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Background: CXorf21 and SLC15a4 both contain risk alleles for systemic lupus

erythematosus (SLE) and Sjögren’s syndrome (pSS). The former escapes X inactivation.

Our group predicts specific endolysosomal-dependent immune responses are driven by

the protein products of these genes, which form a complex at the endolysosomal surface.

Our previous studies have shown that knocking out CXorf21 increases lysosomal pH in

female monocytes, and the present study assesses whether the lysosomal pH in 46,XX

women, who overexpress CXorf21 in monocytes, B cells, and dendritic cells (DCs), differs

from 46,XY men.

Methods: To determine endolysosome compartment pH we used both LysoSensorTM

Yellow/Blue DND-160 and pHrodo® Red AM Intracellular pH Indicator in primary

monocyte, B cells, DCs, NK cells, and T cells from healthy men and women volunteers.

Results: Compared to male samples, female monocytes, B cells, and DCs had lower

endolysosomal pH (female/male pH value: monocytes 4.9/5.6 p < 0.0001; DCs 4.9/5.7

p = 0.044; B cells 5.0/5.6 p < 0.05). Interestingly, T cells and NK cells, which both

express low levels of CXorf21, showed no differential pH levels betweenmen andwomen.

Conclusion: We have previously shown that subjects with two or more X-chromosomes

have increased CXorf21 expression in specific primary immune cells. Moreover,

knockdown of CXorf21 increases lysosomal pH in female monocytes. The present

data show that female monocytes, DC, B cells, where CXorf21 is robustly expressed,

have lower lysosomal pH compared to the same immune cell populations from

males. The lower pH levels observed in specific female immune cells provide a

function to these SLE/SS-associated genes and a mechanism for the reported inflated

endolysosomal-dependent immune response observed in women compared tomen (i.e.,

TLR7/type I Interferon activity).
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INTRODUCTION

Systemic lupus erythematosus (SLE) and Sjögren’s syndrome
(SS) are chronic autoimmune diseases that are highly related
in both clinical and serological manifestations. In terms of
the latter, autoantibodies binding the Ro/La (or SSA/SSB)
ribonucleoprotein particle are found in about half of patients with
SLE and up to 80% of those with SS (1). Like most autoimmune
diseases, both SLE and SS much more commonly affect women
than men with ratios of about 10 to 1 for SLE, and up to 15 to 1
women to men in SS (2). While either disease can have its onset
throughout the entire lifespan, the peak age of onset for SLE is
about 30, while that for SS is in older adulthood.

The diseases are also related in regards to pathophysiology.
For instance, most risk genes identified in genome wide
association studies are shared between SLE and SS (3–6).
Pertinent to the work presented herein, another aspect of
shared pathophysiology involves interferon. There is increased

expression of interferon-regulated genes in peripheral blood

mononuclear cells from patients with either disease (7–10).
Evidence from both human disease (11–13) and murine models
(14–17) suggests that signaling through lysosomal, nucleic acid-
binding toll-like receptors (TLR) 7 and 9 is in part responsible
for the pathogenicity, including increased interferon activity in
these diseases.

Signaling through stimulation of intracellular TLRs is
exquisitely sensitive to lysosomal pH. The soluble carrier protein
15a4 (SLC15a4) and CXorf21 genes have been identified as
containing risk alleles for both SLE and SS (3, 6, 18). The
protein products of these genes are binding partners on the
lysosomal membrane (19). The SLC15a4 protein participates in
movement of hydrogen ion and oligopeptides in and out of the
lysosome. Thus, SLC15a4 regulates antigen processing in the
lysosome along with TLR7/9–mediated cytokine secretion, NF-
κB signaling and antibody production (20, 21). The regulatory
role of SLC15a4 is at least in part mediated by control
of lysosomal pH (21). A loss of function Slc15a4 mutation
ameliorates murine lupus and impairs interferon production
mediated through TLR7 stimulation (20). An allele within
CXorf21 was recently identified as a lupus risk gene (18). Our
data demonstrate the CXorf21 protein is expressed in only
monocytes, B lymphocytes and dendritic cells. In addition,
CXorf21 routinely escapes X inactivation (22) with both mRNA
and protein levels higher in female cells compared to male cells
(Harris et al., unpublished). CXorf21 knockdown using small
guide RNA resulted in an abrogation of interferon production
after exposure of female cells to TLR7 agonist. In addition, we
found an increased lysosomal pH in female cells with CXorf21
knockdown (Harris et al., unpublished).

While there have beenmany theories concerning the increased
risk for autoimmune disease in women, based on studies of X
chromosome aneuploidies in subjects with SLE or SS, we propose
that the female risk of SLE and SS is a result of a dose effect
for the X chromosome. Our previous data show that Klinefelter
men (47,XXY) are enriched 30-fold among men with either
SLE or SS (23, 24). Also, SLE or SS affected women have an
increased prevalence of 47,XXX compared to healthy control

women or women with either rheumatoid arthritis or primary
biliary cirrhosis (25). Because CXorf21 escapes X inactivation;
and, therefore, female cells have approximately twice the amount
of CXorf21 protein, this gene is a candidate to mediate the X
chromosome dose effect found for both SLE and SS, but not other
studied, female-biased autoimmune diseases where no X dose
effect was found.

We undertook the present study to further characterize
the cellular function of CXorf21. In particular, the complex
of SLC15a4 and CXorf21 affects lysosomal pH, and CXorf21
expression is greater in female cells compared to male cells. Thus,
we sought to determine whether there is a difference in lysosomal
pH between male and female immune cells, in which CXorf21 is
known to be expressed.

METHODS

Patients/Donors
Whole blood was donated by volunteer healthy controls.
Healthy female and male controls were recruited pair-wise to
control for day-to-day variability. EBV-transformed B cells or
lymphoblastoid cell lines (LCLs) derived from healthy controls
or SLE patients with and without chromosomal aneuploidies
were obtained from the Lupus Family Registry and Repository
(26). Eight male and 8 female buffy coats were obtained from
the Oklahoma Blood Institute (OBI) (Oklahoma City, OK).
All donors were Caucasian with ages ranging between 28 and
45 years old. Healthy subjects had no known chronic medical
illness and tested negative for OBI blood safety screening panel.
Buffy coats were stored at room temperature until cell isolation.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
University of Oklahoma Health Sciences Center Institutional
Review Board.

Isolation of Cells
STEMCELL EasySepTM monocyte, dendritic cells, B cell, natural
killer cells (NK cells), and T cells were used to isolate monocytes,
dendritic cells, B cells, NK cells, and T cells, respectively,
from PBMCs of healthy controls. Briefly, PBMCs were first
purified from buffy coats using density gradient centrifugation
using Lymphoprep (STEMCELL Technologies, Cambridge, MA)
according to the manufacturer’s protocol. Cells were resuspended
in EasySepTM buffer, the EasySepTM Magnet was used to
sequentially isolate CD14+ (using the EasySepTM Human CD14
enrichment kit), CD19+ (using the EasySep Human CD19

positive selection kit II), CD3-CD56+ (EasySep
TM

Human
NK Cell Isolation Kit) and CD3+ (EasySepTM Human T Cell
Isolation Kit). Cell population purity was confirmed by Moxi-
Flow cytometry with the protocol as described (27).

Western Blot Analysis
SDS-PAGE was carried out according to Laemmli et al., except
for using pre-cast 4–20% gradient gels (Bio-Rad). Gel proteins
were transferred to nitrocellulose membranes using Trans-Blot
Turbo transfer system and Trans-Blot Turbo transfer pack
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(Bio-Rad). Proteins were probed with anti-CXorf21 and anti-
actin antibodies (Novus Biotechnologies) and detected with
alkaline phosphatase/nitro blue tetrazolium/5-bromo-5-chloro-
3-indolyl phosphate system. Protein bands were quantified using
densitometry (ImageJ).

Lysosomal pH Determination
To detect differences in intracellular pH in live human male
and female primary monocytes, dendritic cells, B cells, NK

cells, and T cells, the LysoSensor
TM

Yellow/Blue DND-
160 (Thermofisher) and pHrodo R© Red AM Intracellular
pH Indicator (Thermofisher) was used according to the
manufacturer’s suggested protocol. Briefly, primary cells
were treated with LysoSensor reagents as ratiometric means
for measuring lysosomal pH via fluorescence. The ratio of
fluorescence allows for the adjustment for possible variability
between particle uptake. To quantitate pH, primary cells plated
on a 96-well plate were loaded with 5µM pHrodo R© Red AM
intracellular pH indicators for 30min. Cells were then washed
with a series of Live Cell Imaging MediaTM and standard buffers
containing 10µM nigericin and 10µM valinomycin were added
for 5min in order to clamp intracellular pH values 4.5, 5.5,
6.5, and 7.5. We determined the mean cellular fluorescence
in triplicate samples using a spectrophotometer (Synergy H1,
Biotek). A standard curve for male or female samples showed a
linear relationship between the intracellular pH and the relative
fluorescence units.

Statistics
Statistical analyses were carried out using T-test, one-way
ANOVA with multiple comparisons, or Fisher’s Exact test using
GraphPad Prism 7.

RESULTS

Primary Female Human Monocytes Have a
More Acidic Lysosomal pH Compared to
Male Cells
CXorf21 mRNA and protein are expressed at higher levels
in primary monocytes, CD19+ B cells, and Lymphoblastoid
cell lines (LCLs) from female healthy subjects compared to
male controls (Figure 1: Harris et al., unpublished). Based
on the function of the CXorf21 protein and its interaction
with SLC15A4, which is known to regulate lysosomal pH,
we hypothesized that, with greater expression of the CXorf21
protein, lysosomal pH would be lower in female male monocytes.
In order to assess a difference in lysosomal pH between male
and female monocytes, we performed ex vivo lysosomal pH
measurements. Following a 30-min incubation period of the cells
with pH calibration buffers, a standard curve for both male
and female (Figure 2A) primary monocytes to determine pH
based on male and female (Figure 2B) relative fluorescence was
generated. We found that unstimulated female monocytes have
a significantly more acidic lysosomal pH (4.9) compared to male
monocytes (5.6) (Figure 2C) (p= 0.0001 by Fisher’s exact test).

FIGURE 1 | CXorf21 is differentially expressed in primary immune cells of

healthy controls and SLE-affected patients. Total protein extract was harvested

from healthy male and female primary B cells (lane 1 and 2), primary

monocytes (lanes 3 and 4), and lymphoblastoid cell lines (LCLs) (lane 5 and 6)

and subjected to SDS-PAGE. Western blotting using human anti-CXorf21

antibody (34 kD) identifying bands at the appropriate molecular weight. Human

anti-actin (42 kD) is shown as a loading control. Densitometry via Image J was

used to quantitative optical density of protein bands.

Other Cell Types in Which CXorf21 Is
Expressed Higher in Female Cells
This trend for lower pH in the lysosomes of female cells held
true for both dendritic cells, where female DCs lysosomal pH
was 4.9 and male DCs were 5.7 (p-value 0.044; Figure 3), as well
as B lymphocytes, where female lysosomal pH was 5.0 and male
lysosomal pHwas 5.6 (p= 0.0447 by Fisher’s exact test; Figure 4).
These data suggest that female monocytes, DCs, and B cells,
immune cells with increased CXorf21 and TLR7 expression, have
a more favorable lysosomal processing environment compared to
male cells, and may drive the robust TLRs/lysosomal-dependent
immune response observed women compared to men (28).

Lysosomal pH in Cells That do Not
Express CXorf21
In order to assess the role of female overexpression of CXorf21 in
lysosomal pH, we studied immune cells in which the expression
of CXorf21 is absent. To that end, we isolated primary T cell
and NK cells, two immune cells with minimal CXorf21 and
TLR7 levels. We found, while their lysosomal pH was optimal
for lysosomal signaling, there was no significant difference in pH
between the sexes (Figures 4D,E).

DISCUSSION

There are ∼80 autoimmune disease, the great majority of which
affect women more than men. Both SLE and SS have a ratio of
about 10 affected women for every one affected man (2). The
sex bias in SLE is present among patients with childhood onset
(29). In SLE and SS, more women are affected than men in
older adulthood at ages where women are post-menopausal (30).
Despite much investigation, a compelling explanation for this
sex bias has not been forthcoming. Skewing of X chromosome
inactivation, acquired X chromosome monosomy, sex hormone
levels have all been studied and found to not explain the sex
bias (30–34). SS is much less well studied than SLE; however,
again no explanation of the marked predilection for women has
been made.
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FIGURE 2 | Differences in lysosomal pH in female and male monocytes. (A) Male (n = 6) and female monocytes (n = 6) standard curve using pHrodoTM Red AM with

Intracellular pH Calibration Buffer Kit for the translation of fluorescence ratios into pH. An average of six data points was plotted in the graph and a linear trend line was

fitted to get a pH standard curve. (B) Male monocytes female monocytes were stained with pHrodoTM Red AM solution and relative fluorescence units (RFUs) were

measured with multi-well plate reader (Details in Materials and Methods). (C) pH determined using pHrodo indication kit according to manufactures protocol. Student’s

t-test was used to determine statistical difference in RFUs that was converted into pH values via each standard curve. **p = 0.0001; Error bar represent SEM.

Based on data concerning X chromosome aneuploidies, we
have proposed that the increased female risk of SLE and SS is the
result of the X chromosome complement. Men with Klinefelter’s
syndrome (47,XXY) are enriched 15-fold in these diseases (23,
24). In addition, 47,XXX women are also found in excess among
those with either SLE or SS, but not rheumatoid arthritis or
primary biliary cirrhosis (25). Very rare abnormalities of the X
chromosome among patients with SLE or SS, including partial
triplications, as well as rare patients with Turner’s syndrome
and SLE may localize the effect to the X chromosome distal p
arm (35, 36).

Of course, in cells with two or more X chromosomes all but
one X is inactivated in order to equalize gene dose compared
to male cells. However, X inactivation is not an all or none
phenomenon with a significant fraction (up to 20%) of X-
linked human genes escaping X inactivation (22, 37). Thus,
a key factor in the idea that an X chromosome gene dose
effect mediates the sex bias of SLE and SS is the escape of
X inactivation such that female cells have bi-allelic mRNA
expression and potentially more functional protein of a given
X-linked gene.

Two genes that escape X inactivation in immune cells, contain
SLE-risk alleles, and have critical roles in production of interferon
are CXorf21 and TLR7 (38). Thus, on this basis, these genes are
candidates to mediate the X chromosome gene dose effect for the

sex bias of SLE and SS. CXorf21 is a binding partner of another
SLE-risk gene—Slc15a4. As noted above SLC15A4 is involved in
transport of oligopeptides and hydrogen ions out of the lysosome,
and knockout of Slc15a4 results in abrogation of TLR7 signaling
as well as amelioration of murine lupus (17, 18, 20, 21). We
have shown that CXorf21 protein is expressed exclusively in
monocytes, B cells, and dendritic cells, and the protein levels are
two–three-fold higher in female cells compared to male cells. In
addition knockdown of CXorf21 with CRISPR-Cas resulted in
abrogation of interferon, TNF-α and IL6 secretion after TLR7
activation in female cells. Furthermore, lysosomal pH increased,
suggesting an environment less conducive to lysosomal signaling
(Harris et al., unpublished).

Because lysosomal pH was affected by decreased expression
of CXorf21 and because female cells express more CXorf21
than do male cells, we hypothesized that female cells expressing
CXorf21 would have a more acidic pH than male cells.
Therefore, we studied lysosomal pH in B cells, monocytes
and dendritic cells from healthy human subjects. In fact, the
present results demonstrate that female cells had a more acidic
lysosomal pH than did these cells from male subjects. T
lymphocytes and NK cells, which do not express CXorf21 at
appreciable levels, did not have a pH difference between male
and female derived cells. Thus, we conclude that a possible
functional role of CXorf21 is regulation of lysosomal pH,
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FIGURE 3 | Differences in lysosomal pH in female and male dendritic cells. (A) Male (n = 6) and female dendritic cells (n = 6) standard curve using pHrodoTM Red AM

with Intracellular pH Calibration Buffer Kit for the translation of fluorescence ratios into pH. An average of six data points was plotted in the graph and a linear trend line

was fitted to get a pH standard curve. (B) Male DCs or female DCs were stained with pHrodoTM Red AM solution and relative fluorescence units (RFUs) were

measured with multi-well plate reader (Details in Material and Methods). (C) pH determined using pHrodo indication kit according to manufactures protocol. Student’s

t-test was used to determine statistical difference in RFUs that was converted into pH values via each standard curve. *p-value 0.044; Error bar represent SEM.

and that differing levels of expression between the sexes lead
to distinct lysosomal pH. To our knowledge this is the first
report of a lysosomal pH difference between male and female
immune cells.

We have ventured to predict a mechanism of action for the
uncharacterized protein CXorf21 as a short-chain dehydrogenase
reductase. We put forth two plausible functions: (1) as a
reductase CXorf21 utilizes NADPH to generate hydrogen
ions for lysosome proton pump consumption (i.e., v-ATPase
pump); or, (2) as a dehydrogenase generates NAPDH for
lysosome superoxide production by the lysosomal-resident
NOX2 complex. Both scenarios could result in changes in
lysosomal pH.

What might be the functional consequences of this pH
difference? Simply, altered (auto)antigen processing and
presentation or modulation of endolysosomal resident TLR7
activity. As noted above, a recent report demonstrates that the
X-linked TLR7 gene is bi-allelically expressed in immune cells
(that is, escapes X inactivation), and has increased protein levels
in female cells compared to male cells (38). In addition to an
increase in lysosomal pH and abrogation of TLR7 signaling, our
data using CXorf21 CRISPR-Cas knockdown show that there
is a loss of TLR7 agonist-induced increased TLR7 expression
(both mRNA and protein). Thus, CXorf21 is critically involved
in TLR7 signaling, including a feedforward expression loop
for TLR7. Thus, we propose increased expression of CXorf21,
either because of the presence of two X chromosomes and the
escape of X inactivation, or because the SLE-risk allele increases

expression (18), leads to increased TLR7 signaling and increased
interferon production.

The present study is limited, especially in regard to studying
lysosomal pH and its regulation in regards to the pathogenesis
and treatment of SLE. Endosomal TLR signaling, which leads
to type 1 interferon production, is clearly important in
SLE pathogenesis, both in humans and animal models (39).
Furthermore, this signaling is exquisitely sensitive to changes in
endolysosomal pH. CXorf21, Slc15a4, TLR7, and NCF1 (encodes
the p47phox NOX2 subunit) all contain SLE risk alleles (4–
6). Published data discussed above demonstrate that SLC15A4
regulates endolysosomal pH, and data herein show that the
protein product of CXorf21 also regulates this pH. NOX2 is
activated by phosphorylation of its p47phox subunit by TLR7
signaling (40, 41). Meanwhile, TLR7 and NOX2 signaling are
both regulated by endolysosomal pH, and activated NOX2
regulates endolysosomal pH (42, 43). Both CXorf21 and TLR7
escape X inactivation (22). Thus, determining how these genes,
all of which are involved in endososomal TLR signaling and
type 1 interferon production, impact the pathogenesis and sex
bias of SLE will need a great deal more investigation. The
treatment of SLE may also be impacted by the interaction
of these genes, their SLE-associated alleles and their protein
products. Hydroxychloroquine, an important mainstay of SLE
therapy (44–49), has a variety of effects (50–54), including
altering endolysosomal pH, antigen presentation, TLR signaling
and cytokine production. Obviously, these mechanisms of action
intersect with the TLR7 signaling pathway and the genes
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FIGURE 4 | Differences in lysosomal pH in female and male CD19+ B cells, pan-T cells, and NK cells. (A) Male and female B cells (n = 6) standard curve using

pHrodoTM Red AM with Intracellular pH Calibration Buffer Kit for the translation of fluorescence ratios into pH. An average of six data points was plotted in the graph

and a linear trend line was fitted to get a pH standard curve. (B) Male B cells or female B cells were stained with pHrodoTM Red AM solution and relative fluorescence

units (RFUs) were measured with multi-well plate reader (Details in Material and Methods). (C) pH determined using pHrodo indication kit according to manufactures

protocol. Male and Female (D) pan-T cells and (E) NK cell pH was determined as described above (standard curves and RFUs data not shown) Student’s t-test was

used to determine statistical difference in RFUs and pH that was converted into pH values via each standard curve; *p < 0.05; ns=not significant; Error bar represent

SEM.

discussed above. We have not addressed how the SLE-associated
alleles in these four genes might influence the efficacy of
hydroxychloroquine, which will likely require study of healthy
controls as well as SLE patients with various combinations of
these alleles.

These data demonstrate the function of SLC15A4 and
CXorf21, which form a complex that regulates lysosomal pH,
and in turn regulates TLR7 signaling. Furthermore, based on
the differential expression of CXorf21 between the sexes, we
have shown that lysosomal pH, a key factor in signaling in this
cellular compartment, is different betweenmen and women. This
difference and the resulting functional immune differences may

contribute to the X chromosome gene dose that underlies the sex
bias of SLE and SS.
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