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Abstract: Over the past several decades, photopolymerization has become an active research field,
and the ongoing efforts to develop new photoinitiating systems are supported by the different
applications in which this polymerization technique is involved—including dentistry, 3D and 4D
printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two
chalcones’ moieties within a unique structure were determined as being promising photosensitizers to
initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides.
In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the
mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based
photoinitiating systems were used for different applications, which are detailed in this review.

Keywords: chalcone; ketone; photopolymerization; photosensitizers; Claisen-Schmidt condensation

1. Introduction

Polymerization consists of converting a liquid resin into a solid, and different ap-
proaches can be used to obtain this result. As the most popular approach, the polymer-
ization can be instigated by heat, and for this purpose, various thermal polymerization
techniques have been developed over the years—such as ring-opening polymerization
(ROP) [1,2], reversible addition–fragmentation chain-transfer (RAFT) polymerization [3],
and nitroxide-mediated polymerization (NMP) [4–6]. Parallel to this, light can also be used
to generate initiating species. While, historically, photopolymerization was mostly based on
UV photoinitiating systems, UV light is now the focus of numerous safety concerns, such
that a great deal of effort is now being devoted to developing visible light photoinitiating
systems offering safer working conditions for the operator (no skin or eye damage) [7–16].
Furthermore, improved light penetration can be achieved in the visible range compared
to that obtained with UV light, as shown in Figure 1. Indeed, if light penetration remains
limited in the UV range (600 µm), a major improvement can be achieved with visible light,
which can range between 4 mm and 5 cm, depending on the irradiation wavelength [17].
As a result of this, the scope of application of photopolymerization has been totally revo-
lutionized, since the use of near-infrared light now allows for the polymerization of thick
and filled samples, which is not achievable with UV photoinitiating systems [18–20]. The
development of visible light photoinitiating systems is also supported by the easy access to
cheap, compact, lightweight, and energy-saving irradiation sources such as light-emitting
diodes (LEDs) [21,22]. Faced with this easy availability of LEDs with tunable irradiation
wavelengths, the demand for photopolymerizable resins activable at these different wave-
lengths has similarly increased. In particular, numerous photoinitiating systems activable
at 405 nm have been developed over the last several years—this wavelength being the
wavelength currently in use for 3D printers [23–28]. Interest in photopolymerization is also
supported by the different advantages this polymerization technique offers compared to
traditional thermal polymerization, which can only be realized in solution. Thus, photopoly-
merization can be carried out in solvent-free conditions so that the release of volatile organic
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compounds (VOCs) can be advantageously avoided [29–32]. Natural compounds, pho-
toinitiators, and monomers issued from renewable resources can also be used to elaborate
photoinitiating systems and polymers, addressing the environmental impact and the toxicity
issues raised by photopolymerization, and by polymerization more generally [33]. A spatial
and a temporal control can also be obtained, meaning that the polymerization occurs only
during the time the light is switched on, and only in the irradiated area (see Figure 2) [34,35].
The polymerization process can also be extremely fast, since it can be ended within a few
seconds. This specificity is notably used advantageously with photopolymerizable glues
and dental adhesives.

Figure 1. Light penetration in polystyrene latex with an average diameter of 112 nm. Reprinted with
permission from Bonardi et al. [17]. Copyright 2018 American Chemical Society.

Figure 2. The different advantages of photopolymerization compared to traditional thermal polymerization.

Considering that visible light photopolymerization can be activated between 400 and
800 nm, numerous dyes absorbing in the visible range have been proposed, as exempli-
fied with acridine-1,8-diones [36–38], carbazoles [39–44], pyrenes [45–50], iridium com-
plexes, [51–59], copper complexes [60–70], squaraines [71–73], camphorquinones [74,75],
perylenes [76–78], iodonium salts [79–81], benzophenones [82–87], cyanines [88,89], dike-
topyrrolopyrroles [90–92], helicenes [93,94], naphthalimides [95–107], chalcones [108–114],
iron complexes [115–120], chromones [121–123], thioxanthones [124–127], dihydroan-
thraquinones [128], porphyrins [129,130], zinc complexes [131], acridones [132,133], push–
pull dyes [134–145], phenothiazines [146], coumarins [147–153], flavones [154], 2,3-dipheny-
lquinoxaline derivatives [155], and cyclohexanones [156–159]. With the aim of generating
initiating species, two distinct families of photoinitiators can be distinguished: The first
family, type I photoinitiators, consists of molecules that can be photochemically cleaved
upon excitation. The advantage of this strategy is that only a single component is nec-
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essary to generate the initiating radicals, so the migratability of potential side products
within the polymer is considerably reduced. As shown in Figure 3 with 2,2-dimethoxy-1,2-
diphenylethan-1-one, upon photoexcitation, a methoxybenzyl and a benzoyl radical are
simultaneously formed, improving the efficiency of the initiating step. Additionally, the
two radicals can be connected to the polymer chain under growth so that no migratable
residue remains within the polymer network, addressing the potential toxicity issue of
the photoinitiating systems. However, while this approach is appealing, the availability
of visible Type I photoinitiators remains limited, and most of the benchmark Type I pho-
toinitiators are UV photoinitiators [160–162]. As a drawback, Type I photoinitiators are
irreversibly consumed during the polymerization process, and so the concentration of
radicals irreversibly decreases over time. Conversely, Type II photoinitiators are typically
dyes absorbing in the visible range, which act as photosensitizers for UV photoinitiators.
Upon photoinduced electron transfer from the excited photosensitizer towards the UV
photoinitiator, initiating radicals can be generated [163]. As the most widely used UV
photoinitiators, onium salts, and notably iodonium salts, which are easily accessible from
various commercial sources can be cited as relevant examples [164–167]. Considering that
dyes act as photosensitizers for UV photoinitiators, two-component or three-component
photoinitiating systems are typically developed with Type II photoinitiators.

Figure 3. The two families of photoinitiators that have been developed in order to efficiently generate
initiating radicals.
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As shown in Figure 3, upon excitation of the photoinitiator with a light of an appro-
priate wavelength, a photoinduced electron transfer in the excited state can occur with
the iodonium salt, generating phenyl radicals Ph•. These radicals can typically initiate the
free-radical polymerization of acrylates. However, in these conditions, the consumption of
the photosensitizer is irreversible, affecting the efficiency of the system. This drawback can
be addressed by the addition of a third component—generally, a sacrificial amine that will
be in charge of reducing the oxidized photosensitizer, and which can be introduced to the
photocurable resin. If N-vinylcarbazole (NVK) is used, this carbazole can react with the
phenyl radical Ph•, generating Ph–NVK•, which is a radical more reactive than the initial
Ph• [168]. By reacting with the oxidized photosensitizer and regenerating the photosensi-
tizer at its initial redox state, Ph–NVK• can be converted into a Ph–NVK+ cation, capable
of initiating the cationic polymerization of epoxides by means of free-radical-promoted
cationic polymerization (FRPCP). Therefore, using these three-component systems, the
concomitant polymerization of acrylates and epoxides can be simultaneously obtained,
enabling access to interpenetrated polymer networks (IPN) [169–172]. The photoinitiating
systems are also catalytic if three-component systems are used, the regeneration of pho-
toinitiators enabling the system to drastically reduce its content [173–175]. Considering that
the photosensitizer is the key element of these two- and three-component photoinitiating
systems, numerous structures have been examined. In this field, chalcones are dyes that
can be naturally found in numerous vegetables and flowers [176–178]. Chalcones can also
be easily obtained via a Claisen-Schmidt condensation. Considering their ease of synthesis,
their strong absorption in the visible range, and their well-established biological activities,
chalcones were investigated for applications ranging from medicine [179] to solar cell
applications [180,181], organic light-emitting diodes [182], and organogels [183]. Among
chalcones, bis-chalcones—which can be obtained via a Claisen-Schmidt condensation of
aldehydes with cyclic aliphatic ketones in basic conditions—have been less studied in the
literature than mono-chalcones [109,184]. Moreover, these structures remain of interest,
especially for photopolymerization. Indeed, by increasing the molecular weight of pho-
toinitiators, their migratability within the polymer network can be drastically reduced.
These dyes also possess an extended conjugation compared to mono-chalcones; thus, these
photosensitizers can transfer an electron towards an electron acceptor more easily in the
excited state.

It should be noted that, in the past, chalcones have been investigated in photopoly-
merization, but as molecules capable of initiating [2 + 2] cycloaddition reactions [185].
However, in this case, chalcones were acting in the dual role of monomers and sensitizers,
and not as sensitizers capable of initiating the polymerization of acrylates or epoxides. In
this review, an overview of the different bis-chalcones reported to date as photoinitiators
of polymerization is provided. Although the initial reports were devoted to investigating
the photochemical mechanism of initiation rapidly, potential applications of these bis-
chalcone-based photoinitiating systems have been examined. Comparisons with reference
compounds will also be established in order to demonstrate the potential of these new
structures for photoinitiation.

2. The Different Synthetic Routes to bis-Chalcones

Bis-chalcones have recently been studied as photoinitiators of polymerization, and
three different strategies have been developed to provide access to these structures. No-
tably, chalcones can be easily obtained by means of a Claisen-Schmidt condensation be-
tween an aldehyde and an acetophenone, in accordance with the reaction depicted in
Scheme 1 [186–195]. No major differences can be found from the synthetic viewpoint be-
tween mono- and bis-chalcones, except that two equivalents of aldehydes have to be used in
the case of bis-chalcones, comprising a central cyclic ketone. In addition to this first strategy
based on cyclic ketones, a second approach can consist of connecting two mono-chalcones
together. In this aim, two connected aldehydes or two connected acetophenones can be
used to form bis-chalcones.
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Scheme 1. Synthetic routes to mono- and bis-chalcones; and bis-chalcones obtained by connecting two
mono-chalcones.

Based on the synthetic approach used to provide access to these structures, numerous
modifications of the chalcone scaffold can be envisioned, such as a modification of the
peripheral groups, the substitution pattern of the central cyclic aliphatic ketone, or the
spacer introduced between the central core and the peripheral groups (see Figure 4). In
the same spirit, bis-chalcones can be obtained via the condensation of acetophenones on
bis-aldehydes. Aldehydes can also be condensed onto bis-acetophenones. Here, again, this
strategy is highly versatile; since the spacer is used to connect the two chalcones, the substi-
tution pattern of the chalcones can be easily tuned. Overall, the connection of two chalcones
together enables a similar effect on the migratability of these macrophotoinitiators.
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Figure 4. The different chemical modifications enabling the efficient tuning of the absorption spectra
of bis-chalcones.

3. Bis-Chalcones as Photoinitiators
3.1. Bis-Chalcones Based on Cyclic Aliphatic Ketones

While mono-chalcones had been tested as early as 2014 as versatile photoinitiators
for the free radical, cationic, and thiol-ene polymerizations of various monomers [196],
the first report mentioning the use of bis-chalcones as photoinitiators of polymerization
was by Lalevée et al. in 2020, wherein a series of six chalcones (C1–C6) was examined (see
Figure 5) [197]. Interestingly, for this series of six bis-chalcones, two peripheral groups
were selected—namely, pyrroles and thiophenes. Indeed, these two groups are well
known to exhibit low oxidation potential [198–200]. Three different cyclic ketones were
also used as the central cores—namely, N-ethylpiperidinone, N-benzylpiperidinone, and
thiopyranone. From the absorption viewpoint, almost no difference was found between
the absorption spectra of C1–C6 (see Figure 6 and Table 1). Indeed, absorption maxima
ranging between 365 nm for C2 and 372 nm for C5 were determined using UV-visible
absorption spectroscopy. However, C3 and C4 bearing N-ethylpiperidinone as the central
core showed the highest molar extinction coefficients. At 405 nm, major differences could
be found between the different dyes. Thus, if molar extinction coefficients lower than
100,000 M−1·cm−1 were determined for C1 and C2 (9740 and 7980 M−1·cm−1) at 405 nm,
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molar extinction coefficients close to 120,000 M−1·cm−1 could be determined for C3
and C5 at 405 nm. It should be noted that for all of these dyes, the molar extinction
coefficients at 405 nm were greatly lowered compared to their absorption maxima located
around 370 nm. Even if the absorption obtained at 405 nm only constitutes the edges
of the absorption bands, this absorption and the molar extinction coefficients at these
positions remain sufficient to initiate a polymerization process.

Figure 5. Chemical structures of C1–C6, the monomers, and the different additives.

Considering their absorptions at 405 nm, all of the dyes could be tested as photoini-
tiators at this wavelength. In order to get high monomer conversions, the different dyes
were used in three-component systems, enabling bis-chalcones to be regenerated, and thus,
to be introduced in catalytic amounts to the photoinitiating system. Using this strategy,
an amount as low as 0.1 wt% could be used without adversely affecting the monomer
conversion. While using the three-component chalcone/amine (EDB)/Iod (0.1%/2%/2%,
w/w/w) photoinitiating systems (where EDB and Iod stand for ethyl dimethylaminoben-
zoate and 4,4′ ′-di-tert-butyldiphenyliodonium hexafluorophosphate, respectively), upon
irradiation at 405 nm with an LED for 400 s, the best monomer conversions for thick
films were obtained for C3 (94%) and C5 (90%), varying by the substitution pattern of the
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central piperidinone core (ethyl or benzyl groups) (see Table 2). The decrease in monomer
conversion determined for the C5-based photoinitiating system was attributed to the bulki-
ness of the benzyl group, providing a less densified polymer network. Conversely, all of
the chalcones containing a sulfur atom in their structures furnished only low monomer
conversions—lower than 30% after 400 s of irradiation. The lowest monomer conversions
were obtained for C2 and C4 (24% conversion after 400 s of irradiation for both of the
two dyes). Comparisons between the monomer conversions obtained with C3 (94%) and
C4 (24%) revealed the detrimental effect of thiophene moiety on the photoinitiating ability
of bis-chalcones, with the two dyes only differing by their peripheral groups.

Figure 6. UV-visible absorption spectra of C1–C6 in acetonitrile. Reproduced from [197] with permis-
sion from The Royal Society of Chemistry.

Table 1. Light absorption properties of C1–C6 in acetonitrile.

Compounds λmax (nm) εmax (M−1·cm−1) ε@405 nm (M−1·cm−1)

C1 368 29,230 9740
C2 365 25,020 7980
C3 370 34,920 11,690
C4 368 34,200 10,130
C5 372 31,470 11,950
C6 370 29,750 10,280

Table 2. Final monomer conversions (FCs) for Ebecryl 40 in thick and thin films using chal-
cone/amine/Iod (0.1%/2%/2%, w/w/w), 405 nm LED, 400 s.

Compounds C1 C2 C3 C4 C5 C6

FCs
(thick films) ~30% ~24% ~94% ~24% ~90% ~25%

FCs
(thin films) ~55% ~67% ~55% ~81% ~59% ~71%

An opposite trend was found for the polymerization of thin films. Indeed, in this last
case, the C4-based photoinitiating system proved to be the most efficient one, enabling a
monomer conversion rate of 81%. Although the C3-based three-component system could
still initiate a polymerization process, the lowest monomer conversion rate in thin films
was obtained with this system, peaking at 55%. This therefore clearly demonstrates the
dramatic influence of the substitution pattern, as well as the choice of the central ketones,
on the photoinitiating ability.
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Considering that C3 could initiate polymerization in thick and in thin films, the poly-
merization mechanism was investigated using this dye. Photolysis experiments conducted
in solution revealed C3 to efficiently interact with both the amine and the iodonium salt.
Notably, a fast decrease in optical density was found upon irradiation at 405 nm for the
two-component C3/amine and C3/Iod systems in acetonitrile. The ability of C3 to interact
with reductive and oxidative processes was thus demonstrated (see Figure 7).

Figure 7. The dual role of C3 in three-component photoinitiating systems.

Interestingly, C3 could also initiate the cationic polymerization of (3,4-epoxycyclohexane)
methyl 3,4-epoxycyclo-hexylcarboxylate (EPOX) using the two-component C3/Iod
(0.1%/2%, w/w) system. After 400 s of irradiation at 405 nm, a monomer conversion of
50% could be obtained with an LED (I = 110 mW/cm2). Finally, in light of the remarkable
polymerization profiles obtained with C3, laser writing experiments were carried out
with a laser (I = 100 mW/cm2) emitting at 405 nm. As anticipated, 3D patterns with
a high spatial resolution (100 µm) were obtained, and a 2-cm-length pattern could be
polymerized within two minutes (see Figure 8). Conversely, in the same conditions,
no 3D patterns could be obtained using the C4-based three-component photoinitiating
system, consistent with the results obtained during the mechanistic investigations. In
this last case, only a polymerization at the surface of the 3D patterns could be obtained.

1 
 

 

Figure 8. 3D patterns obtained during laser writing experiments using the C3-based three-component
system. Reprinted from [197] Copyright (2020), with permission from Elsevier.
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Following this initial work, another series of 13 bis-chalcones based on 6 different
central cyclohexanones was examined in similar conditions to those used for the previous
series (see Figure 9) [113]. From a synthetic viewpoint, all of these chalcones were obtained
via a Claisen-Schmidt condensation, in a one-step reaction using aq. 40% KOH as the base,
and the different dyes could be obtained with reaction yields ranging from 78% for C14 to
95% for C8. Ease of synthesis of such photoinitiators is of crucial interest from an industrial
viewpoint, considering that most of the reagents (cyclohexanone derivatives, benzaldehyde
derivatives, etc.) are cheap and commercially available. In this series, two groups of dyes
could be identified.

Figure 9. Chemical structures of C7–C19.

Thus, while C7–C10 absorbed in the visible range (405 nm for C8 and C9, 416 nm for
C7, and 434 nm for C10), conversely, absorptions of C11–C19 remained centered in the
UV range, with absorption maxima ranging from 350 nm for C15 and C16 to 375 nm for
C12–C14 (see Table 3). However, a sufficient absorption at 405 nm could be determined for
all dyes so that the polymerization experiments could be carried out.

Photopolymerization experiments conducted with the two-component chalcone/Iod
(0.1%/2%, w/w) and chalcone/amine (0.1%/2%, w/w) revealed that the conversions
of Ebecryl 40 with the different photoinitiating systems remained limited—lower than
55% and 40%, respectively. Similarly, control experiments performed with the different
chalcones alone (0.1% w) revealed the monomer conversion to be low, peaking at 20%.
Conversely, no polymerization could be initiated with EDB or Iod alone. While using
the three-component chalcone/amine/Iod (0.1%/2%/2%, w/w/w) system, a significant
enhancement of the monomer conversion could be evidenced, demonstrating the necessity
of mixing the three components together in order to form an efficient photoinitiating system
(see Figure 10).
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Table 3. UV-visible absorption characteristics of C7–C19 in acetonitrile.

Compounds λmax (nm) εmax (M−1·cm−1) ε405 nm (M−1·cm−1)

C7 416 18,800 17,900
C8 405 36,200 36,200
C9 405 37,700 37,700

C10 434 30,800 23,000
C11 366 21,700 11,100
C12 375 25,200 15,500
C13 375 22,000 14,500
C14 375 23,400 15,800
C15 350 16,500 3100
C16 350 2800 900
C17 355 23,600 5300
C18 355 12,900 2700
C19 360 20,200 5700

Figure 10. Polymerization profiles obtained using the three-component chalcone/amine/Iod
(0.1%/2%/2%, w/w/w) system for C7–C12 (a) and C13–C19 (b); LED at 405 nm (110 mW/cm2),
in laminate. Control experiment: amine/Iod (2%/2%, w/w). Reprinted with permission from
John Wiley & Sons, Inc. Copyright © [113].

Thus, monomer conversions ranging from 56% for C14 to 85% for C7 were determined
after irradiation with an LED at 405 nm for 400 s in laminate (see Table 4). Among the differ-
ent photoinitiating systems investigated, the three-component system based on C7 clearly
outperformed the others, since an improvement of the monomer conversion of at least 10%
could be obtained with this bis-chalcone. As shown in Figure 10, the different systems were
nevertheless reactive, since the oxygen inhibition could be efficiently overcome. All of the
polymerizations started immediately after the light was switched on, and this feature is
characteristic of highly reactive photoinitiating systems [201–204]. While examining the
influence of the peripheral groups, high monomer conversions could be obtained while
using pyrrole as the peripheral group. Conversely, the lowest monomer conversions were
obtained using the triphenylamine or 2,4-dibutoxyphenyl groups. In these two cases,
monomer conversions peaking at 56% could be obtained using each of the two three-
component systems. Interestingly, comparisons of the monomer conversions obtained
between 2,4-dibutoxyphenyl- and 3,4-dibutoxyphenyl-substituted chalcones (C12 and C14)
revealed an improvement of the conversion of nearly 10% with the 3,4-dibutoxyphenyl-
substituted chalcone compared to the 2,4-dibutoxyphenyl-substituted chalcone, whereas
the two chalcones exhibited similar absorption characteristics (absorption maxima, molar
extinction coefficients). Therefore, the influence of the substitution pattern was clearly
demonstrated. While examining the respective absorptions of the different chalcones at
405 nm, no direct correlations between absorption and monomer conversion could be
established. Other parameters, such as the rate constants of interaction of the chalcones
with the different additives, and the excited state lifetime, also have to be taken into account.



Molecules 2021, 26, 3192 12 of 38

Notably, steady-state photolysis experiments revealed a consumption of 78% for C7 after
10 min of irradiation, while irradiating an acetonitrile solution containing C7 in combina-
tion with the iodonium salt. Conversely, under the same conditions, a consumption of only
32% was observed for C8, demonstrating that the photoinitiating ability of C7 was directly
related to its higher photochemical reactivity with the iodonium salt, compared to C8–C19.

Table 4. Monomer conversions obtained with the three-component chalcone/amine/Iod (0.1%/2%/2%,
w/w/w) system, LED at 405 nm (110 mW/cm2), 400 s.

Photoinitiating Systems
FCs

Amine/Iod

without chalcone 39%
C7 85%
C8 64%
C9 68%
C10 56%
C11 73%
C12 64%
C13 63%
C14 56%
C15 69%
C16 60%
C17 69%
C18 72%
C19 66%

The two-component C7/Iod (0.1%/2%, w/w) system also proved to be promising for
initiating the cationic polymerization of epoxides. Thus, an EPOX conversion of 70% could be
obtained with the C7/Iod (0.1%/2%, w/w) system upon irradiation at 405 nm with an LED,
whereas the EPOX conversions were lower than 30% for the C8–C10-based photoinitiating
systems (see Figure 11). The reactivity of the photoinitiating systems was highly dependent
on the rate constants of interaction with the additives. Thus, while the photolysis experi-
ments with the two-component C7/amine and C8/amine systems in acetonitrile revealed
a consumption of the ketones of 11% and 12%, respectively, after 10 min of irradiation at
405 nm, higher declines were obtained with the C7/Iod and the C8/Iod systems, reaching
78% and 32%, respectively. Therefore, the higher photoreactivity of C7 compared to that of C8
is directly linked to the rate constant of interaction with the additives.

Figure 11. Polymerization profiles of EPOX obtained with two-component chalcone/Iod (0.1%/2%,
w/w) systems upon irradiation at 405 nm with an LED. Reprinted with permission from John Wiley
& Sons, Inc. Copyright © [113].
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Similarly to that suggested for the first series of bis-chalcones, and on the basis of
the photolysis experiments, an oxidation–reduction photochemical mechanism could be
proposed to support the monomer conversions. These conclusions were confirmed by
the fluorescence quenching experiments performed in acetonitrile. Determination of the
electron transfer quantum yields revealed the C7/Iod system to exhibit a higher value
(0.923) than that determined for the C8/Iod system (0.899).

Due to the high reactivity of the chalcone C7-based three-component system, the access
to composites was thus examined. Indeed, the elaboration of composites remains a challenge
with visible light photoinitiating systems, due to a limited light penetration and internal
filter effects [205,206]. While introducing 20% weight of silica filler to Ebecryl 40, a severe
limitation of the light penetration was demonstrated, as a light penetration of only 1.2 mm
within the resin could be determined at 405 nm. By laser writing, 3D patterns exhibiting a
remarkable spatial resolution could be obtained. An excellent dispersion of the fillers within
the polymers could also be demonstrated by optical microscopy (see Figure 12).

 

2 

(A) 

(B) 

 

Figure 12. (A): SEM images of Ebecryl 40-based polymer, with (a) and without (b) silica fillers. (B): Images (a) (top view)
and (b,c) (lateral view) obtained by numerical optical microscopy of 3D patterns obtained from laser writing experiments
for resins containing 20% fillers, C7/amine/Iod (0.1%/2%/2%, w/w/w), 405 nm, 110 mW/cm2. Reprinted with permission
from John Wiley & Sons, Inc. Copyright © [113].

Peripheral groups of bis-chalcones can greatly influence the absorption spectra of dyes,
and as such, a wide range of substituents has been examined over the years. Within a year,
no less than 30 dyes differing by the peripheral groups have been proposed as photosensi-
tizers, demonstrating the huge interest of photopolymerists in this family of compounds.
Notably, the introduction of para-dimethylamino groups in C20–C25 enabled the develop-
ment of dyes with absorption maxima ranging from 430 nm for C20, C21, and C23 to 436 nm
for C24 and 440 nm for C25 (see Figures 13 and 14 and Table 5) [159]. Concerning the molar
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extinction coefficients, the substitution pattern of the central cyclohexanone did not greatly
influence the absorption properties, since molar extinction coefficients ranging between
40,000 M−1·cm−1 for C23 and 49,900 M−1·cm−1 for C22 could be determined in acetonitrile.
A less intense absorption band was also detected in the UV range. A totally different
situation was found for C26–C31. As shown in Figures 13 and 14, an intense absorption
band was detected at 250 nm for all anthracene-based chalcones, whereas an intramolecular
charge-transfer band could be detected for all dyes, with absorption maxima located in
the UV range. Moreover, the ICT bands were broad, extending from 300 to 450 nm, such
that a sufficient absorption could be found at 405 nm for performing photopolymerization
experiments. However, a threefold reduction of the molar extinction coefficients could be
determined at 405 nm for anthracene-based chalcones compared to dimethylaminophenyl-
based chalcones. When tested as photosensitizers for three-component chalcone/amine/Iod
(0.1%/2%/2%, w/w/w) systems, no direct correlation between the molar extinction coef-
ficient at 405 nm and final monomer conversions could be established. Indeed, if the
dimethylaminophenyl-based chalcones produced higher monomer conversions in thick
films, the opposite situation was found in thin films, with the anthracene-based chalcones
outperforming the dimethylaminophenyl-based chalcones (see Table 6 and Figure 15). How-
ever, shorter inhibition times and steeper slopes could be observed for the polymerization
curves obtained with the dimethylaminophenyl-based chalcones (see Figure 15).

Figure 13. Chemical structures of C20–C31.

Figure 14. UV-visible absorption spectra of C20–C25 (a) and C26–C31 (b) in acetonitrile. Reproduced from [159] with
permission from The Royal Society of Chemistry.



Molecules 2021, 26, 3192 15 of 38

Table 5. Light absorption properties of the 12 different chalcones: absorption maxima wavelength
(λmax) as well as the molar extinction coefficients at λmax (εmax) and at 405 nm (ε405 nm), respectively.

Compounds λmax (nm) εmax (M−1 cm−1) ε405 nm (M−1 cm−1)

C20 430 41,600 31,900
C21 430 45,300 35,000
C22 431 49,900 38,400
C23 430 40,000 31,900
C24 436 49,200 34,200
C25 440 43,300 30,000
C26 250 81,800 5400
C27 250 113,300 7400
C28 250 149,600 9900
C29 250 178,400 11,500
C30 250 175,900 12,000
C31 250 129,500 7800

Table 6. Final monomer conversions obtained during the FRP of TA upon irradiation at 405 nm with
an LED for 400 s using the three-component chalcone/amine/Iod (0.1%/2%/2%, w/w/w) systems.

FCs
(in thick)

C20 C21 C22 C23 C24 C25

~84% ~90% ~84% ~88% ~86% ~83%

C26 C27 C28 C29 C30 C31

~90% ~41% ~68% ~81% ~41% ~53%

FCs
(in thin)

C20 C21 C22 C23 C24 C25

~43% ~67% ~56% ~58% ~63% ~76%

C26 C27 C28 C29 C30 C31

~66% ~68% ~60% ~74% ~73% ~76%

Figure 15. Photopolymerization profiles of TA, LED at 405 nm, using the three-component chalcone/amine/Iod
(0.1%/2%/2%, w/w/w) photoinitiating systems: in thick films (1.4 mm) (a), and in thin films (25 µm) (b). Reproduced
from [159] with permission from The Royal Society of Chemistry.

The extractability and migratability of photoinitiators is a major issue that can drasti-
cally affect future uses of polymers. In this context, in order to reduce the extractability
of dyes, polymerizable groups can be introduced, as exemplified with C32–C36; for com-
parison, C14 [113], previously studied, was used as a non-crosslinkable chalcone (see
Figure 16) [110].
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Figure 16. Chemical structures of crosslinkable chalcones C32–C36.

The comparison between the crosslinkable chalcone C36 and its non-crosslinkable
version C14 revealed the remarkable migration stability of C36 compared to C14. Notably,
for the polymers obtained with the three-component chalcone/amine/Iod (0.1%/2%/2%,
w/w/w) photoinitiating systems, examination of the migratability of dyes in acetonitrile
revealed that only 0.9% of the initial chalcone C36 could be extracted, as opposed to 8.3%
for chalcone C14. Therefore, by introducing a crosslinkable group, a ninefold reduction of
the migratability could be obtained.

Recently, a series of 12 bis-chalcones based on cyclopentanone was proposed, with
similar peripheral groups to those used for the design of cyclohexanone-based chalcones
(see Figure 17) [207].

Figure 17. Chemical structures of C37–C48.

Interestingly, by replacing the cyclohexanone central part with a cyclopentanone
moiety in these structures, a redshift of the ICT bands could be clearly demonstrated.
Thus, if an absorption maximum located at 399 nm could be found for C40, its analogue
based on cyclohexanone (i.e., C12, Figure 9) showed an absorption maximum at 375 nm,
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blueshifted by ca. 25 nm (see Figure 18). The most redshifted absorption was determined
for C43, with an absorption maximum peaking at 485 nm. To the best of our knowledge,
C43 is the bis-chalcone exhibiting the most redshifted absorption ever used as photoini-
tiator of polymerization (485 nm, 65,670). The highest molar extinction coefficients could
be determined for C41, C43, and C45, designed with the strongest electron-donating
groups (see Table 7). Interestingly, in this work, the possibility of elaborating photocom-
posites via the in situ generation of silver nanoparticles was demonstrated. Indeed, by
using the three-component chalcone/Iod/amine (0.1%/1.5%/1 wt%, w/w/w) system,
phenyl radicals such as Ph•, but also Dye–H• and EDB•(-H), can react with the silver
salt (AgNO3), resulting in the reduction of the silver cation to Ag0 and the formation of
Ag nanoparticles via the aggregation of silver atoms, in accordance with the mechanism
proposed in Figure 19.

Figure 18. UV-visible absorption spectra of C37–C48 in acetonitrile. Reprinted with permission from
John Wiley & Sons, Inc. Copyright© [207].

Table 7. Absorption characteristics of C37–C48 in acetonitrile.

Chalcone-Based
Dyes

λmax
(nm)

εmax
(M−1·cm−1)

ε@405nm
(M−1·cm−1)

ε@470nm
(M−1·cm−1)

C37 396 41,980 37,050 270
C38 392 40,840 33,590 110

C39 400
274

41,770
69,250 41,610 2,720

C40 399 42,500 41,580 1,280

C41 460
274

57,400
37,300 23,700 53,446

C42 397 38,150 36,700 1,710

C43 485
278

65,670
22,680 16,200 59,370

C44 418
268

6,970
12,890 6800 1,600

C45 428
283

61,130
15,340 50,310 16,540

C46 427
280

42,062
14,160 32,270 14,380

C47 421
236

36,350
46,810 30,560 10,160

C48 460
298

47,620
35,060 25,300 44,400
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Figure 19. Mechanism of the photoinitiating systems enabling the formation of silver nanoparticles
during the polymerization process. (a) catalytic cycle of polymerization (b) the mechanism of genera-
tion of Ag nanoparticles. Reprinted with permission from John Wiley & Sons, Inc. Copyright© [207].

In 2021, the previous trends established concerning the influence of the substitution
pattern on the photoinitiating ability of bis-chalcones were confirmed by a new study [112].
In this work, four bis-chalcones (C49–C52) containing thiopyranone or benzylpiperidinone
central cores were examined as photoinitiators for the free-radical polymerization of a
polyethylene glycol (600) diacrylate (PEG-diacrylate) and the FRPCP of EPOX at 375 and
405 nm, respectively (see Figure 20).

Figure 20. Chemical structures of C49–C52 and the acrylic monomer.
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Interestingly, the presence of the ferrocene moiety in C51 enabled the drastic shift of
the absorption maxima towards the visible range. Thus, absorption maxima located at
332 and 511 nm could be determined in acetonitrile for C51 (see Table 8). For the 3 other
chalcones, UV-centered absorption maxima were found, peaking at 370, 380, and 369 nm
for C49, C50, and C52, respectively. As anticipated, good monomer conversions could
be obtained using the different three-component systems upon irradiation at 375 nm
(40 mW/cm2). As shown in Table 7, monomer conversions ranging between 89% for C50
and 60% for C51 could be determined while using the three-component photoinitiating
chalcone/Iod/amine (1.5%/1.5%/1.5%, w/w/w) systems, and upon irradiation of the
resin for 200 s. These monomer conversions were greatly higher than that obtained with
the Iod/EDB combination (49%). At 405 nm, a reduction of the monomer conversion
was logically observed, consistent with a reduction of the molar extinction coefficients at
this wavelength. Thus, the highest conversion was obtained with C50 (79%), whereas the
lowest ones were determined with C51 and C52 (42%). In fact, a clear correlation between
molar extinction coefficients and final monomer conversions could be established at 405 nm.
Interestingly, at the two irradiation wavelengths, ferrocene-based photoinitiating systems
proved to be the worst candidates for photopolymerization, indicating that the introduction
of ferrocene to chalcone was not convenient in developing highly efficient photoinitiators.
These results were confirmed by other studies devoted to ferrocene-based chalcones used
as photoinitiators of polymerization [208]. Conversely, ferrocene has historically been used
to initiate the cationic polymerization of epoxides [120,209]. Furthermore, photopolymer-
ization experiments performed at 375 nm revealed the C51-based three-component system
C51/Iod/amine (1.5%/1.5%/1.5%, w/w/w) to give the worst EPOX conversion (66%).
For the three other bis-chalcones, EPOX conversions higher than 70% could be obtained.
Here, again, the best EPOX conversion was obtained with C52 (74%), whereas this dye
exhibited the lowest molar extinction coefficient at 375 nm (4800 M−1·cm−1). Therefore,
the photoinitiating ability of C52 is related to its photochemical reactivity and the ease of
forming bis-chalcone +•).

Table 8. UV-visible absorption characteristics of chalcones C49–C52 in acetonitrile. Acrylate and epoxide monomer
conversions determined at 375 and 405 nm.

Chalcones
λmax
(nm)

εmax
(M−1·cm−1)

ε@375nm
(M−1·cm−1)

ε@405nm
(M−1·cm−1)

PEG-Diacrylate
Conversion

EPOX
Conversion

375 nm 405 nm 375 nm

C49 370 21,900 21,800 12,740 77 60 70
C50 380 28,200 28,000 19,730 89 79 72

C51 332
511

18,200
4940 5800 4420 60 42 66

C52 369 4980 4800 2550 82 42 74
blank 1 - - - - 49 49 -
blank 2 - - - - - - 45

Blank 1: Iod/amine (1.5%/1.5% w/w); blank 2: bis-chalcone/Iod/amine (1.5%/1.5%/1.5%, w/w/w).

It should be noted that the low photoinitiating ability of ferrocene-based dyes was
confirmed with C54, which also provided lower final monomer conversions than C53 (86%
vs. 95% during the FRP of PEG-diacrylate in thin films, 60% vs. 91% during the FRPCP of
EPOX) (see Figure 21) [208].

In 2020, an elegant strategy was developed to create visible light and water-soluble
photoinitiating systems from dyes absorbing in the UV range [210]. This result could be
obtained by forming charge-transfer complexes between a bis-chalcone and a co-initiator—
namely, triethanolamine (TEOA). Considering that TEOA is a water-soluble amine, a
water-soluble charge-transfer complex could thus be obtained. Indeed, only few water-
soluble photoinitiators are commercially available, as exemplified by 2-Hydroxy-4’-(2-
hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959). However, its water solubility is
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limited, only reaching 0.5 wt%. Many approaches have been developed over the years to
convert efficient photoinitiators into water-soluble structures. Moreover, such results can
only be obtained after tedious and complex syntheses [211–215]. Conversely, the forma-
tion of charge-transfer complexes (CTCs) is an efficient strategy to easily produce numer-
ous CTCs without requiring extensive synthetic works [216]. Over the years, numerous
CTCs have been proposed as photoinitiating systems, such as 2-isopropylthioxanthonium
phenacyl hexafluoroantimonate, which could form a CTC with N,N-dimethylaniline
(DMA) [213]. Several CTCs have also been proposed by Lalevée et al., in order to develop
dual photoassisted/thermal initiating systems [206,214,217–220]. In the present work,
(2E,6E)-2,6-bis(furan-2-ylmethylidene)cyclohexan-1-one (C55) was used as an electron
acceptor for TEOA (see Figure 22).

Figure 21. Chemical structures of C53 and C54.

Figure 22. Chemical structures of C55, TEOA, and the monomer (AM).

By mixing the two compounds in acetonitrile, a redshift of the absorption could be
clearly observed, from 373 nm for C55 to 400 nm for the [C55-TEOA] CTC (see Figure 23). A
saturation concentration of 5 wt% in water was determined for the [C55-TEOA] CTC. While
attempting to dissolve thioxanthone (ITX) in water by mixing ITX with TEOA, ITX was
determined to separate out from TEOA, indicating that the formation of a CTC between
the photoinitiator and the amine was required in order to maintain the water solubility
of the photoinitiator. In this context, the [C55-TEOA] CTC was used as a photoinitiating
system for the FRP of acrylamide (AM) in water upon irradiation at 405 nm with an LED
(I = 70 mW/cm2), and a concentration varying from 0.5 wt% to 3 wt% was examined. Inter-
estingly, upon increase of the concentration, an improvement of the monomer conversion
was observed (see Figure 24). Moreover, 3 wt% was determined as the optimal concentra-
tion, with an optical shielding effect occurring at higher concentrations. Indeed, when the
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concentration was too high, light penetration was adversely affected by an increase in the
optical density, decreasing the monomer conversion.

Figure 23. UV-visible absorption spectra of C55 and [C55-TEOA] CTC in acetonitrile. Reprinted
from [210]; Copyright (2020), with permission from Elsevier.

Figure 24. Polymerization profiles obtained upon irradiation at 405 nm (70 mW/cm2) of an AM resin
using the [C55-TEOA] CTC as the photoinitiating system. Reprinted from [210]; Copyright (2020),
with permission from Elsevier.

C55 is an interesting photosensitizer, since this dye was also determined to interact
strongly with certain monomers; a relevant example of this was demonstrated with PEG-
diacrylate [156,158]. Comparison of the UV-visible absorption spectra of C55 in PEG
diacrylate and hexamethylene diacrylate (HDDA) revealed the absorption spectrum in PEG-
diacrylate to be drastically redshifted compared to that observed in HDDA (see Figure 25).
Thus, at 405 nm, a molar extinction coefficient of 42,800 M−1·cm−1 could be found for
C55 in PEG-diacrylate, whereas a molar extinction coefficient of 35,900 M−1·cm−1 was
determined in PEGDA at 365 nm. Similarly, a redshift of the fluorescence was determined
for C55 in PEG-diacrylate compared to that determined in HDDA, consistent with the
trend observed for the absorption.

In fact, the formation of exciplexes with protonic monomers such as PEG-diacrylate
was suggested to support the modification of the absorption spectra. Interestingly, the
authors demonstrated PEG-diacrylate to act as an efficient co-initiator for C55. Thus, upon
irradiation at 405 nm, a monomer conversion of 80% could be obtained within a few sec-
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onds with the two-component C55/EDB (0.0625%/5% w/w) system in PEG-diacrylate, as
opposed to 10% in HDDA. Replacement of EDB with PEG-diacrylate in the photoinitiating
system enabled an increase in the HDDA conversion to 60% within a few seconds, upon ir-
radiation at 405 nm of the two-component C55/PEG-diacrylate (0.0625%/5% w/w) system.
The ability of PEG-diacrylate to act as a better co-initiator than the standard EDB was thus
clearly demonstrated. Finally, comparison with a benchmark photoinitiator was established
in order to demonstrate the potential of C55 as a photoinitiator (see Figure 26). Irrespec-
tive of the co-initiator (EDB or PEG-diacrylate), the two-component system based on C55
could clearly outperform that based on thioxanthone (ITX). Notably, in PEG-diacrylate,
a 2.5-fold enhancement of the monomer conversion was observed with C55 compared
to that obtained with ITX. The possibility of monitoring the polymerization process via
photoluminescence measurements was also demonstrated by the same authors [157].
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Figure 25. UV-visible absorption spectra of C55 in PEG-diacrylate and HDDA. Reprinted from [158];
Copyright (2019), with permission from Elsevier.

Figure 26. Comparisons of the polymerization profiles established for C55 and ITX used as a
reference photoinitiator: C55 (0.0625% wt)/PEG-diacrylate, ITX (0.0625% wt)/PEG-diacrylate,
C55 (0.0625% wt)/PEG-diacrylate (5% wt)/HDDA, ITX (0.0625% wt)/EDB (5% wt)/HDDA, LED
at 405 nm, 70 mW/cm2. Reprinted from [158]; Copyright (2019), with permission from Elsevier.
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Finally, the mechanism depicted in Scheme 2 was proposed by the authors to support
the formation of exciplexes and the ability of PEG-diacrylate to act as a co-initiator. Thus,
by mixing C55 and PEG-diacrylate, hydrogen bonds can form between the oxygen atom
of furan and the hydrogen atoms of the monomer. Upon photoexcitation, an electron
transfer can occur between the electron-accepting C55 and the electron-rich monomer.
Subsequently, by proton transfer between the radical cation of the monomer and the radical
anion of C55, a radical can form on the monomer, initiating the polymerization process.

Scheme 2. Mechanism proposed to support the high photoinitiating ability of the C55/PEG-diacrylate
combination. Reprinted from [158]; Copyright (2019), with permission from Elsevier.

Interestingly, efficient photobleaching of the resin was also demonstrated with C55,
and this property is actively sought for visible light photoinitiating systems, these initiating
systems being highly colored. Indeed, one major drawback of visible light photoinitiating
systems is the color imposed by the photoinitiator, and an extensive body of work is notably
devoted to developing photoinitiators capable of bleaching upon irradiation [221–223].
This ability was nevertheless demonstrated during the mechanistic investigations, as well
as during the different 3D printing experiments, as shown in Figure 27. Indeed, after
polymerization, a complete photobleaching could be obtained, and a colorless 3D structure
could be prepared.

Figure 27. Left: photobleaching evidenced during the photopolymerization process; the resin before and
after curing. Right: tridimensional structure obtained by 3D printing, exhibiting efficient photobleaching
compared to the initial resin. Reprinted from [158]; Copyright (2019), with permission from Elsevier.
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3.2. Bis-Chalcones Based on Two Connected Chalcones

Bis-chalcones based on cyclic aliphatic ketones have recently demonstrated their
promising photoinitiating abilities, from the photopolymerization kinetic viewpoint, for
final monomer conversions, but also in various practical applications. Furthermore, mono-
chalcones are also efficient photoinitiators, and numerous such structures have been exam-
ined by several research groups. In an ever-ongoing effort to further improve monomer
conversion, the covalent linkage of two chalcones has been examined as a potential strat-
egy through which to optimize polymerization efficiency. Notably, structures resulting
from this covalent linkage can exhibit a redshifted absorption compared to the chalcones
considered separately, provided a π-conjugation exists between the two chalcones. Jointly,
by increasing the molecular weight, extractability and migratability of the structures within
the polymers can be efficiently avoided. In 2020, three structures (C57–C59) based on
triphenylamine, connected by means of central bis-aldehydes and varying in their pe-
ripheral groups, were reported by Lalevée et al. (see Figure 28) [224]. For comparison, a
mono-chalcone C56 was also prepared.

Figure 28. Chemical structures of bis-chalcones connected by mean of bis-aldehyde.

As shown in Table 9, use of 4,4’-(phenylazanediyl)dibenzaldehyde to form chalcones
C57–C59 enabled the redshifting of their absorption maxima by ca. 30 nm compared
to that of chalcone C56. Indeed, if an absorption maximum at 405 nm was found for
C56, the absorption maxima shifted to 430 nm for chalcones C57–C59. Interestingly, no
significant influence of the peripheral groups was determined, since the replacement of a
methoxyphenyl-based acetophenone by a carbazole-based acetophenone did not modify
the position of the absorption maximum. Considering their absorption, the 4 chalcones
were appropriate for photopolymerization experiments carried out at 405 nm, since molar
extinction coefficients higher than 6000 M−1·cm−1 were determined at 405 nm. Conversely,
the connection of the two chalcones by means of a π-conjugated system resulted in a
significant decrease of the molar extinction coefficient. If a molar extinction coefficient of
18,740 M−1·cm−1 was measured in acetonitrile for C56, a twofold reduction of the molar
extinction coefficient was determined for its analogue C58 (8540 M−1·cm−1).

Table 9. Light absorption properties of chalcones C56–C59 in acetonitrile.

Compounds λmax (nm) εmax(M−1·cm−1) ε@405nm (M−1·cm−1)

C56 405 18,740 18,740
C57 430 7990 6760
C58 428 8540 7200
C59 430 10,500 9020

Four different photoinitiating systems were used to initiate the FRP of PEG di-
acrylate in both thick and thin films—namely, the three-component chalcone/Iod/EDB
(1.5%/1.5%/1.5%, w/w/w) photoinitiating system, the two-component chalcone/Iod
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(1.5%/1.5%, w/w) and chalcone/EDB (1.5%/1.5%, w/w) photoinitiating systems, and
the chalcones alone (1.5% w). While no polymerization could be initiated with the chal-
cones alone, only thin films could be polymerized with the two-component chalcone/EDB
(1.5%/1.5%, w/w) photoinitiating systems. Conversely, for the two-component chal-
cone/Iod (1.5%/1.5%, w/w) and the three-component chalcone/Iod/EDB (1.5%/1.5%/1.5%,
w/w/w) photoinitiating systems, photopolymerization could be efficiently initiated both
in thin and thick films (see Table 10), providing higher final monomer conversions than the
two-component chalcone/EDB (1.5%/1.5%, w/w) photoinitiating systems. Interestingly,
higher final monomer conversions were obtained with the two-component chalcone/Iod
(1.5%/1.5%, w/w) than with the three-component chalcone/Iod/EDB (1.5%/1.5%/1.5%,
w/w/w) photoinitiating systems, assigned to a competition with the electron-donating
groups in chalcones and EDB. As a result of this, all three-component photoinitiating
systems based on chalcones C57–C59 furnished lower final monomer conversions than the
control experiment (blank) composed only of Iod/EDB (1.5%/1.5%, w/w). Conversely, the
three-component PI systems based on chalcone C56 furnished a final monomer conversion
on par with that of the blank control. Therefore, it could be concluded that EDB was
inhibiting the generation of free radicals—the opposite situation to that which is com-
monly found for the three-component PIs. Interestingly, the three-component chalcone
C56/Iod/EDB (1.5%/1.5%/1.5%, w/w/w) photoinitiating system and the two-component
C56/Iod (1.5%/1.5%, w/w) photoinitiating system could initiate polymerization in thick
films under daylight, evidencing the high reactivity of these two PIs. A polymerization
ending within a few minutes could be demonstrated.

Table 10. Final monomer conversions obtained during the FRP of PEG diacrylate at 405 nm after 200 s
of irradiation for thin films, and 600 s of irradiation for thick films, using the two-component chal-
cone/Iod (1.5%/1.5%, w/w) system and the three-component chalcone/Iod/EDB (1.5%/1.5%/1.5%,
w/w/w) photoinitiating system.

Chalcones
Chalcone/Iod/EDB Chalcone/Iod

Thin Films Thick Molds Thin Films Thick Molds

C56 71% 92% 82% 94%
C57 58% 53% 77% 52%
C58 85% 17% 93% 21%
C59 85% 77% 93% 92%

blank 50% 93%

Considering the high reactivity of PIs based on chalcones C56 and C59, PEG-based
polymers were prepared, and due to the good affinity of PEG polymers for water, swelling
experiments were carried out with polymers prepared with C56 and C59. After printing
an “H” pattern in laser writing experiments using the two-component chalcone/Iod
(1.5%/1.5%, w/w) system, the swelling of the PEG-based polymers was examined by
immersing the polymers in water. Interestingly, a good correlation between polymerization
rates and swelling ratios was determined. Thus, the highest swelling ratio was obtained
for the polymers prepared with chalcone C59 (80%), due to a lower polymerization rate
obtained with this chalcone compared to that obtained with chalcone C56 (92% vs. 94%
monomer conversions in thick film). After swelling, a 2–3-fold enhancement of the volumes
of the different 3D patterns could be determined (see Figure 29).

In 2021, a series of bis-chalcones (C60–C65) connected by mean of bis-acetyl spacers was
examined as photoinitiators of polymerization (See Figure 30) [112]. However, compared
to the previous strategy—which enabled the generation of photoinitiators absorbing until
430 nm—in the present case, the absorption of pyridine-based chalcones and biphenyl-based
chalcones was UV-centered, the main absorption band being located at 350–370 nm (see
Table 11). As a result of this, low molar extinction coefficients were determined at 405 nm, i.e.,
the emission wavelength of the light source commonly used in 3D printers. As anticipated,
due to better adequation of their absorption maxima with the emission spectrum of the LED at
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375 nm, higher final monomer conversions were obtained at 375 nm than at 405 nm, consistent
with their molar extinction coefficients at the two wavelengths (see Table 11).

Figure 29. (a) Swelling ratios determined for PEG-based polymers prepared with C62 and C65; (b) pic-
tures of the polymer 24 h after swelling and after 3 h of heating for dehydration. Reprinted from [224];
Copyright (2020), with permission from Elsevier.

Figure 30. Chemical structures of bis-chalcones connected by mean of bis-acetyl spacers.

Table 11. UV-visible absorption properties of bis-chalcones C60–C65 in acetonitrile.

Chalcones λmax (nm) εmax(M−1·cm−1) ε@405nm
(M−1·cm−1)

ε@375nm
(M−1·cm−1)

C60 347 23,100 6800 16,500
C61 364 22,700 10,070 21,500
C62 430 38,900 26,420 8500
C63 330 19,800 2960 4000
C64 370 24,600 13,670 24,000
C65 350 49,300 2220 24,500

As shown in Table 12, higher monomer conversions than that obtained with the
blank control could only be obtained based on Iod/EDB (1.5%/1.5%, w/w), demonstrating
the crucial role of bis-chalcones in photoinitiation. At 375 nm, the highest monomer
conversion was obtained for bis-chalcone C61 (95%) during the FRP of PEG diacrylate.
Conversely, at 405 nm, the best conversion was determined for bis-chalcone C62 (95%).



Molecules 2021, 26, 3192 27 of 38

No direct relation between molar extinction coefficients and final monomer conversions
at the two wavelengths could be established. Similarly, significant differences between bis-
chalcones C61 and C64 could be determined in terms of final monomer conversions, even
though the two chalcones only differ by alkyl chains. Here, again, the lowest monomer
conversions were obtained at 375 and 405 nm for the ferrocene-based bis-chalcone, once
again evidencing the detrimental effect of this substituent.

Table 12. Final monomer conversions determined during the FRP of PEG diacrylate using the
5%/1.5%/1.5%, w/w/w) photoinitiating systems shown in Table 1, at 375 and 405 nm.

LED@375 nm

Chalcones C60 C61 C62 C63 C64 C65 Blank
FCs 86 95 80 64 89 82 49

LED@405 nm

Chalcones C60 C61 C62 C63 C64 C65 Blank
FCs 62 83 95 53 91 62 49

Finally, swelling experiments were carried out with bis-chalcones C60 and C64. Indeed,
swelling experiments carried out with PEG polymers prepared with bis-chalcones C60 and
C64 showed good swelling ratios, ranging from 60% for C60 to 70% for C64. Increases
in volume as high as 160% and 143% could be determined for polymers prepared with
bis-chalcones C60 and C65, respectively. Upon heating at 50 ◦C for 1 h, hydrated polymers
could return to their initial appearances and volumes, demonstrating the reversibility of
this hydration process. Consequently, the two photoinitiating systems were determined to
be ideal candidates for 4D printing experiments. Indeed, hydration and dehydration of
the hydrophilic PEG polymer can be advantageously used for shape modification. More
precisely, 4D printing consists of elaborating an object of precise thickness and shape
that can be modified subsequent to the polymerization process by means of an external
stimulus such as heat [225–228], light [229], water [230–232], or other stimuli. Thus, after
printing a cross with a high spatial resolution via 3D printing using the three-component
chalcone/Iod/EDB (1.5%/1.5%/1.5%, w/w/w) photoinitiating systems based on chalcones
C60 and C64, swelling and thermally induced dehydration resulted in significant mod-
ification of the shapes of the crosses. Thus, upon hydration, a complete deformation of
the cross could be demonstrated. Upon heating at 50 ◦C, dehydration of the hydrophilic
polymer could be obtained, enabling the cross to return to its initial shape (see Figure 31).

Figure 31. Swelling and dehydration cycles realized on 3D-printed crosses obtained using the three-component C60/Iod/EDB
(1.5%/1.5%/1.5%, w/w/w) photoinitiating system (a) and using the three-component C64/Iod/EDB (1.5%/1.5%/1.5%,
w/w/w) photoinitiating system (b). 1: structure of the cross; 2: cross after photopolymerization; 3: cross after one minute in
water; 4: cross after 100 s of dehydration at 100 ◦C; 5: cross after 10 min of dehydration at 100 ◦C; 6: cross after 10 min at
room temperature. Reproduced from [112] with permission from The Royal Society of Chemistry.
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Here, again, the polymerization rate could govern the level of deformation. Indeed,
due to a higher polymerization rate with bis-chalcone C60 compared to that obtained with
bis-chalcone C64, less important deformations could be obtained for the PEG polymers.
Conversely, for PEG polymers printed with bis-chalcone C64, the cross could not even be
recognized after 1 min of swelling in water (see Figure 31b3). After 100 s of dehydration at
100 ◦C, recovery of its initial shape could be obtained.

4. Conclusions

In this review, an overview of the different bis-chalcones reported to date as photoini-
tiators of polymerization has been reported. Interest in bis-chalcones is a recent devel-
opment, following the first report mentioning the use of bis-chalcones as photoinitiators
by Wang et al., in 2019. Since then, numerous achievements have been attained. Notably,
a water-soluble photoinitiator could be obtained with C55. Photobleaching properties
could also be demonstrated with this dye. Moreover, Lalevée et al. examined various
bis-chalcones varying by their central cores and the substitution patterns of their peripheral
groups. Several trends could be established. Thus, the presence of ferrocene or thiophene
as peripheral groups in bis-chalcones was determined to drastically decrease monomer
conversion. A similar effect could be evidenced with thiopyranone as the central core.
Interestingly, the influence of the substitution pattern of the central cyclic aliphatic ketone
was determined to only marginally impact the absorption spectra (see Figure 32), and
only chalcones absorbing between 350 and 550 nm could be obtained. Among the most
interesting findings, the high reactivity of chalcones enabled their access to photocompos-
ites, and the polymerization of resins containing 20% glass fillers could be successfully
achieved. Considering that the absorption of chalcones remains limited in the 350–550 nm
range, future works will consist of developing bis-chalcones capable of absorption at longer
wavelengths, enabling a higher light penetration within the photocurable resins, and easier
access to photocomposites.

Figure 32. Absorption range of the bis-chalcones depicted in this review.
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