportion of ancient genes
(PAI = 0 and 1) is higher, which is reflected by the larger size of the corresponding circles.

A special feature of the data obtained (Figure 6) is that the gene networks of one type of
stress contain genes that are associated with several other types of stress. For example, for a heat
stress network, the terms related to cold stress (‘response to freezing’, ‘response to cold’) were
observed for TIL/AT5G58070 gene encoding temperature-induced lipocalin, an essential component
for thermotolerance probably acting against lipid peroxidation induced severe heat stress [62]. Its PAI
is 4 (Embryophyta), and it is also annotated by GO terms ‘response to water deprivation’, ‘response to
cytokinin’, ‘response to high light intensity’, ‘heat acclimation’, ‘response to heat’ (Supplementary file 3).
TIL1 of Arabidopsis is localized in the plasma membrane [63] and its expression is increased in response
to cold stress suggesting a cryoprotective role of the lipocalin-like protein under freeze-induced
dehydration [64]. It was also shown that these proteins are translocated under salt stress and
protect chloroplasts from ion toxicity [65]. Thus, the relationship of heat stress genes to several
the above-mentioned biological processes can be explained by the existence of the multifunctional
gene of the lipocalin family, TIL.

Another interesting feature of this chart is the fact that all the GO terms associated with the network
response to heat stress, was presented in the annotation of genes of the most ancient phylostrata:
Cellular organisms and Eukaryota. This is seen in the first two columns of circles that are observed for
all GO terms.
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Figure 6. PAI distribution for genes associated with the heat stress and annotated by various GO terms:
(A) GO terms for “biological process”; (B) GO terms for “cellular component”; GO terms for “molecular
function”. The frequency of PAI occurrence is normalized to 100% for each GO term and shown by
circles. The scale of circles shown on the right.

A relatively small fraction of the terms were associated with genes whose age was small (PAI > 8).
Thus, the obtained picture of changes in the GO composition depending on the age of genes in the
network shows that the overwhelming number of functions associated with the work of the gene
network is associated with ancient genes.

This result was expected because, as was shown above, among the genes associated with stress,
there is a high proportion of ancient genes. However, for some terms this looks counterintuitive.
For example, in Figure 6 the GO term ‘vasculature development’ matches not only the genes represented
in phylostrata of higher plants (Embryophyta, eudicotyledons), but also those in ‘Cellular organism’
phylostratum, i.e., genes associated with the processes of development of vessels already existing at
this stage of evolution, when organisms’ vessels had not yet formed. In the heat stress network, the
term ‘vasculature development’ refers to the genes ETR1/AT1G66340 (Signal transduction histidine
kinase), TE1/AT2G26330 (Leucine-rich receptor-like protein kinase family protein), XRN4/AT1G54490
(exoribonuclease 4), EIN2/AT5G03280 (NRAMP metal ion transporter family protein) (Supplementary
file 3). Two of them, TE1 and ETR1 have the PAI = 4 (Embryophyta), one, EIN2, has PAI = 8
(eudicotyledons), and the XRN4 gene is the most ancient (PAI = 0, Cellular Organisms). The XRN4
gene (also known as EIN5) is an еndogenous suppressor of posttranscriptional gene silencing by
preferential degradation of select substrates [66]. It is involved in the regulation of Ethylene Response
Pathway [67]. This gene is also involved in regulating the response to heat stress. As was shown by
Nguyen et al. [68] using the microarray analysis and mRNA decay assay, the loss of AtXRN4 function
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caused a reduction in the degradation of heat shock factor A2 (HSFA2) and ethylene response factor 1
(ERF1) mRNA, resulting in increased survival rate when plants subjected to a short-term severe heat
stress. At the same time, the XRN4 is necessary for the thermotolerance of plants to long exposure to
moderately high temperature. It is involved in the degradation of the A. thaliana transcriptome that
occurs during the early steps of the heat stress response [69]. At the same time, the participation of
this gene in the regulation of vascular cell division is shown [70]. This division is maintained by an
interaction between the PXY and ethylene signaling [70]. Thus, the XRN4 gene is multifunctional,
it takes part in a specific degradation of RNA, and is involved in several different biological processes
related to both the response to stress and the development of plant tissues.

Similar diagrams were constructed for other types of stress. They are presented in Supplementary
file 2 (Figures S12–S17). As in Figure 6, a special feature of these diagrams is that the vast majority of
the GO terms have been associated with ancient genes (PAI = 0 and 1). For example, the ancient genes
of the response to the light stress are involved in the regulation of flower development (Figure S13,
Supplementary file 2), ancient genes for the response to the osmotic stress are involved in seed
development (Figure S14, Supplementary file 2), and the salt stress genes—in the regulation of seed
dormancy process (Figure S16, Supplementary file 2).

The results obtained (Figure 6, Figures S12–S17) indicate the multifunctionality of the ancient
genes involved in the response to stress, up to their participation in processes that had already been
formed in plants in the later stages of evolution.

4. Discussion

The study of the principles of evolution of the structure and function of gene networks is one of
the most interesting and important tasks in biology [71]. The results of such analysis not only have
theoretical interest, but also predictive power [72,73].

Such evolutionary characteristics of genes as phylostratigraphic age [21] and the index of
divergence [23] reflect the most important properties of genes: the order of their appearance in the
genome in relation to other genes and the degree of selection pressure in the process of evolution.
These metrics allow us to characterize the dynamics of changes in the function of gene sets, including
gene networks. In particular, a comparison of the ages of genes and the annotation of their functions
(GO) allows one to explore the relationship between the function of genes/organisms and the age of
genes [20,74]. As a rule, this is done by searching for associations of genes of different ages with the GO
terms [26]. For example, Domazet-Loso and Tautz showed that genes related to human genetic diseases
are significantly overrepresented among the genes that have emerged during the early evolution of
the metazoan [20]. Ruprecht and coauthors [26] performed Mapman terms phylostrata enrichment
analysis for three planta genomes, including A. thaliana, and showed that significant occurrence of
the terms in different phylostrata mostly happens only once, suggesting that new biological features
emerged in (or during) distinct evolutionary periods, without a significant addition of new genetic
material during later stages of evolution.

In this paper, we selected the genes associated with plant response to different types of stress
and analyzed these gene sets, including reconstruction of interaction networks, evaluation of
phylostratigraphic age and selection pressure. We compared the evolutionary properties of these sets
of genes with those of the complete set of A. thaliana genes and found their significant differences.

Our results show that the genes associated with the stress response generally contain a large
number of ancient genes than would be expected from the distribution of such genes throughout the
genome. In addition, stress genes are more conservative than would be expected from the conservatism
of the whole set of genes. These data are in line with the concept that the more important genes in terms
of function are older and are under strong pressure of stabilizing selection [75–77]. Genes with high
connectivity in the interaction networks have similar evolutionary properties [78] and evolve under
stabilizing selection [79–83]. The response of plants to stress, of course, involves the basic functions of
the cell that were formed at the earliest stages of evolution, such as, for example, the system of heat
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shock proteins forming a noticeable cluster in the heat stress response network (Figure 4), or a cluster
of genes of signaling pathways controlled by stress hormones (Supplementary file 2, Figures S4, S6, S8
and S9), where their fraction is significant. In response to stress factors of biotic and abiotic nature
in animals and plants, many parallels can be found at the level of physiology [84], and especially
at a cellular level [85–87]. It is known that stress response genes are homologous in plants and
animals. For instance, stress associated proteins (SAPs) in plants contain A20/AN1 zinc finger domain
homologous to proteins from the genomes of diverse organisms including protists, fungi, animals, and
plants [88]. We found these genes among the genes associated with the response to osmotic and water
types of stress (SAP5/AT3G12630, A20/AN1-like zinc finger family protein, Supplementary file 3).

Our analysis involves 15 phylostrata of organisms represented in KEGG database [33].
The distribution of genes across these phylostrata reveals an interesting feature: the presence of
three peaks in the distribution (Figure 2). The most ancient peak (PAI < 2), contains about a half
of all genes. The other peaks correspond to PAI = 7 (Magnoliophyta) and to PAI = 14 (Brassicacea).
The position of these peaks does not change from the change in the value of the identity threshold
when determining orthologs (see Supplementary file 2, Figure S2), although the ratio of gene fractions
varies. We can assume that these two peaks correspond to the events of the whole genome duplication
in A. thaliana lineage, an α-duplication that preceded the formation of the Brassecaceae clade [89–92]
and more ancient γ-duplication, which corresponds to the angiosperms ancestor [93]. It is known that
whole genome duplications are substantial events in organisms’ evolution, leading to the emergence of
many novel genes [94,95]. The presence of two younger peaks in the PAI distribution for A. thaliana
probably reflects this feature of evolution. It is interesting to note that for γ-duplication, the difference
between the fractions of genes of this phylostratum in stress-related genes and in the whole genome of
A. thaliana is close to zero or even positive (except for the genes of heat and water stress). This means
that during the diversification of duplicated genes at this stage of evolution, new stress response
genes have emerged. For α-duplication (Brassicaceae phylostratum) on the contrary, this difference
is negative, and large in absolute value for all stress genes. We can speculate that at this stage, after
the duplication, there was a sharp loss of duplicated stress genes (relative to other types of genes).
Apparently, by that time, in general, the systems of response to various stresses in plants were mostly
formed and they did not have a need for evolutionary innovations (compared to the increase in
innovations in other gene systems). It should be noted; however, that Orthoscape in its current version
cannot account for the possible bias in the phylostratigraphic assignment due to these duplications
because we did not consider genome synteny when defining orthologous groups. The influence of
such bias can be resolved in a future research.

Stress genes are also under a strong pressure of purifying selection, which indicates their absolute
importance for the organism (although few of them are absolutely conservative). Among them, very
rarely (only two cases) are genes subject to positive Darwinian selection (DI > 1), which is very small
compared to the proportion of such genes in the entire genome. This is generally consistent with
data from Lei et al., according to which A. thaliana genes of DI > 1 are enriched in lipid localization,
transport and binding, and the endomembrane system (i.e., stress unrelated terms) [37]. However, it
should be noted that the use of the genome pair A. thaliana vs. A. lyrata for DI estimates (i.e., Ka/Ks)
might provide insight into genes that evolved under different selection regimes only in the most recent
past. Of course, in this case, it is hard to expect that any genes performing the basic functions of the
organism can be affected by the positive selection. On the other hand, the results show that most stress
genes at this stage of evolution are the subject to stabilizing selection, which is quite consistent with
the hypothesis of their functional importance and the performance of their basic functions.

Analysis of the relationship between the structural characteristics of the reconstructed networks
showed that for such networks as heat, osmotic and salt stress, the higher is the order of gene
interactions in the network, the greater is the age of the gene. However, for other networks, we found
no significant correlations. Apparently, these results are affected by the topology of the networks,
which turned out to be different. For example, the oxidative stress network does not have a clearly
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defined large regulatory cluster; the light stress response network does not contain nodes with a large
number of connections. It was also shown that a significant part of the interacting pairs of genes
have the same age (except for light stress genes). This suggests that interactions in the network are
preferable for genes of similar age (or that clusters of genes are generally homogeneous in age of
genes). This trend is also indicated by the positive assortativity coefficients of the age of genes. Similar
results were obtained in the study of Ruprecht [26], where it was shown that genes from the same
evolutionary period tend to be connected, whereas old and young genes tend to be disconnected. This
trend is not, however, a general rule, as confirmed by the structural analysis of the light stress network.

Our results show polyfunctionality of the stress-associated genes in agreement with the current
knowledge [96]. A lot of GO terms, in addition to the stress terms we used, was found among the
annotations of our gene lists. This can be explained by the fact that response of plants to stress of
any nature affects a large number of molecular processes [3]. For example, the heat stress leads to
the triggering of such processes in plant cells as change in membrane fluidity, increase of the reactive
oxygen species (ROS), change in the transport of Ca+ ions and restructuring of the cytoskeleton,
the denaturation of proteins and RNA, changing the structure of chromatin and the expression
of miRNAs [97]. The heat stress activates heat shock proteins, sumoylation systems, chromatin
remodeling, dehydration control [7]. The drought stress activates specific signaling pathways and
transcription factors, detoxification enzymes, enzymes of the biosynthesis of osmolytes, the system of
transporters and water channels, response to protein denaturation [98]. In response to the salt stress,
genes of photosynthesis and carbon production, cell wall components, water channels, ion transport,
ROS protection system, a detoxification system, signaling pathways and specific transcription factors
are involved [99]. It should be noted that the system of response to the osmotic and the oxidative
stress themselves are involved in responses to other types of abiotic stress [100]. Thus, the systems
of response to abiotic stresses in plants are closely interconnected. Our analysis of annotations of
the stress genes in A. thaliana indeed has shown that the involvement of some genes in several stress
responses is one of the features of stress genes (Figure S1, Supplementary file 2).

The presence of common and unique genes can be explained also by the multilevel structure of
molecular systems of response to stress [3,101]: as a rule, these systems include stress sensors, signal
transmission systems (including hormonal response), triggering transcription of stress response genes,
molecular response to the occurrence of stress conditions to minimize its consequences. Systems of
the first and second level, as well as partly the regulation of genes, are mainly specific for each type
of abiotic stress. At the same time, the molecular response to cell stress for different types of stress
has many common features: control of reactive oxygen species (ROS), change of ion transport, cell
detoxification, control of protein denaturation. In our work, we demonstrated the existence of large
regulatory cluster of genes common to cold, osmotic, heat, salt and water-related types of stress, which
includes various regulatory, hormone-related and signal transduction genes.

Another possible reason for the generality of genes for different types of stress is that in nature,
stress factors often act together, and in the course of evolution plants develop shared responses which
are common to individual stresses and stress combinations [102].

Several ancient genes of stress response were involved in biological processes that occurred at
much later stages of evolution compared to the time of occurrence of these genes. The explanation for
this may lie in the fact that during the evolution of plants the old genes were intensively involved for
the formation of new functions, so they are involved in a new functional context [103].

Interestingly, our analysis shows that ancient stress genes have many properties in common with
so-called multifunctional genes [104]: they are also highly conservative, involved in several biological
processes, tend to form a large number of connections in the structure of gene networks and are
involved in the performance of important functions in the life of organisms.

It should be noted that the analysis strongly depends on the results obtained at the stage of the
formation of stress gene sets, as well as the reconstruction of gene networks, since it is completely
based on these data. We had this in mind and chose rather strict criteria for the selection of genes
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by the GO terms and for the reconstruction of gene networks by the STRING method. Of course,
these data may be incomplete and contain errors. However, a comparison of the composition of stress
genes (Figure S1) demonstrates the commonality of several genes for different types of stress especially
noticeable for stresses for which their hormonal control (ABA, ethylene and jasmonates) is known: salt,
cold, osmotic, water stresses and to a lesser extent heat one. The structure of gene networks for these
stresses also demonstrates the presence of a large cluster represented by genes associated with the
perception and transmission of hormone signals (Figure 4, Figures S4, S6, S8 and S9, Supplementary
file 2). This is in good agreement with the known role of hormones in regulating the response to abiotic
stress [57–59]. Gene networks built on the basis of co-expression are definitely more common, if we talk
about choosing a strict threshold to establish intergenic associations and can include a large number
of genes, in comparison with networks built via STRING. However, the level of gene expression in
response to stress strongly depends on the time elapsed after stress exposure, with many side processes
that are secondary to the stress response itself, which complicates the interpretation of expression data.
Therefore, we decided to use data based not only on co-expression, but also on broader information
(GO annotation, which is-based, among other things, on expert data; STRING networks, which include
information on co-expression along with protein-protein interactions and other additional information)
in the selection of stress genes and reconstruction of their networks.

5. Conclusions

Our results demonstrate that the use of data on the structure of gene networks along with
phylostratigraphic information allows us to describe the evolution of stress genes in plants and its
relationship with the response to various abiotic stresses in the context of the structure of gene networks
more fully.
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genes obtained using DAVID server.
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