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ABSTRACT
Background: The HAK family is the largest potassium (K+) transporter family, vital
in K+ uptake, plant growth, and both plant biotic and abiotic stress responses.
Although HAK family members have been characterized and functionally
investigated in many species, these genes are still not studied in detail in Medicago
truncatula, a good model system for studying legume genetics.
Methods: In this study, we screened the M. truncatula HAK family members
(MtHAKs). Furthermore, we also conducted the identification, phylogenetic analysis,
and prediction of conserved motifs ofMtHAKs. Moreover, we studied the expression
levels of MtHAKs under K+ deficiency, drought, and salt stresses using quantitative
real-time PCR (qRT-PCR).
Results: We identified 20 MtHAK family members and classified them into three
clusters based on phylogenetic relationships. Conserved motif analyses showed that
all MtHAK proteins besides MtHAK10 contained the highly conserved K+ transport
domain (GVVYGDLGTSPLY). qRT-PCR analysis showed that severalMtHAK genes
in roots were induced by abiotic stress. In particular, MtHAK15, MtHAK17, and
MtHAK18were strongly up-regulated in theM. truncatula roots under K+ deficiency,
drought, and salt stress conditions, thereby implying that these genes are good
candidates for high-affinity K+ uptake and therefore have essential roles in drought
and salt tolerance.
Discussions: Our results not only provided the first genetic description and
evolutionary relationships of the K+ transporter family inM. truncatula, but also the
potential information responding to K+ deficiency and abiotic stresses, thereby laying
the foundation for molecular breeding of stress-resistant legume crops in the future.
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INTRODUCTION
Potassium (K+) is an essential macronutrient for various plant physiological functions, like
ion homeostasis and the transport of nitrate and sugars (Li et al., 2018). Due to the limited
K+ resource, plants have evolved a series of K+ transport systems to mediate its uptake and
transport (Amrutha et al., 2007; Ashley, Grant & Grabov, 2005; Gierth, Mäser & Schroeder,
2005; Very et al., 2014). In plants, K+ transporters are classified into four major families: (1)
HAK (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter), (2) Trk/HKT, (3) CHX
(cation/hydrogen exchanger), and (4) efflux antiporters KEA (K+ efflux antiporter) (Gupta
et al., 2008). Among them, the HAK/KUP/KT (HAK) family constitutes the largest K+

transporter family that is ubiquitously present in plant genomes with varied numbers, e.g.,
13 genes present in Arabidopsis, 27 in maize, and 27 in rice (Ahn, Shin & Schachtman,
2004; Corratge-Faillie et al., 2010; Gupta et al., 2008; Rubio, Santa-Maria & Rodriguez-
Navarro, 2000; Zhang et al., 2012).

HAK genes have been found to play key roles in plant development and stress-related
responses. For instance, AtKUP4/TRH1 (Tiny Root Hairs 1) maintained the polar
localization of AtPIN1 along with the auxin homeostasis and maxima in the root apex,
thereby promoting root gravitropism response and root hair elongation (Rigas et al., 2001;
Rigas et al., 2012; Vicente-Agullo et al., 2004). VvKUP2 (Vitis vinifera) promoted the
expansion of berry epidermal cells (Davies et al., 2006). AtKUP2/SHY3 (Short Hypocotyl 3)
mediated K+-dependent cell expansion in growing tissues, with the shy3-1 mutant plants
having shorter hypocotyls, smaller leaves, and shorter flowering stems than the wild-type
plants (Elumalai, Nagpal & Reed, 2002). Arabidopsis Kup2/6/8 triple mutants displayed
larger plant bodies, thus suggesting their roles as negative regulators during the turgor
pressure–dependent growth (Osakabe et al., 2013). Arabidopsis root meristem activity was
maintained by KUP9 by regulating the K+ level and auxin homeostasis at a low K+ level
(Zhang et al., 2020). HAK5 promoted the expression of INTEGRIN-LINKED KINASE1
(ILK1) to positively regulate plant innate immunity and abiotic stress response in
Arabidopsis (Brauer et al., 2016). K+ deficiency stress induced the expression of rice
OsHAK1, and when overexpressed in plants they display enhanced salt and drought
tolerance (Chen et al., 2015; Chen et al., 2017; Chen et al., 2018). Additionally, constitutive
overexpression or mutation analysis of OsHAK5, OsHAK21, and OsHAK16 demonstrated
their role in K+ homeostasis and salt tolerance (Feng et al., 2019; Horie et al., 2011; Shen
et al., 2015). HvHAK1 confers salt and drought tolerance in barley by enhancing the leaf
mesophyll H+ homeostasis and improving K+ nutrition (Feng et al., 2020; Mangano,
Silberstein & Santa-María, 2008).

In plants, the HAK family is the homolog of the bacterial K+ transporter KUP and
fungal K+ transporter HAK (Bañuelos et al., 1995; Schleyer & Bakker, 1993; Very et al.,
2014). Based on their hydropathy profiles, the plant HAK proteins were predicted to have
10–14 transmembrane (TM) domains, including a conserved K+ transport domain
(GVVYGDLGTSPLY) ( Gierth & Mäser, 2007; Rodríguez-Navarro, 2000). Mutation assay
analysis revealed that the role of K+ transport capacity is determined by both the 8th TM
domain and the C-terminus of HAKs (Rodríguez-Navarro, 2000; Gomez-Porras et al.,
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2012; Mangano, Silberstein & Santa-María, 2008). Based on phylogenetic analysis, HAK
family genes were generally classified into four clusters (I–IV) (Bañuelos et al., 1995; Gupta
et al., 2008). HAK family members exhibit significant diversity in their subcellular
localizations, including the plasma membrane, tonoplast, endoplasmic reticulum, and
other endomembranes (Osakabe et al., 2013; Rigas et al., 2012). Expression analysis
revealed that many members of the HAK family were also expressed in the root hairs and
root tip cells, thereby implying the HAK family members are involved in K+ uptake (Ahn,
Shin & Schachtman, 2004; Elumalai, Nagpal & Reed, 2002; Qin, Wu & Wang, 2019; Yang
et al., 2014). Indeed, several HAK family members have been shown to participate in K+

uptake and translocation in a few model plants, including Arabidopsis, rice, barley, maize,
and tomato (Very et al., 2014).

M. truncatula has been regarded as a model system for studying legume genetics and its
relatively small genome size helps understand nodule symbiosis (Young et al., 2011).
Despite the functional importance of the HAK genes, surprisingly little is known about
their family members in M. truncatula. In this study, we performed comprehensive
genome-wide analyses of the M. truncatula HAK family genes including phylogenetic
relationships, chromosomal distributions, gene duplications, gene structures, cis-acting
regulatory elements, and expression patterns in response to both K+ deficiency and abiotic
stress. Finally, these results not only elucidated the structures and expression patterns of 20
MtHAKs genes but also laid the foundation for their future functional analysis in
M. truncatula.

MATERIALS AND METHODS
Identification and sequence analysis of MtHAKs
MtHAKs sequences were obtained from the Medicago truncatula genome databases
(HAPMAP, https://medicagohapmap2.org). The amino acid (aa) sequences of Arabidopsis
(TAIR, http://www.arabidopsis.org/) and rice (TIGR, http://rice.plantbiology.msu.edu/)
HAKs were used as the reference sequences for searching predicted homolog sequences in
M. truncatula using the HMMER3.0 software (http://hmmer.org/). Subsequently, the
genes were screened using a threshold of <1e−100 E-value (full sequence and best one
domain). Candidate protein members were verified using the SMART database (http://
smart.embl-heidelberg.de/) and NCBI-Conserved Domain Database (CDD, https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Zhao et al., 2021), with proteins with shorter
aa length (<400 aa) and those containing incomplete K+ transporter domains being
discarded. The longest gene was chosen for further analysis only if it had alternative
splicing variants. Subcellular localization of MtHAK proteins was predicted using the
WOLF PSORT software (https://www.genscript.com/wolf-psort.html) and the TMHMM
Server 2.0 online tool (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0) was
used for predicting the protein transmembrane helices.

Construction of MtHAKs phylogenetic tree
HAK protein sequences of Arabidopsis and rice were retrieved from the NCBI database
(https://www.ncbi.nlm.nih.gov) (Table S1), while multiple sequence alignment was
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conducted using the ClustalW program (Version 2.1; http://www.clustal.org/). MEGA7.0
was used to construct the phylogenetic tree using the neighbor-joining method along with
the bootstrap replicates being up to 1,000 (Liu et al., 2019; Liu et al., 2020).

Gene structure and conserved motif analysis
Gene structure and conserved motifs were visualized using the TBtools (Toolkit for
Biologists integrating various biological data-handling tools) software (Chen et al., 2020).
The conserved and identified motifs of protein sequences were predicted via the MEME
(Multiple Expectation Maximization for motif Elicitation) program (Version 5.1.1), with
the maximum protein motif number being set as 10, and the other parameters set as
default (http://meme-suite.org/tools/meme) (Bailey et al., 2009).

Chromosomal location and synteny analysis
The MtHAK chromosomal location was illustrated by the circos diagram by annotating
genes to their specific chromosomal location in their genome sequences by using the
TBtools software. These syntenic analyses were carried out by using the MCScanX with
gene duplication parameters (Wang et al., 2012).

Analysis of cis-acting regulatory elements in MtHAKs promoter
regions
Putative cis-acting regulatory elements were analyzed using the PlantCARE online
software (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The 2.0 kb
promoter sequences located upstream of the transcription starting site in each MtHAK
gene were extracted from the M. truncatula genome database.

Analysis of microarray expression profile
The microarray data of the expression profiles of MtHAKs in the roots, vegetative bud,
stem, petiole, leaf, flower, pods, and seeds and their responses to abiotic stress were
obtained from the MtGEA (Benedito et al., 2008). When a gene corresponded to multiple
probes, the maximum value of the probe was selected for the subsequent analysis.
The normalized microarray data was used to create the heatmap through the TBtools
software, based on the mean value of each gene expression in all the analyzed organs.
The expression patterns of MtHAKs in response to salt, drought, and cold stresses were
obtained from the NCBI under GEO accession number GSE136739 (Song et al., 2017).
The expression abundance of each MtHAK gene was represented by fragments per
kilobase million (FPKM). The relative stress-induced expression levels were calculated by
comparing with the control samples. The clustered heatmap was generated using the
TBtools software and based on their relative expression.

Stress treatment and qRT-PCR
For K+ deficiency stress treatment, two-week-old seedlings were grown in 1/2 Hoagland
nutrient medium without K+ for 0 (control), 1, 6, 12, 24, and 48 h, respectively. For the salt
stress treatment, two-week-old seedlings were grown in 1/2 Hoagland nutrient medium
containing 300 mM NaCl for 0, 1, 6, 12, 24, and 48 h, respectively. For drought stress
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treatment, two-week-old seedlings were grown in 1/2 Hoagland nutrient medium
containing 18% PEG6000 for 0, 1, 6, 12, 24, and 48 h, respectively. The root samples were
subsequently cut, then snap frozen in liquid nitrogen, and finally stored at −80 �C until
further use. The qRT-PCR analysis was performed in triplicates for each of the biological
replicates. Their relative expression levels were calculated using the 2−ΔΔCt analysis method
(Liu et al., 2019; Zhao et al., 2022). The expression levels of the control samples were
normalized to one, with the MtActin gene being used as the internal control. Standard
deviations and the significant differences were indicated by error bars and an asterisk (�)
(p < 0:05), respectively.

RESULTS
Identification of HAK members in M. truncatula
To identify M. truncatula HAK genes, we conducted a genome-wide search using the
HMMER3.0 Software (http://hmmer.org/) based on the M. truncatula genome sequences
along with the Arabidopsis and riceHAK genes as subjected queries. Then, we identified 20
nucleotide sequences with a typical canonical K+ transporter domain (Pfam accession no.
PF02705) using the Pfam and SMART databases, and they were subsequently designated
as MtHAK1 to MtHAK20 depending on their chromosomal positions (Table 1). Detailed

Table 1 Characteristics of MtHAK genes in M. truncatula.

Gene name Gene ID No. of
aa

MW (kDa) pI TMS Subcellular
localization

MtHAK1 Medtr2g008820.1 849 94.74 5.66 11 PM

MtHAK2 Medtr2g438150.1 856 95.67 8.26 13 PM

MtHAK3 Medtr2g438160.1 619 69.03 9.28 13 PM

MtHAK4 Medtr3g094090.1 794 89.3 7.24 13 PM

MtHAK5 Medtr4g094660.1 787 88 8.08 13 PM

MtHAK6 Medtr4g099260.1 815 90.92 8.74 11 PM

MtHAK7 Medtr5g034500.1 782 87.25 8.24 13 PM

MtHAK8 Medtr5g070670.1 849 95.05 5.44 12 PM

MtHAK9 Medtr5g071630.1 725 81.46 6.63 12 PM

MtHAK10 Medtr5g071827.1 666 74.26 7.22 10 PM

MtHAK11 Medtr5g071860.1 754 84.24 7.02 11 PM

MtHAK12 Medtr6g007697.1 776 87.1 7.71 13 PM

MtHAK13 Medtr6g033165.1 819 91.56 8.71 12 PM

MtHAK14 Medtr7g108480.1 773 87.24 7.77 12 PM

MtHAK15 Medtr8g022130.1 766 85.45 7.77 12 PM

MtHAK16 Medtr8g063840.1 840 93.11 6.51 12 PM

MtHAK17 Medtr8g063900.1 745 83.49 8.45 11 PM

MtHAK18 Medtr8g088200.1 782 87.17 9.03 10 PM

MtHAK19 Medtr8g099090.1 792 88.52 9.39 12 PM

MtHAK20 Medtr8g107510.1 782 86.83 8.32 12 PM

Note:
aa, amino acid; MW, molecular weight; pI, isoelectric points; TMS, transmembrane segments; PM, plasma membrane.
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information on the 20 HAK genes is listed in Table S1. The number of protein
transmembrane segments (TMS) ranged between 10 and 13, with the most common being
12–13 (70%). All the examined HAK proteins were predicted to be mainly localized in the
plasma membrane using a PSORT analysis (http://www.psort.org). The protein length of
the 20 identified HAK proteins ranged from 619 aa (MtHAK3) to 856 aa (MtHAK2) with
an average length of 778 aa. Their relative molecular weights (MW) varied from 69.03 kDa
(MtHAK3) to 95.67 kDa (MtHAK2). The isoelectric points (pI) ranged from 5.44
(MtHAK8) to 9.39 (MtHAK19).

HAKs phylogenetic relationship amongM. truncatula,Arabidopsis and
rice
To analyze the evolutionary relationships of the MtHAK proteins, we conducted
phylogenetic analyses of 60HAK amino acid sequences (20 –M. truncatula, 13 –Arabidopsis,
and 27 – rice) to construct a phylogenetic tree using the neighbor-joining method. According
to the evolutionary tree, we classified allHAKmembers into four major groups: Groups I–IV.
Furthermore, we classified the MtHAK proteins into three clusters (from I to III): Cluster I
(MtHAK6, 14, 15, 17, and 18), Cluster II (MtHAK4, 7, 9, 10, 11, 12, 13, 19, and 20), and
Cluster III (MtHAK1, 2, 3, 17, 5, and 8) (Fig. 1). All members in group IV belong to rice.
The most members existed in Cluster II in M. truncatula, thus comprising 45% of all
MtHAKs. The phylogenetic tree showed that MtHAKs were most closely related to
Arabidopsis KUPs than those of rice HAKs, thereby indicating that MtHAKs might share
evolutionary functional similarities with Arabidopsis KUPs. All MtHAKs in cluster I were
distributed together with the already-identified AtHAK5, which suggested that they may be
crucial for K+ uptake from a low-K+ level soil (Lara et al., 2020). Among cluster II members,
MtHAK4 and MtHAK19 shared high sequence identity with AtKUP2 (Elumalai, Nagpal &
Reed, 2002), and AtKUP4 (Rigas et al., 2001; Vicente-Agullo et al., 2004), respectively, thus
implying they are likely to be involved in plant development processes. Additionally, among
cluster III, MtHAK1 and MtHAK8 clustered together with AtKUP7 (Han et al., 2016),
thereby suggesting their role in K+ acquisition and translocation under low K+ concentration.

Gene structure and motif composition of MtHAK genes
MtHAK proteins were listed in order based on the phylogenetic analysis (Fig. 2A), which
was consistent with the results in Fig. 1. Closely related members shared similar exon/
intron structures, which were related to their biological functions. Gene structures of the
MtHAKs were abtained based on the arrangement of the untranslated region, exon, and
intron sequences generated using the TBTools software. As shown in Fig. 2B, the exon
number ofMtHAK genes varied from 8 to 10, and the longest exon existed in the end of a
gene except for MtHAK2, which is consistent with previous reported data (He et al., 2012;
Hyun et al., 2014). Additionally, most MtHAKs in the same cluster shared high
exon-intron structure similarity (Fig. 2B).

To study the structural features, we analyzed conserved protein motifs of MtHAKs
using the MEME program. We identified the conserved protein motifs varying from 29 to
50 aa in lengths and designated them as motifs 1–10. Conserved protein motif information
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is shown in Table S2. The highly conserved K+ transport domain (GVVYGDLGTSPLY),
included in motif 9, existed in all MtHAK proteins besides MtHAK10 (Fig. 2, Table S2).
Motifs 1, 2, 3, 4, 5, 6, 7, 8, and 10 were almost evenly distributed along with a feature
domain of K+ transporter (Fig. 2C, Table S2) in all the MtHAK proteins. Therefore, the
motifs of conserved K+ transporter and similarities of gene structure in the same cluster
together implied the closing function among these HAK members.

Chromosomal distribution and synteny analysis of MtHAK genes
All identified MtHAK genes were mapped onto chromosomes from the M.truncatula
genome database to identify and locate their chromosomal distribution. Results showed
that MtHAKs were distributed on seven of the eight chromosomes, with chromosome 8
containing the highest number of six MtHAK genes (Fig. 3). Five MtHAK genes were

Figure 1 Phylogenetic analysis of HAK proteins in M. truncatula (red circle), A. thaliana (green
triangle), and O. sativa (blue square). The tree was constructed using MEGA7.0 software by the
neighbor-joining method. The numbers next to the branch represent the 1,000 bootstrap replicates
expressed in percentage. Full-size DOI: 10.7717/peerj.14034/fig-1
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located on chromosome 5, three on chromosome 2, two on chromosome 4 and 6, one on
chromosome 3 and 7, and no gene was allocated on chromosome 1 (Fig. 3). These results
indicated that MtHAKs were scattered randomly onto different chromosome locations.

We further performed synteny analysis betweenM. truncatula and Arabidopsis to verify
the evolutionary relationships and history of the MtHAKs. Subsequently, we found seven
collinear gene pairs between M. truncatula and Arabidopsis in the dataset (Fig. 3 and
Table S3). This indicated that these identified genes might already have existed before
protein structure divergence, thereby further implying a strong phylogenetic relationship.
Furthermore, only one gene pair (MtHAK2/MtHAK5) existed as paralogs inM. truncatula.

Analysis of cis-acting elements in the promoter region ofMtHAK genes
To further investigate the gene function and regulatory mechanism of MtHAKs, we
analyzed the 2 kb regions upstream of the translation start site of the 20 MtHAK genes
using the PlantCARE database. We identified 73 putative cis-elements in the MtHAK
promoters based on functional annotation, and the major types of cis-elements are shown
in Fig. 4 and Table S4. Post analysis, we identified cis-elements corresponding to different

Figure 2 Phylogenetic tree, gene structure, and conserved motifs of the HAKs in M. truncatula. (A) Phylogenetic tree of the MtHAK proteins.
(B) Exon-intron structure distribution. (C) Conserved protein motifs. Full-size DOI: 10.7717/peerj.14034/fig-2
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plant hormones like auxin (TGA-element and AuxRE-core), gibberellin (GARE-motif and
P-box), MeJA (TGACG-motif and CGTCA-motif), ethylene (ERE-box), ABA (ABRE),
and salicylic acid (TCA-element), in the promoter regions of all MtHAKs genes except
MtHAK20, thereby suggesting that MtHAKs expression may be regulated by different
phytohormones. Furthermore, we also found abiotic stress-responsive elements, including
STRE, ARE, WRE3, WUN-motif, MBS, LTR, DRE-core, DRE1, and TC-rich repeats, in all
the MtHAKs promoter regions except MtHAK20. Additionally, zein metabolism
regulation element (O2-site), endosperm expression element (GCN4-motif and AACA-
motif), palisade mesophyll cells element (HD-Zip 1), meristem expression element (CAT-
box and CCGTCC-motif), and seed regulation element RY-element were also abundant in

Figure 3 The synteny analysis of MtHAKs displayed between the M. truncatula and Arabidopsis
genomes. The M. truncatula and Arabidopsis chromosomes are represented by yellow and green
boxes, respectively. Blue lines indicate the collinear relationship of MtHAKs between M. truncatula and
Arabidopsis, while green lines indicate the MtHAK gene pairs.

Full-size DOI: 10.7717/peerj.14034/fig-3

Zhao et al. (2022), PeerJ, DOI 10.7717/peerj.14034 9/21

http://dx.doi.org/10.7717/peerj.14034/fig-3
http://dx.doi.org/10.7717/peerj.14034
https://peerj.com/


the promoter ofMtHAKs exceptMtHAK20. However, theMtHAK20 promoter region was
abundant in light-responsive elements (Table S4).

Spatial expression profiles of MtHAK genes
To gain further insights into the potential biological function ofMtHAK genes, we used the
publicly available microarray data of the Medicago truncatula Gene Expression Atlas
(MtGEA, https://mtgea.noble.org/v3/) to investigate the temporal and spatial expression
pattern of the MtHAKs. MtHAK4 showed relatively high expression in all tissues, while
that of MtHAK18 was low in all tissue (Table S5). Notably, MtHAK6 and MtHAK16 were
expressed preferentially in the roots, thereby implicating their role in K+ uptake from the
soil (Fig. 5, Table S5).

Both cluster III genes,MtHAK2 andMtHAK3 exhibited similar expression patterns and
relatively high expression in leaves. MtHAK13 was exclusively and highly expressed in
floral organs, whereas MtHAK8 showed the same in immature seeds (Fig. 5, Table S5).
Interestingly, MtHAK5 and MtHAK12 exhibited high and gradually increased expression
patterns during the reproductive stages and finally peaked at 24 days after pollination
(DAP) Contrastingly, MtHAK15 was specifically highly expressed in immature seeds (10
DAP) with the expression pattern gradually decreasing along with seed maturation.
Therefore, the spatial and temporal expression profiles indicated the functional diversity of
MtHAK genes in Medicago trunculata development.

Figure 4 Analysis of the cis-acting regulatory elements in the promoter region of theMtHAK genes.
Depending on the functional annotation, the elements were classified into three main categories: phy-
tohormone-responsive, abiotic stress-responsive, and plant growth and development-related. The fre-
quency of these elements in the promoter region was represented by the numbers and the depth of the red
color. Full-size DOI: 10.7717/peerj.14034/fig-4
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Expression patterns of MtHAK genes under K+ deficiency
Due to the major function of the HAK family being K+ transport, we investigated the
expression profiles ofMtHAK genes in the roots under K+ deficient conditions using qRT-
PCR. As shown in Fig. 6, among the 20 MtHAK genes, we obtained eight genes that
showed upregulated expression patterns post K+ deficiency treatment.MtHAK6,MtHAK7,
and MtHAK17 expression slightly increased and finally peaked at 48 h post treatment.
MtHAK15 and MtHAK18 showed nearly the same expression pattern at the five different
time points.MtHAK9,MtHAK10, andMtHAK11 transcripts were strongly upregulated at
6 h, then peaking at 12 h and 24 h, and finally went down at 48 h. Therefore, these results
suggested that these MtHAK genes were K+ deficiency-responsive. Furthermore, it was
noteworthy that MtHAK6 was highly and specifically expressed in Medicago trunculata
roots and also significantly upregulated in response to K+ deficiency.

Expression patterns of MtHAK genes under salt and drought stresses
Several HAK genes have been reported to participate in abiotic stresses (Elumalai, Nagpal
& Reed, 2002; Vicente-Agullo et al., 2004; Chen et al., 2015; Shen et al., 2015). To verify this
hypothesis, we evaluated the expression profiles of eight K+ deficiency responsive genes via
qRT-PCR under salt and drought stress treatments. The results revealed that all eight genes
were induced by salt and drought stresses to different extents (Figs. 7 and 8).

We determined the expression profile ofMtHAK genes inMedicago trunculata roots at
different times (0, 1, 6, 12, 24, and 48 h) under salt treatment (300 mM NaCl in nutrient
solution). The results showed that expression of MtHAK7, MtHAK9, MtHAK15,
MtHAK17, and MtHAK18 exhibited significant upregulation. Interestingly, MtHAK7 and
MtHAK18 were quickly and continuously upregulated from 1 h and subsequently
increased at 48 h (Fig. 7).

Figure 5 Expression patterns of theMtHAK genes in different developmental tissues. The microarray
data were normalized based on the mean value of each gene in all the analyzed plant organs. The heat
map was portrayed by the relative expressions after log2 transformed.

Full-size DOI: 10.7717/peerj.14034/fig-5
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Additionally, we analyzed the expression profiles of MtHAK genes in Medicago
trunculata roots under drought treatment simulated by 18% PEG6000 at different times (0,
1, 6, 12, 24, and 48 h). Under drought treatment, all selected genes besides MtHAK9 were
upregulated, albeit to different levels at different times (Fig. 8). In particular, MtHAK10,
MtHAK15, and MtHAK18 rapidly responded to dehydration at 1 h. Contrastingly,
MtHAK17 was moderately upregulated from 6 to 48 h. Both MtHAK6 and MtHAK7
exhibited highly induced expression at 24 h.

Interestingly, we found that MtHAK15, MtHAK17, and MtHAK18 were strongly
upregulated by both salt and drought stresses. The expression level ofMtHAK18 increased

Figure 6 Relative expression of theMtHAK genes in response to K+ deficiency treatment. Two-week-
old seedlings were placed in K+ deficient conditions for 0, 1, 6, 12, 24, and 48 h. Mean values and standard
errors were calculated from three biological replicates. An asterisk (�) indicates the significant difference
between K+ deficiency and control at p < 0.05. Full-size DOI: 10.7717/peerj.14034/fig-6
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rapidly at 1 h as compared to the control, under both salt and drought treatments (Figs. 7
and 8).

DISCUSSION
HAK family genes play key roles not only in K+ acquisition and uptake, but also in plant
growth, development, and abiotic stress response (Osakabe et al., 2013; Zhao et al., 2016).
Although comprehensive genome-wide analysis of the HAK gene family has been widely
reported in various plants, studies of the HAK gene family in the model legume
M. truncatula were still lacking (Ahn, Shin & Schachtman, 2004; Gupta et al., 2008; Zhang

Figure 7 Relative expression of the MtHAK genes in response to salt stress. Two-week-old seedlings
were treated with 300 mM NaCl for 0, 1, 6, 12, 24, and 48 h. Mean values and standard errors were
calculated from three biological replicates. An asterisk (�) indicates the significant difference between the
salt-stressed and control at p < 0.05. Full-size DOI: 10.7717/peerj.14034/fig-7
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et al., 2012). The release of the M. truncatula genome information makes it possible to
systematically characterize and identify the HAK genes. In this study, we identified 20
HAK genes in M. truncatula. We characterized their genetic structures as well as their
expression patterns in different tissues and also during stress responses.

We classified the 20 identified HAKmembers into three clusters (clusters I to III) based
on the evolutionary relationships, which was consistent with the previous classification in
Arabidopsis (Fig. 1) (Rubio, Santa-Maria & Rodriguez-Navarro, 2000). Phylogenetic

Figure 8 Relative expression of the MtHAK genes in response to drought stress. Two-week-old
seedlings were treated with 18% PEG6000 for 0, 1, 6, 12, 24, and 48 h. Mean values and standard errors
were calculated from three biological replicates. An asterisk (�) indicates the significant difference
between the drought-stressed and control at p < 0.05. Full-size DOI: 10.7717/peerj.14034/fig-8
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analysis of HAK proteins revealed that MtHAKs shared higher similarity with AtHAKs as
compared to the OsHAKs (Fig. 1), thereby suggesting that MtHAKs may share similar
functionality with Arabidopsis AtHAKs. Gene structure analysis showed that MtHAK
genes contained 8–10 exons, with the last exon being the longest. However, the exception
wasMtHAK2, which was consistent with the previously reported exon-intron structure of
HAKs (He et al., 2012; Hyun et al., 2014). Conserved protein motif analysis indicated that
all the identified MtHAKs had at least five typical K+ transporter motifs.

The tissue-specific gene expression patterns reflect their function and potential
biological roles in plants. Approximately 10 of the 13 Arabidopsis AtHAK genes were
strongly expressed in the root (Ahn, Shin & Schachtman, 2004). MtHAK6 was
preferentially highly expressed in the roots, and it belonged to the same clades of AtHAK5
in the phylogenetic tree, which was also expressed in roots and mediated high-affinity root
K+ uptake (Lara et al., 2020), thereby implicating their role in K+ acquisition from the soil
(Fig. 5, Table S5). MtHAK16 shared high similarity with AtKUP12, which showed root
hair-specific expression (Ahn, Shin & Schachtman, 2004). Therefore, these results may
help elucidate the biological function of Arabidopsis orthologous MtHAK genes in K+

acquisition in M. truncatula.
Some plant HAK genes were shown to participate in plant growth and development.

For instance, AtKUP4/TRH1 mutation impaired the root gravitropism response and root
hair elongation (Rigas et al., 2001; Rigas et al., 2012; Vicente-Agullo et al., 2004). Knockout
of AtKT2/KUP2 caused shorter hypocotyl length, small rosette leaves, and short flowering
stem phenotype (Elumalai, Nagpal & Reed, 2002). MtHAK13 was exclusively and highly
expressed in the floral organs, while showing low expression levels in other tissues, thereby
suggesting its critical role in floral development. MtHAK5, MtHAK8, MtHAK12, and
MtHAK15 were specifically and highly expressed during the reproductive stages, thus
implying their roles in facilitating seed maturation and maintaining fertility. The varied
tissue expression pattern of the MtHAK genes indicated their diverse functions in plants.

Under K+ deficiency conditions, plants maintain cytosolic K+ homeostasis by uptaking
K+ through HAKs, and these K+ transporter genes represent a major transcriptional
regulation mechanism during low- K+ stress. AtHAK5 and AtKT1 are two essential
transporters mediating high-affinity K+ uptake in the Arabidopsis roots, with the roots of
their double-mutant unable to sustain plant growth (Lara et al., 2020). ZmHAK5 was
characterized as a high-affinity K+ transporter in maize (Qin, Wu & Wang, 2019).
The expression of OsHAK1 and OsHAK5 were significantly upregulated in roots under
low K+ conditions, thereby maintaining the K+ uptake and translocation from the root to
the shoot (Chen et al., 2015; Chen et al., 2017; Chen et al., 2018; Yang et al., 2014).
We found that K+ deficiency upregulated the root-specific expression of eight MtHAKs,
especially MtHAK10 and MtHAK11 (Fig. 6). MtHAK6 was preferentially and highly
expressed in the roots, and it increased under K+ deficiency stress (Fig. 6). Therefore, we
expect that several HAK genes could increase the K+ absorption capacity during K+

deficiency.
Previous studies reported that HAK genes were crucial for regulating water potential

and turgor pressure during osmotic adjustment. These genes also positively regulated plant
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stress responses by regulating the balance of K+ influx/efflux balance, e.g., OsHAK1
expression increases in the rice roots post the K+-deficient condition and it positively
regulated the salt and drought stress tolerance response (Chen et al., 2015; Chen et al., 2017;
Chen et al., 2018). Consistent with the above results, in our study, e.g.,MtHAK7,MtHAK9,
MtHAK15,MtHAK17, andMtHAK18 exhibited significantly upregulated expression levels
in M. trunculata roots under salt stress (Fig. 7). Interestingly, many cis-acting elements
related to phytohormones, plant growth and development, and abiotic stress response,
were extensively distributed in the promoter regions of the MtHAKs (Fig. 4). ABREs are
drought-stress responsive elements (Sah, Reddy & Li, 2016). MtHAK genes contained
ABRE elements in their promoters, which further implied that MtHAKs participate in
drought responses (Figs. 4 and 6). Moreover, the qRT-PCR analysis showed that the
expressions of most of the selected MtHAK genes were noticeably upregulated after
drought stress. Notably, MtHAK6, which was preferentially highly expressed in the roots,
was also significantly upregulated post drought stresses (Fig. 8). In particular, the
expression of MtHAK15, MtHAK17, and MtHAK18 were strongly and specifically
upregulated in M. truncatula roots under K+ deficiency, salt, and drought stress
conditions, thus implying that these genes are potential candidates for high-affinity K+

uptake while also being essential in salt and drought tolerance.

CONCLUSIONS
Based on phylogenetic analysis, we identified and characterized 20 MtHAK protein
sequences from M. truncatula which were grouped into three clusters. Furthermore, we
analyzed the chromosome location, conserved protein motif, and gene structure of all the
M. truncatula HAK genes. The cis-acting elements regulating plant growth and
development, or those responsive to phytohormone and abiotic stress were abundant in
the promoter regions of MtHAKs. Gene expression analysis assay revealed that MtHAKs
exhibited diverse tissue-specific expression patterns in various tissues using the publicly
available RNA-seq data. Additionally, eight upregulated genes showed varied expression
patterns post the K+ deficiency treatment. The expression pattern analysis under K+

deficiency, drought, and salt stress suggested that these genes are candidates for
high-affinity K+ uptake that are also crucial in drought and salt tolerance. Therefore, these
results provide the first genetic description of the K+ transporter family in M. truncatula,
while also laying the foundation for molecular breeding of stress-resistant legume crops in
the future.
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