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Abstract
The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit 
and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate 
specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such 
as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia–PHD–
HIF–EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival 
and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of 
non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and 
displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms 
of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysi-
ology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under 
some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as 
renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the 
complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a 
deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale 
preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become 
available for therapy.
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Introduction

Interactions between the environment and organisms are cru-
cial for life. Careless and widespread use of pesticides, plas-
tics, chemicals, and environmental pollutants in general, is 
one of the most serious problems affecting human health in 
the twenty-first century (Klaassen 2019). Metals and metal 
compounds disrupt the function of various organs, such as 
the central nervous system (CNS), the hematopoietic system, 

the liver, and the kidneys (Ufelle and Barchowsky 2019).
The kidneys are complex organs that are vital for the main-
tenance of normal body homeostasis. A kidney contains over 
1 million functional units called nephrons, each composed of 
a glomerulus and a tubule. Ultrafiltration of the blood occurs 
at the glomerulus, forming a primary filtrate that is free of 
cells and large proteins and enters the tubular lumen. Renal 
tubules are highly specialized in their various segments, pro-
ducing the final urine through reabsorption and secretion 
of filtered solutes and water. Filtration, reabsorption, and 
secretion processes maintain homeostatic levels of water, 
minerals, electrolytes, and hydrogen ions as well as elimi-
nating metabolic waste products and xenobiotics from the 
body (Yu et al. 2019). Moreover, the kidneys are important 
endocrine organs. They secrete humoral factors that regulate 
blood pressure (renin), blood calcium concentration (calci-
triol) and red blood cell production (erythropoietin; EPO) 
(reviewed in Kurt and Kurtz 2015).
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Renal handling of transition metals

The kidney is also a target organ of metal toxicity for 
its capability to filter, reabsorb, excrete and accumulate 
metal ions. Although, it has been assumed for a long 
time that the kidney plays no part in metal homeostasis, 
it is now established that the kidney is involved in trans-
port of iron and other metal ions (Smith and Thévenod 
2009; Thévenod and Wolff 2016; van Swelm et al. 2020). 
Several metal transport proteins have been identified 
in the kidney, including the multi-ligand receptor com-
plex megalin:cubilin:amnionless (Christensen and Birn 
2002) or the divalent metal transporter-1 (DMT-1; gene 
SLC11A2) that transports ferrous iron and a broad range of 
other divalent transition metals (TMs), such as cadmium, 
zinc, manganese, cobalt and nickel (Gunshin et al. 1997; 
Illing et al. 2012). Some TM ions are used as cofactors in 
enzymatic reactions, as they can readily transit between 
oxidized and reduced states, e.g. for nucleic acid and 
protein synthesis, enzymatic reactions, membrane stabi-
lization, immune system, antioxidant defense, oxidative 
phosphorylation, etc. (Fraga 2005; Zoroddu et al. 2019), 
making them essential for cellular homeostasis.

One of the best studied examples of essential TM func-
tion is the role of iron in erythropoiesis in red bone mar-
row (Ganz 2013). Iron is required in sufficient amounts in 
erythroblasts where it is used for hemoglobin synthesis to 
maintain  O2 transporting capacity and to prevent anemia. 
Iron is transported in the blood by transferrin (TF) and is 
then released to erythroblasts by interaction of di-ferric TF 
with the TF receptor (TFR). The TF-TFR endosomal cycle 
is indispensable for erythropoiesis, as erythroblasts do not 
have an alternative route for iron import. Additionally, 
iron affects erythropoiesis by contributing to the regula-
tion of EPO production in the kidney through coordinated 
function of the iron-responsive element-binding protein 1 
(IRP1) and hypoxia-inducible factors (HIFs). IRP1 binds 
to the iron-responsive element (IRE) present in several 
genes (Hentze et al. 2010).

In general, essential TMs are effective at very low con-
centrations, demanding tight regulation. Both deficiency 
and excess may cause severe illness or death (Bleackley 
and Macgillivray 2011; Crichton 2017). Transport and 
urinary excretion of essential metal ions by the kidney, 
together with the gastrointestinal absorption rates, con-
tribute to keeping their plasma concentration low to pre-
vent their accumulation in tissues and cells, which may 
result in organ damage and dysfunction, e.g. by causing 
cell death, inflammation and cancer. Non-essential metal 
ions, such as cadmium, lead and mercury serve no known 
purpose in the human body, but similar to essential metal 
ions, they are transported and excreted by the kidney and 

use the same transport pathways, hence they may accu-
mulate and induce nephrotoxicity (Bridges and Zalups 
2017; Satarug et al. 2020). When TMs, essential or non-
essential, enter the body, the kidney is affected by uptake 
of the toxic metals into renal cells, which in turn leads 
to concomitant decrease of essential metal entry due to 
competition between the metal ions. The severity of renal 
damage depends on the metal concentration and duration 
of exposure. The sequels of acute intoxication will dif-
fer from those induced by chronic intoxication. Certain 
metals are known to generate free radicals either by their 
own redox activity or by interfering with reactive oxy-
gen species (ROS) scavenging mechanisms, which then 
may lead to oxidative stress and cause cellular damage, 
resulting finally in cell death (Valko et al. 2005). Moreo-
ver, some metals are known to have carcinogenic effects. 
Several signaling proteins or cellular regulatory proteins 
that participate in apoptosis, cell cycle regulation, DNA 
repair, DNA methylation, cell growth, and differentiation 
are targets of metals (Chen et al. 2019a; Tokar et al. 2011). 
In recent years, mounting evidence from individual reports 
has revealed that TM exposure increases the risk of anemia 
(e.g. Ashley-Martin et al. 2021; Bayhan et al. 2017; Choi 
et al. 2017; Lopez-Rodriguez et al. 2017; Shen et al. 2019; 
Yadav et al. 2020).

The kidney as a sensor of hypoxia

Hypoxia is a condition in which a cell or an organ has insuf-
ficient oxygen  (O2) supply. Stimulation of red blood cell 
production is one of the classical physiological responses to 
systemic hypoxia during anemia. In the kidneys, branches of 
renal arteries and veins run in parallel over long distances in 
close contact with each other. This special architecture allows 
 O2 to diffuse from the arterial system into the venous system 
before reaching the capillary bed (“arteriovenous  O2 shunt-
ing”) and leads to relatively low  O2 tensions in kidney tissues, 
despite high blood flow to the kidney (20% of cardiac output) 
(reviewed in Eckardt et al. 2005; Evans et al. 2008).  O2 ten-
sion in the renal cortex is around 30–50 mmHg and does not 
rise above 10–25 mmHg in the renal medulla (Nangaku and 
Eckardt 2007) in comparison with blood (up to 100 mmHg) 
or well-oxygenated tissues like the intestine (up to 71 mmHg) 
(Carreau et al. 2011). Due to their high metabolic activity, 
renal tubules display high  O2 consumption. Consequently, low 
 O2 supply and high  O2 demand make the kidneys particularly 
sensitive to changes in  O2 delivery. When the kidneys sense 
hypoxia, peritubular fibroblasts-like interstitial cells (termed 
renal EPO-producing cells, REPCs) start to produce EPO. 
However, in rodents hypoxia-responsive Epo expression is lim-
ited to a small number of these fibroblasts in the cortico-med-
ullary junction, that is the deep renal cortex (predominantly 



1575Archives of Toxicology (2022) 96:1573–1607 

1 3

juxtamedullary region) and outer medulla (Bachmann et al. 
1993; Eckardt et al. 1993; Koury et al. 1989; Maxwell et al. 
1993; Paliege et al. 2010) (see Table 1 for a synopsis of EPO 
expression in renal structures). Although basal Epo expression 
was also seen in rodent tubular cells, these cells show almost 
no response to hypoxia (Nagai et al. 2014).The increased 
expression of rat Epo in the context of anemia involves pro-
gressive recruitment of additional REPCs situated more 

superficially in the kidney cortex (Eckardt et al. 1993). The ori-
gin of these REPCs is still under debate. REPCs have a unique 
morphology as they have dendrite-like processes and express 
the PDGF receptor beta (PDGFB) and ecto-5′-nucleotidase 
(CD73) (Asada et al. 2011; Bachmann et al. 1993). A number 
of studies, using genetic cell fate technologies, indicate that 
REPCs may originate from a distinct forkhead box protein D1 
(Foxd1)-expressing subpopulation of migrating neural crest 

Table 1  Expression of HIFs, PHDs and EPO in rodent renal structures

+ moderate expression, ++ strong expression, − no signal, n.d not determined 

Renal  
structure

HIF isoform HIF stabilization PHD EPO expression References

Carbon 
monoxide

Cobaltous 
chloride

Ischemia Hypoxia mRNA Protein

Glomerulus HIF1A
HIF2A

−
++

−
++

+
+

+
+

Egln2+
Egln1+
Egln3+

PHD1++
PHD2−
PHD3++

n.d Bernhardt et al. 
(2006a); Rosen-
berger et al. 
(2002); Schodel 
et al. (2009)

Proximal 
tubule

HIF1A
HIF2A

++
−

−
−

−
−

n.d
n.d

Egln2+
Egln1++
Egln3+

PHD1−
PHD2−
PHD3−

Basal Epo  
expression

Bernhardt et al. 
(2006a); Nagai 
et al. (2014); 
Rosenberger et al. 
(2002); Schodel 
et al. (2009)

Thick 
ascending 
limb

HIF1A
HIF2A

+
−

−
−

−
−

n.d
n.d

Egln2++
Egln1++
Egln3++

PHD1++
PHD2++
PHD3++

n.d Bernhardt et al. 
(2006a); Rosen-
berger et al. 
(2002); Schodel 
et al. (2009)

Distal convo-
luted tubule

HIF1A
HIF2A

−
−

++
−

−
−

n.d
n.d

Egln2+
Egln1++
Egln3+

PHD1++
PHD2++
PHD3++

Basal Epo  
expression

Bernhardt et al. 
(2006a); Nagai 
et al. (2014); 
Rosenberger et al. 
(2002); Schodel 
et al. (2009)

Collecting 
ducts

HIF1A
HIF2A

++
−

++
−

++
−

+
−

Egln2+
Egln1+
Egln3+

PHD1++
PHD2++
PHD3++

Basal Epo  
expression

Bernhardt et al. 
(2006a); Nagai 
et al. (2014); 
Rosenberger et al. 
(2002); Schodel 
et al. (2009)

Endothelial 
cells

HIF1A
HIF2A

−
+

−
+

−
+

n.d
n.d

Egln2 n.d
Egln1 n.d
Egln3 n.d

PHD1+
PHD2−
PHD3+

n.d Bernhardt et al. 
(2006a); Rosen-
berger et al. 
(2002); Schodel 
et al. (2009)

Interstitial  
fibroblasts

HIF1A
HIF2A

+
+++

+
+

−
+

−
+

Egln2 n.d
Egln1 n.d
Egln3 n.d

PHD1++
PHD2−
PHD3++

Hypoxia-induced 
Epo expression

Bachmann et al. 
(1993); Eckardt 
et al. (1993); 
Koury et al. 
(1989); Maxwell 
et al. (1993); Nagai 
et al. (2014); Pal-
iege et al. (2010); 
Rosenberger et al. 
(2002); Schodel 
et al. (2009)
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cells (Asada et al. 2011; Kobayashi et al. 2016; Souma et al. 
2016; Yamazaki et al. 2013). The cell type-specific EPO gene 
expression may involve a GATA factor-binding motif (GATA 
box) that has been identified in the core promotor region of the 
EPO gene and acts as a negative regulatory element (Imagawa 
et al. 2002). This GATA-based repression seems to contribute 
to the switch of EPO production from liver to kidney during 
development (Dame et al. 2004), and may prevent EPO expres-
sion in epithelial cells, including nephron epithelia, despite 
hypoxic conditions (Kaneko et al. 2017; Obara et al. 2008). 
In other cell types or organs, EPO expression may be perma-
nently silenced by epigenetic mechanisms, however, the exact 
mechanisms of organ and cell type-specific EPO production 
remain to be elucidated.

In renal disease, the hypoxic induction of EPO fails and 
anemia becomes more severe as the disease progresses with-
out concomitant rise in EPO production (Erslev 1991). The 
main determinant of EPO production is the transcriptional 
activity of its gene, which is driven by  O2 tension. Key 
mediators of this cellular adaptation to hypoxia are hypoxia-
inducible factors (HIFs) (see “HIFs/PHDs: isoforms, regula-
tion, tissue specific expression, mechanisms in the kidney”). 
Beside their role in EPO regulation, HIFs have different 
effects in the kidney. Chronic HIF activation may impair dif-
ferentiation of renal progenitor cells, promote, or restrict cyst 
growth, and protect renal tubules in acute or chronic kidney 
injury (see “Impact of toxic metal ions on the renal HPHE 
signaling axis” and “Therapy of TM nephrotoxicity, contro-
versies, outlook, and conclusions”). Furthermore, HIFs are 
involved in renal inflammation and fibrosis (for review see 
Schodel and Ratcliffe 2019). Whether TMs directly interfere 
with the renal hypoxia–PHD–HIF–EPO (HPHE) signaling 
axis remains unclear. Hence, in this review, we address the 
roles of  O2 sensing and the HPHE signaling axis in the con-
text of TM nephrotoxicity.

HIFs/PHDs: isoforms, regulation, 
tissue‑specific expression, mechanisms 
in the kidney

Cellular responses to hypoxia involve increased glycolysis to 
compensate for energy loss due to reduced oxidative phos-
phorylation, and at the systemic level, promotion of erythro-
cytosis and angiogenesis to achieve efficient  O2 utilization. 
Key to this adaptation mechanism is the rapid accumulation 
of HIFs. HIF transcription factors are heterodimers of an 
 O2-regulated alpha-subunit (HIF-alpha) and a constitutively 
expressed beta-subunit (HIF1B, also known as aryl hydro-
carbon receptor nuclear translocator, ARNT) (Wang and 
Semenza 1995). In humans, the HIF-alpha subunits consist 
of three isoforms, HIF1A, HIF2A (also known as Endothe-
lial PAS Domain-Containing Protein 1; gene EPAS1), and 

HIF3A (Ema et al. 1997; Gu et al. 1998), and when com-
plexed with HIF1B they are named HIF1, HIF2 and HIF3. 
All HIF subunits are members of the basic helix-loop-helix 
PER-ARNT-SIM (PAS) protein family (Brahimi-Horn et al. 
2005). Whereas HIF1A and HIF2A are well studied, little is 
known regarding the biological functions of HIF3A. HIF3A 
shows complex cellular expression patterns with multiple 
splicing forms, several of these isoforms lack the transacti-
vation domain found in the C-termini of HIF1A and HIF2A, 
suggesting a different role as a negative regulator of hypoxia-
inducible gene expression (Duan 2016; Hara et al. 2001). 
Nevertheless, some HIF3 target genes have been identified 
and it was shown that HIF3A contributes to various dis-
eases, such as idiopathic pulmonary fibrosis (Aquino-Galvez 
et al. 2019; Zhang et al. 2014). The HIF-alpha subunits are 
continuously transcribed and translated into protein and are 
maintained at low levels by  O2-dependent hydroxylation on 
specific proline residues. Hydroxylated-alpha subunits are 
recognized by the von Hippel-Lindau (VHL) protein of the 
E3 ubiquitin ligase complex and are then rapidly degraded 
via the polyubiquitination/proteasomal pathway (Maxwell 
et al. 1999). Under normoxia, HIF-alpha proteins have a 
half-life of less than 5 min in human cell lines (Huang et al. 
1996). As intracellular  O2 concentration decreases, non-
hydroxylated HIF-alpha accumulates and forms the func-
tional transcription factor complexes HIF1 and HIF2 in the 
nucleus by heterodimerization with the HIF1B subunit.

Regulation of HIF‑alpha levels by O2‑sensing PHDs

HIF1A/2A stability and abundance are regulated by pro-
lyl-4-hydroxylases, known as prolyl-hydroxylase domain 
proteins (PHDs) (also known as Egl-9 Family Hypoxia 
Inducible Factors 1-3; genes EGLN1-3)  that function as 
oxygen sensors. HIF-alpha contain a C- and an N-termi-
nal  O2-dependant degradation (ODD) domain and PHDs 
hydroxylate two specific proline residues (HIF1A:  Pro402 
and  Pro564, HIF2A:  Pro405 and  Pro531) in the ODD domain 
of human HIF-alpha (Kaelin 2005). In rodents and humans 
three PHD isoforms have been identified, PHD1/EGLN2, 
PHD2/EGLN1 and PHD3/EGLN3 (Epstein et al. 2001; Ivan 
et al. 2001; Jaakkola et al. 2001). All three enzymes use oxy-
gen and 2-oxoglutarate (2-OG) as co-substrates and ferrous 
iron  (Fe2+) and ascorbate (AA) as cofactors. Catalytic  Fe2+ 
is bound in a bi-dentate manner by a 2-histidine-1-aspartate 
triad of amino residues. In the catalytic cycle, oxidation of 
the prolyl residue in HIF-alpha is coupled to the oxidative 
decarboxylation of 2-OG in a redox cycle that involves the 
creation of a ferryl-oxo  (FeIV = O) intermediate at the cat-
alytic center. Binding of HIF weakens complexation of a 
water molecule to the iron, thereby opening a coordination 
site for oxygen binding. The reactive  FeIV = O intermediate 
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oxidizes HIF via a direct insertion into a C-H bond. Prod-
uct dissociation completes the catalytic cycle (Loenarz and 
Schofield 2011). Replacing the 2-OG in PHDs by dimethy-
loxalylglycine (DMOG), which is intracellularly converted 
to N-oxalylglycine (a structural analog of 2-OG), results in 
normoxic accumulation of HIFs in human cells (Epstein 
et al. 2001). AA is required by PHDs for their full catalytic 
capacity, as it reduces the catalytic iron center following 
the oxidation that occurs during uncoupled catalytic cycles 
(Flashman et al. 2010). In vitro studies show that the bind-
ing affinity of PHD enzymes for  Fe2+ and 2-OG is unusu-
ally strong compared to other 2-OG oxygenases, which may 
reflect the pivotal role of HIF hydroxylases in hypoxic sign-
aling to ensure that in the presence of sufficient concentra-
tions of  Fe2+ and 2-OG the enzyme is maintained in a form 
‘primed’ for catalysis (McNeill et al. 2005).

PHDs differ in their expression patterns, tissue distribu-
tion, subcellular localization, and their ability to hydroxylate 
HIF-alpha (see Table 1 for an overview of PHD expression 
in the kidney). Egln2 mRNA is highly expressed in murine 
testis, moderately in liver, and in low quantities in the heart, 
brain, and kidney (Lieb et al. 2002). PHD1 is a constitu-
tively expressed protein with a nuclear localization sequence 
(Metzen et al. 2003; Steinhoff et al. 2009; Yasumoto et al. 
2009), yet heterologously expressed human PHD1 shows 
no response to hypoxia (Metzen et al. 2003). Egln1 mRNA 
is highly expressed in the murine heart and testis, and mod-
erately in the brain, liver, and kidney (Lieb et al. 2002). 
Human PHD2 protein is primarily localized in the cytosol 
but shuttles between the nucleus and cytoplasm (Steinhoff 
et al. 2009). The nuclear localization of PHDs indicates that 
they hydroxylate HIF-alpha proteins also in the nucleus 
(reviewed in Depping et al. 2015). PHD2 has the lowest  O2 
affinity among the PHDs and is the most active and most 
important  O2 sensor (Berra et al. 2003). Human PHD3 is 
present in both the cytoplasmic and nuclear compartment 
(Metzen et al. 2003), and its mRNA is expressed highly in 
the heart and liver, and moderately in the brain and kidney 
of mice (Lieb et al. 2002). Although mRNA of all three Egln 
isoforms are expressed in the rodent kidney, Egln1 is most 
abundant in tubular cells, whereas Egln2 and Egln3 are pre-
dominantly expressed in interstitial fibroblasts of the kidney 
(Schodel et al. 2009). All human PHD proteins appear to be 
abundant in tubular segments of the inner medulla, where  O2 
tension is low (Soilleux et al. 2005). In human cells lines, all 
three PHDs can contribute to the regulation of both HIF1A 
and HIF2A, although PHD1 and PHD3 are more active on 
HIF2A than on HIF1A, whereas PHD2 hydroxylates HIF1A 
more efficiently (Appelhoff et al. 2004). Consistent with this 
study, PHD2 deficiency in mouse liver and kidney leads to 
the accumulation of nuclear HIF1A but not HIF2A (Takeda 
et al. 2007). In contrast, PHD1/PHD3 double deficiency in 
mice led to hepatic accumulation of HIF2A but not HIF1A 

(Takeda et al. 2008). Selectivity among HIF substrates is 
mediated by sequences contained within the mobile loop in 
the PHD polypeptide (Chowdhury et al. 2016; Villar et al. 
2007). Strikingly, accumulation of HIF1A by hypoxia or 
inhibitors leads to feedback upregulation of human or rodent 
PHD2 and PHD3, but not PHD1, which prevents further 
accumulation of HIF1A (reviewed in Fong and Takeda 
2008).

In addition to PHDs, factor inhibiting HIF (FIH) is a 
vital  O2-sensitive enzyme for HIF regulation. FIH is an 
 O2-dependent dioxygenase that, similarly to PHDs, requires 
 Fe2+ and 2-OG. Human FIH hydroxylates an asparagine 
residue (HIF1A:  Asn803, HIF2A:  Asn847) in the C-terminal 
transactivation domain and prevents binding of the co-
activators p300 and CREB-binding protein (CBP) to HIFs, 
which is required for full transcriptional activity (Lando 
et al. 2002a, b). Human FIH protein remains active at lower 
 O2 concentrations than PHDs and dominates HIF activa-
tion during exposure to lower PO2 range (Stolze et al. 2004). 
FIH is expressed in distal tubules and podocytes in the kid-
ney (Schodel et al. 2010). Interestingly, in human cells FIH 
is less effective on HIF2A than on HIF1A (Bracken et al. 
2006).

Renal expression of HIF‑alpha isoforms 
and regulation of HIF‑target genes

Whereas HIF1A is ubiquitously expressed, HIF2A exhib-
its a more tissue-specific expression pattern. In human and 
rat kidney, HIF1A is the predominant isoform in tubular 
cells, whereas HIF2A is strongly expressed in interstitial 
cells, endothelial cells and the glomeruli, but mostly absent 
from tubular cells (Bernhardt et al. 2006b; Rosenberger et al. 
2002) (see Table 1 for a summary of HIF expression in the 
kidney). Beside their different expression patterns, HIF1 and 
HIF2 transcription factors also differ in their transcriptional 
targets, activation kinetics and  O2 dependency. In human 
cell lines, HIF1A rapidly accumulates during severe hypoxia 
(< 5%  O2) and takes part in the initial adaptation process 
to this condition, but then declines to low levels after 24 h, 
whereas HIF2A accumulation occurs—in addition to severe 
hypoxia—under prolonged and less severe hypoxic condi-
tions (Holmquist-Mengelbier et al. 2006; Wiesener et al. 
1998). This difference in kinetics may be due to the specific 
action of a negative feedback loop via an HIF1A antisense 
transcript that negatively regulates human HIF1A, but not 
HIF2A (Rossignol et al. 2002).

When HIFs accumulate in the nucleus under hypoxia, 
they bind to hypoxia response elements (HRE) in the 
enhancer or promotor region of their target genes that 
contain the core sequence RCGTG (R = A or G), result-
ing in transcription (Wenger et al. 2005). HIF1 seems to 
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predominantly regulate glycolytic genes, whereas HIF2 
preferentially regulates erythropoiesis and angiogenesis via 
EPO and vascular endothelial growth factor A (VEGFA), 
respectively (Hu et al. 2006; Morita et al. 2003; Warnecke 
et al. 2004). HIF1 increases almost all enzymes in the gly-
colytic pathway, as well as the glucose transporters 1 and 3 
(Chen et al. 2001; Wenger 2002). Without sufficient  O2, cells 
need to switch to  O2-independent glycolysis to meet their 
energy demand, as the  O2-dependent tricarboxylic acid cycle 
(TCA) is no longer operative (Dang and Semenza 1999; Sea-
groves et al. 2001). As glycolysis only generates two mol-
ecules ATP from each glucose molecule instead of 34–38 
ATP molecules that the TCA cycle provides, cells need to 
increase glucose uptake. More elaborate adaptive responses 
to hypoxia seem to depend on HIF2. Hence, in response to 
systemic hypoxia, murine HIF proteins binds to the HRE 
in the 3’ enhancer region of Epo resulting in the rapid pro-
duction of EPO by interstitial fibroblast-like cells to pro-
mote erythropoiesis (Koury et al. 1989; Semenza and Wang 
1992), and at least in mice conditional ablation of HIF2A 
in the murine kidney has established that hypoxic induc-
tion of EPO is completely dependent on HIF2, even under 
severe hypoxia, and not on HIF1 (Kapitsinou et al. 2010; 
see also Gruber et al. 2007; Rankin et al. 2007; Scortegagna 
et al. 2005). In addition, EPO can also protect against kidney 
injury by reducing apoptosis and inflammation, and increas-
ing tubular cell proliferation (for review see Moore and Bel-
lomo 2011). VEGFA plays a central role in angiogenesis 
by activating the receptor tyrosine kinases VEGFR-1, -2, 
and -3 (Forsythe et al. 1996; Shibuya 2013), which may be 
important in pathological angiogenesis, promoting tumor 
growth and metastasis. In the kidney, the function of the glo-
merulus is dependent on the special vasculature maintained 
by VEGFA, and dysregulation may lead to glomerulopathy 
and breakdown of the filtration barrier (Eremina et al. 2008, 
2003; Keir et al. 2017).

Relevant to this review, hypoxic cancer tissue may trig-
ger HPHE signaling with consequent activation of hypoxia-
induced target genes, such as growth factors (including 
VEGFA, PDGFB, and TGFA) that can then bind to their 
respective receptors and induce angiogenesis and prolifera-
tion. HIF transcription factors also increase the expression 
of several genes that regulate glucose metabolism (such as 
SLC2A1, LDHA and PDK1), as well as EPO, all to pro-
mote cancer cell proliferation, survival, angiogenesis and 
metabolic reprogramming. Moreover, certain types of kid-
ney cancer, in particular clear cell renal carcinoma, display 
mutations in genes associated with HPHE signaling, espe-
cially VHL (Huang 2003; Linehan and Ricketts 2013; Line-
han and Rouault 2013; Linehan et al. 2019, 2010), result-
ing in a “pseudo-hypoxic state” accompanied by increased 
EPO (and its receptor) expression (reviewed in Morais et al. 
2013).

VHL in renal cancer

Renal cancers have become increasingly prevalent, account-
ing for 2.2% of new adult malignancies and 1.8% of deaths. 
From the 36 cancer types that were reported, kidney cancer 
ranked 16th and is the 9th most common cancer type in 
males (Sung et al. 2021). Clear cell renal cell carcinoma 
(ccRCC) is the most common type of renal cancer and 
whilst it has been long known that it is a metabolic disease, 
comprehensive integrated molecular scrutinization utiliz-
ing whole genome sequencing, whole exome sequencing, 
RNA sequencing, array-based gene expression, copy number 
and DNA methylation analyses have now genetically and 
molecularly defined ccRCC (Cancer Genome Atlas Research 
et al. 2013; Sato et al. 2013). Up to 28 genes were identified 
to be significantly mutated in ccRCC with VHL, PBRM1, 
SETD2 and BAP1 belonging to the most significant mutated 
genes in both studies. Intriguingly, VHL is a key affected 
gene, occurring in approximately 60% of ccRCC, yet rarely 
in other renal cancer subtypes, such as papillary or chromo-
phobe (Sukosd et al. 2003). VHL is located on chromosome 
3p, which was deleted in more than 90% of patient samples 
(Zbar et al. 1987). Other key mutated genes, including the 
tumor suppressor gene PBRM1, are also located on the short 
arm of chromosome 3, which is frequently targeted in other 
cancer types, such as lung cancer (Zabarovsky et al. 2002). 
This leads to the question as to why chromosome 3p is sus-
ceptible to chromosomal aberrations and why VHL muta-
tions are especially prevalent in ccRCC.

Due to the frequent alterations in chromosome 3p, it 
would be plausible to hypothesize susceptible regions are 
targeted during carcinogenesis. Common fragility sites 
(CFS) are chromosomal regions wherein breaks and gaps are 
often found, perturbing DNA replication and leading to rep-
lication stress (Glover et al. 2017). The structure of CFS—
they are particularly AT-rich—may contribute to their sen-
sitivity to damage and designation as “hotspots” of genomic 
instability. Interestingly, one of the most fragile sites has 
been localized to FRA3B region on chromosome 3p14 and 
is the top fragile locus in lymphoblasts (Hosseini et al. 2013; 
Huebner and Croce 2001). Furthermore, the tumor suppres-
sor gene FHIT is localized to the FRA3B region and syner-
gizes with VHL. However, a role for FRA3B/FHIT in ccRCC 
has been debated in conflicting studies. The low occurrence 
of terminal deletions encompassing the FRA3B region in 
nonpapillary RCC (3 from 100) (Bugert et al. 1997) or 
normal FHIT transcripts in renal cancer cell lines (van den 
Berg et al. 1997) lead to the conclusion that FRA3B/FHIT 
is not involved in the development of nonpapillary RCC. In 
a later study, a continuous deletion of a region of chromo-
some 3p, harboring VHL and FHIT, was found in 96% of 
ccRCC (Sukosd et al. 2003), which is supported by a num-
ber of earlier studies that speculate or imply involvement of 
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the FRA3B region or FHIT in RCC (Hadaczek et al. 1998; 
Shridhar et al. 1997; Yamakawa et al. 1992). Decisively, the 
latest molecular analyses do not report FHIT among the sig-
nificantly mutated genes in ccRCC (Cancer Genome Atlas 
Research et al. 2013; Sato et al. 2013), suggesting it does not 
drive ccRCC progression.

As a major site of excretion, the kidney comes into con-
tact with numerous potentially toxic substances. Some of 
these substances are removed into the urine, yet others are 
retained in the kidney where they accumulate and may elicit 
stress and adaptive responses, culminating in cell death or 
survival. Risk factors for renal cancer include cigarette 
smoking, workplace exposures, obesity and hypertension. 
Could the VHL gene be directly targeted by potential car-
cinogens? Indeed, VHL mutations in renal tumors have 
been reported in nitrosamine-exposed Wistar rats (Shiao 
et al. 1998), potassium bromate-exposed F344 rats (Shiao 
et al. 2002) and individuals occupationally exposed to the 
industrial solvent and carcinogen trichloroethylene (Brauch 
et al. 2004). Furthermore, the impact of toxic substances and 
carcinogens on DNA damage (e.g. through oxidative stress), 
DNA replication, replication stress and DNA repair systems 
must be taken into consideration in the mutation of VHL and 
other tumor suppressor genes. To this end, transition met-
als are particularly relevant because of their ability to cause 
oxidative stress as well as their requirement for some enzy-
matic processes, such as DNA repair enzymes. Despite some 
indication of metals affecting HIFs and HIF-target genes (Li 
et al. 2006), the effect of transition metals on VHL mutation, 
expression and/or activity has remain largely unexplored.

Transition metals: environmental presence, 
exposure, general modes of toxicity 
in the kidney

According to the International Union of Pure and Applied 
Chemistry (IUPAC), a TM is defined as "an element whose 
atom has an incomplete d sub-shell, or which can give rise to 
cations with an incomplete d sub-shell" (Chemistry IUoPaA 
1997). Most TMs are found in the so-called d-block in the 
periodic table in groups 3–12 and have common features, 
such as electricity and heat conduction, malleability and, of 
particular importance from a biological point of view, mul-
tiple oxidation states, which is a result of their valence elec-
trons (used to combine with other elements) being present in 
more than one shell. TMs naturally occur in the Earth, usu-
ally as salts, and their distribution was determined by geo-
logical events, such as geotectonic/metamorphic, volcanic 
and oceanic, that occurred. From the 38 elements found in 
the d-block, we have selected to review TMs that pose a 
potential threat to human health, namely, cadmium, chro-
mium, cobalt, iron, nickel, and platinum. Of these, cobalt, 

iron and chromium are essential trace elements that are 
required for chemical reactions and physiological processes 
in the human body. The TMs copper and mercury have not 
been included because of little evidence and reports in the 
literature in the context of hypoxia and HIFs. The abun-
dance of the selected TMs in the Earth’s crust follows the 
sequence: iron (Fe) > chromium (Cr) > nickel (Ni) > cobalt 
(Co) > cadmium (Cd) > platinum (Pt) (Haynes et al. 2016). 
Furthermore, Cd is in the top ten of the Agency for Toxic 
Substances and Disease Registry (ATSDR) 2019 Substance 
Priority List, which is based on their frequency, toxicity and 
potential for human exposure (ATSDR 2019).

TMs are released into routes of human exposure either 
by natural weathering or following industrial activities that 
mine and extract ores for further processing (Smith and 
Huyck 1999). Both methods would result in excess levels 
of TMs entering the food chain and further contributing to 
human exposure to the general population not employed in 
the industries. For both industrial workers and the general 
population, the inhalational and ingestion routes are the 
major entry pathways of TMs into the body; though the 
skin is penetrated by some metals, it is unlikely to be in 
large quantities. Maladies of the lung, intestinal tract, liver 
and kidney are usually reported. For the general nonsmok-
ing population, exposure to contaminated water and food-
stuffs is the major entry route and metal accumulation may 
contribute to diseases of the digestive tract and detoxifica-
tion organs. Airborne pollutants containing TMs, such as 
particulate matter, gaseous pollutants or tobacco smoke, 
may also pose a risk and cause injury to the lung, liver and 
kidneys (see Toxicological Profiles from Agency for Toxic 
Substances and Disease Registry (ATSDR 2021).

Quoting the Father of Toxicology, Paracelsus, “What is 
there that is not poison? All things are poison, and nothing 
is without poison. Solely the dose determines that a thing 
is not a poison”, this statement is especially relevant for 
TMs. Up until a certain dose, these metals can be tolerated 
and are even required by the human body. The kidney is 
often targeted by increased metal loading due to the plethora 
of membrane transporters available for crossing the lipid 
bilayer by molecular mimicry to access the intracellular 
space where their toxic effects can be unveiled (Bridges and 
Zalups 2005). Initially, the elevated influx of TMs can be 
buffered by renal cells through upregulation of chelating 
proteins, such as metallothionein, or efflux transporters. In 
addition, general cellular stress responses may be activated 
to counteract potential damage (Lynes et al. 2007; Wein-
house 2021). However, once the number of binding sites, 
reservoirs or capacity of storage compartments is exceeded, 
toxicity occurs. Based on the variable oxidation states and 
ease of electron donation of TMs, the generation of ROS is 
a common denominator across TMs and plays a pivotal role 
in the toxicity execution program (Sabolic 2006) (Fig. 1).
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Free radicals: generation and eradication

The configuration of unpaired electrons in each outer 
orbital shell of diatomic  O2 makes it particularly suscep-
tible to free radical formation (Halliwell 1991). Reduction 
results in an anionic form of  O2, the superoxide anion  O2

⋅−, 
which is short-lived (Hayyan et al. 2016). Other free radi-
cals generated through reduction of  O2 include the more 
reactive hydroxyl radicals (⋅OH) and (hydrogen) peroxide 
 (H2(O2

⋅−2)), henceforth referred to as  H2O2 (Munro and 
Treberg 2017). Though  H2O2 itself is not a free radical, 
oxidation of iron  (Fe2+ to  Fe3+) can generate ⋅OH through 
Haber–Weiss and Fenton chemistry (Halliwell 1991; Ward-
man and Candeias 1996). Naturally, iron can be substituted 
by other TMs. Moreover, superoxide can react with nitric 
oxide (NO⋅) to form peroxynitrite (ONOO−) and other reac-
tive nitrogen species (RNS). Similar to ROS, RNS are highly 
reactive and can oxidize thiols and nitrate proteins (Adams 
et al. 2015).

To limit their damage potential, ROS are either metabo-
lized or neutralized. Superoxide dismustases (SODs) drive 

the reaction of two superoxide anions with two  H+ ions to 
generate the more stable  H2O2 and water (Fukai and Ushio-
Fukai 2011; Hayyan et al. 2016). Though  H2O2 can still 
form ·OH radicals, it can be used as a substrate for several 
antioxidant enzyme systems, including catalase, glutathione 
peroxidase, and peroxiredoxins, so that it can be more effi-
ciently removed than superoxide. ROS can be neutralized 
by glutathione, the most abundant antioxidant, or vitamins. 
Glutathione is synthesized through a two-enzyme reac-
tion catalyzed by glutamate cysteine ligase and glutathione 
synthetase. It is a tripeptide nucleophile with thiol groups 
capable of accepting electrons in its reduced state (GSH), 
thereby becoming oxidized (GSSG), and rendering ROS to 
a lesser or non-reactive state (Diaz-Vivancos et al. 2015; 
Halliwell 1991; Scire et al. 2019; Wardman and Candeias 
1996). Both water-soluble (AA, niacin, folic acid) and lipid-
soluble (tocopherols) vitamins contribute to the cellular anti-
oxidative capacity. The accumulation and incorporation of 
tocopherols, eight compounds under the umbrella term of 
vitamin E (Khadangi and Azzi 2019), into the lipid bilayer 
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Fig. 1  Possible targets of transition metals (TMs) on the HPHE sign-
aling pathway. TMs may enter renal cells via transporters and chan-
nels for essential metal ions, such as  Fe2+. One of these transport-
ers is the divalent metal transporter-1 (DMT-1). TMs may compete 
with  Fe2+ and thereby prevent entry of  Fe2+ via DMT-1, resulting in 
depletion of intracellular iron needed as a cofactor for PHDs (1). TMs 
contribute to augmented generation of free radicals, either by interfer-
ing with reactive oxygen species (ROS) scavenging mechanisms (2), 
by their own redox activity (3), or by disrupting the mitochondrial 

electron transport chain (4). Increased ROS inhibit PHDs by oxidiz-
ing PHD bound  Fe2+ to  Fe3+. TMs may activate HIFs by substitut-
ing for  Fe2+ in PHDs and inactivation of the enzyme (5). TMs may 
deplete intracellular ascorbate (AA) and consequent oxidation of  Fe2+ 
to  Fe3+ in the catalytic center of PHDs (6). TMs may stabilize HIF by 
occupying the VHL-binding domain thereby inhibiting the interaction 
between VHL protein and hydroxylated HIFs (7). For further details, 
please refer to the text
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(with preference for polyunsaturated fatty acid chains) limits 
damaging lipid peroxidation.

In addition to modulation and inhibition of antioxidative 
enzymes and ROS-neutralizing substances, TMs increase 
ROS levels and oxidative stress by acting directly on mito-
chondria (Fig. 1). The mitochondrial electron transport chain 
(mETC) is the largest source of cellular ROS, which are 
rapidly removed by antioxidants in the mitochondrial matrix. 
Through the shunting of electrons along four multimeric 
protein complexes with TM (iron or copper) containing 
components, electrons can escape and contribute to ROS 
generation, specifically superoxide anions generated from 
complexes I and III (Drose and Brandt 2012). Impairment 
of electron shuttling by damaging complex proteins exposed 
to elevated levels of TMs culminates in increased ROS pro-
duction and disruption of physiological ROS signals (e.g. 
Hosseini et al. 2014; Wang et al. 2004; Xiao et al. 2012).

ROS: physiological signaling messengers

Whilst unregulated ROS are damaging to cells, driving detri-
mental effects through unsolicited oxidation of encountered 
proteins and lipids, it is increasingly apparent that ROS also 
have physiological functions, such as signal transmission 
or monitoring of function. How can the cell differentiate 
between sub-toxic and toxic ROS signals? A key strategy is 
to compartmentalize ROS, to limit their levels by balancing 
generation with antioxidative mechanisms, and to control 
their diffusion capacity. TMs do not only participate in ROS 
generation as detailed above but can also influence antioxi-
dative capacity, such as by exhausting glutathione supply, 
inhibiting or damaging antioxidative enzymes, altering pro-
tein structure and conformation, and influencing synthesis or 
regeneration of antioxidants (Dobritzsch et al. 2020; Limon-
Pacheco and Gonsebatt 2009). Consequently, physiological 
ROS can be impacted through disruption, diversion or abla-
tion of the signaling pathway.

Signaling through ROS make take several different routes 
depending on the TM, its concentration, its route of cellular 
uptake and intracellular metabolism (Villalpando-Rodriguez 
and Gibson 2021). Initial stress defense programs could be 
initiated through low levels of ROS as a sub-toxic load of 
TM slowly accumulates. This could include the heat shock 
protein response, prosurvival MAPK signaling, hypoxic 
response, antioxidative response, unfolded protein response 
or epigenetic response. Ultimately, toxicity will be elicited 
through engagement of a cell death program that results in 
renal injury. Though other forms of cell death may be uti-
lized in specialized cases, such as ferroptosis in the case of 
iron or autophagic cell death, apoptosis or necrosis are the 
most likely forms of cell death to be encountered in TM 
toxicity. The reader is referred to excellent reviews concern-
ing the molecular signaling pathways associated with these 

cell death forms (Galluzzi et al. 2016; Kalkavan and Green 
2018; Lee and Thévenod 2020; Martinou and Youle 2011; 
Sano and Reed 2013).

Contribution of mitochondrial ROS to HPHE 
signaling

Increased production of ROS by cells in a hypoxic environ-
ment is counterintuitive and has, therefore, been debated 
(Clanton 2007). This argument was based on the observation 
that conditions of hyperoxia lead to elevations in ROS pro-
duction in many tissues, especially that the amount of super-
oxide formed from mitochondria is directly proportional to 
the concentration of  O2 (reviewed in Jamieson et al. 1986). 
Nonetheless, as one approaches anoxia,  O2 availability can 
become critical for the production of ROS.

Cellular hypoxia is a state that is generally characterized 
by being in a more cellular reductive state and has been 
described as a form of “reductive stress” (Dawson et al. 
1993). This condition is associated with elevations in reduc-
ing equivalents (mostly NADH and  FADH2) that accumulate 
in the mitochondria, when there is not sufficient  O2 is avail-
able for reduction by the mETC. The reducing equivalents 
also make electrons more available for reduction reactions, 
such as  O2 to superoxide. Hence the conditions necessary 
for ROS formation in hypoxia comprise both high reduc-
tive capacity (e.g. high NADH/NAD+) and sufficient  O2 
available for reaction, whereas in hyperoxia, ROS forma-
tion occurs at the expense of low reducing capacity. This 
bimodal distribution of ROS formation as a function of PO2 
is observed because both hypoxia and hyperoxia support 
elevations in ROS formation (Clanton 2007).

Regulation of HPHE signaling by hypoxia‑induced 
mitochondrial ROS

The work of Chandel and Schumacker has provided a link 
between hypoxia-induced mitochondrial ROS formation and 
the HPHE signaling axis. Their experimental evidence sug-
gested that the mETC is involved in  O2 sensing and, there-
fore, responds to changes in  O2 levels. In their initial study 
(Chandel et al. 1998), they used liver Hep3B cells that dis-
play transcriptional activation of EPO, glycolytic enzymes, 
and VEGFA during hypoxia or in response to cobalt chlo-
ride  (CoCl2) that is a “chemical hypoxia mimic” and are, 
therefore, commonly used to investigate hypoxia signaling. 
They tested whether mitochondria act as  O2 sensors during 
hypoxia in these cells and whether hypoxia and Co acti-
vate transcription by increasing ROS. Wild-type Hep3B 
cells increased ROS generation during hypoxia (1.5%  O2) 
or Co (100 μM) incubation under normoxic conditions for 
24 h, whereas Hep3B cells depleted of mitochondrial DNA 
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(ρ0 cells), and, therefore, do not respire, failed to increase 
ROS and to induce mRNA for EPO, glycolytic enzymes, 
or VEGFA during hypoxia. In contrast, ρ0 cells increased 
ROS generation in response to Co and retained the ability 
to induce expression of these genes. Finally, antioxidants 
abolished transcriptional activation of these genes during 
hypoxia or Co in wild-type cells and abolished the response 
to Co in ρ0 cells. Thus, the authors concluded that hypoxia 
activates transcription via a mitochondria-dependent sign-
aling process involving increased ROS, whereas Co acti-
vates transcription by stimulating ROS generation via a 
mitochondria-independent mechanism. In a subsequent 
study, Chandel et al. (2000) showed that hypoxia increases 
mitochondrial ROS generation at complex III of the mETC, 
which causes accumulation of HIF1A protein responsible 
for initiating expression of a hypoxia-inducible luciferase 
reporter construct. This response was lost in ρ0 cells. Over-
expression of catalase abolished hypoxia-induced luciferase 
expression. Exogenous  H2O2 stabilized HIF1A protein dur-
ing normoxia and activated luciferase expression in wild-
type and ρ0 cells. Moreover, isolated mitochondria increased 
ROS generation during hypoxia. Hence for the first time, 
these findings revealed that mitochondria-derived ROS are 
both required and sufficient to initiate HIF1A stabilization 
during hypoxia.

Mechanisms of stabilization of HIF‑alpha 
by mitochondrial ROS

These groundbreaking and subsequent studies established 
that decreasing ROS levels using genetic or pharmacological 
tools during hypoxia diminishes HIF1A and HIF2A pro-
tein levels (Brunelle et al. 2005; Chandel et al. 1998, 2000; 
Guzy et al. 2005; Lin et al. 2008; Mansfield et al. 2005). 
However, the questions were still debated whether mitochon-
dria contribute indirectly or directly to HIF-alpha protein 
stability and which function of the mETC is necessary for 
HIF-alpha protein stabilization. It had been suggested that 
under hypoxia, mitochondria, with their high  O2 consump-
tion, leave the rest of the cell ‘anoxic’. PHDs, would then 
be deprived of their cofactor,  O2, leaving them unable to 
hydroxylate HIF-alpha protein to target it for degradation 
(Hagen et al. 2003). The second model implicated ROS 
generation by the mETC as a signaling molecule for HIF-
alpha protein stabilization (Bell et al. 2005) and was sup-
ported by the above mentioned study (Chandel et al. 2000) 
as well as by experiments in which cells genetically depleted 
of cytochrome c or the Rieske-Fe-S protein also failed to 
increase production of ROS during hypoxia (Brunelle et al. 
2005; Guzy et al. 2005; Mansfield et al. 2005).

Further studies conclusively identified the complex 
within the mETC responsible for hypoxic ROS genera-
tion and HIF-alpha protein stabilization. Pharmacological 

evidence indicated that the Qo site of complex III is a likely 
site of ROS generation during hypoxia (reviewed in Klimova 
and Chandel 2008). This was validated using cytochrome b 
mutant cybrids, generated by reconstituting 143B ρ0 cells 
with wild-type mitochondrial DNA or that containing a 4-bp 
deletion in the cytochrome b gene found in a patient suffer-
ing from parkinsonism (loss of cytochrome b renders these 
cells incapable of  O2 consumption and unable to generate 
ROS at the Qi site specifically). However, although respira-
tory incompetent, these cytochrome b-deficient cells were 
still capable of upregulating hypoxic ROS and stabilizing 
HIF1A protein (Bell et al. 2007). The mitochondrial anti-
oxidant MITOQ prevented the HIF1A protein stabilization. 
Furthermore, RNAi to knock down Rieske Fe-S protein to 
abolish ROS generation at the Qo site in mutant cytochrome 
b cybrids, prevented hypoxic ROS generation and HIF1A 
protein stabilization, implicating the Qo site of complex III 
as the key site in hypoxic ROS generation and HIF1A pro-
tein stabilization. These cells, however, retained the ability 
to stabilize HIF1A protein after direct PHD inhibition by 
DMOG, showing an otherwise intact HIF-signaling pathway. 
Furthermore, a link between hypoxic ROS generation and 
hydroxylation of HIF1A protein was established. Neutral-
izing the ROS with antioxidants allowed HIF1A protein to 
remain hydroxylated even under hypoxic conditions and, 
therefore, primed for degradation. On the contrary, increas-
ing ROS levels under normoxia by overexpressing glucose 
oxidase prevented normoxic HIF1A protein hydroxylation. 
Altogether, these data demonstrated that the ROS generated 
by mitochondria under hypoxia prevent hydroxylation of 
HIF1A protein.

How mitochondrial ROS inactivate PHDs to stabilize the 
HIF-alpha protein subunit is not understood. One hypothesis 
is that mitochondrial ROS generated during hypoxia pro-
mote the oxidation of cysteine residues within PHD2, result-
ing in oxidative PHD2 homodimerization and inactivation 
and leading to HIF1A protein stabilization (Lee et al. 2016). 
Indeed, PHD2 has several reactive cysteine residues in its 
C-terminal catalytic domain that may be oxidized by ROS 
(Briggs et al. 2016; Lee et al. 2016). Interestingly, PHD2 
activity requires high intracellular levels of free cysteine, 
which is regulated by cysteine dioxygenase (Briggs et al. 
2016). Free intracellular cysteines may compete with the 
reactive cysteine residues of PHD2 for ROS-mediated oxida-
tion. Thus, when free intracellular cysteine levels are high, 
PHD2 cysteine oxidation is prevented. PHD2 is then active, 
and HIF-alpha protein levels are low. By contrast, limiting 
the amount of free intracellular cysteine would trigger HIF-
alpha protein accumulation. Currently, the significance of 
these PHD2-reactive cysteines in the stabilization of HIF-
alpha under physiological hypoxic conditions remains to 
be clarified. Metabolites, such as succinate and fumarate, 
are a second input that inhibits PHD2 activity (reviewed in 
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Lee et al. 2020). To date, no reports have been published 
that investigated the mechanisms of ROS-induced PHD1/3 
inactivation.

In summary, a unifying model to explain HIF-alpha acti-
vation is the intrinsic decrease in PHD2 activity owing to 
declining  O2 levels coupled with added inputs, such as ROS 
or metabolites that further diminish PHD2 activity to maxi-
mally increase HIF-alpha protein levels.

Impact of toxic metal ions on the renal HPHE 
signaling axis

General considerations

Once toxic metal ions have entered the body they dissemi-
nate and accumulate in organs via the blood circulation 
where they bind to blood cells as well as to various high- 
and low-molecular weight plasma proteins and peptides. The 
latter are filtered by the glomerulus and taken up by kidney 
tubules where they accumulate and damage renal tissue. 
After acute exposure to high concentrations of metal ions, 
other organs are damaged as well and kidney injury—likely 
necrosis—may be indirect and a sequel of pulmonary or car-
diovascular problems. Chronic exposure to low concentra-
tions of metals may also lead to renal damage, but the effect 
is protracted, and ultimately results in chronic kidney disease 
due to replacement of functional tissue by fibrotic material. 
The impact on the renal HPHE signaling axis may, therefore, 
differ between both durations of exposure.

TM ion concentration and time dependence of renal HPHE 
responses

Acute exposure to low TM ion concentrations may trigger 
activation of (protective) EPO signaling, e.g. by mimicking 
hypoxia (“chemical hypoxia”), and is either transient or long 
lasting depending on the exposure time. Protective effects 
of hypoxia—in addition to Fe, Co, Ni and pharmacologi-
cal PHD inhibitors—on renal damage induced by various 
insults have been observed in many studies (Hou et al. 2013; 
Nath et al. 1992; Nezu et al. 2017; Shimizu et al. 2000; 
Zager et al. 2016, 2021, 1993). Yet protective effects will 
only be efficient when interventions occur before the dam-
aging stress, and this strategy has been termed protective 
“preconditioning” (Wang et al. 2012b). This “(hypoxic) pre-
conditioning” protects organs, including the kidney, against 
injury, and could be beneficial and improve renal function 
(reviewed in Bernhardt et al. 2007; Heyman et al. 2011; 
Shu et al. 2019); see also “Therapy of TM nephrotoxic-
ity, controversies, outlook, and conclusions”). Indeed, the 
renal HPHE signaling can be stimulated in both acute (e.g. 
Bernhardt et al. 2006a; Conde et al. 2012; Kudo et al. 2005; 

Matsumoto et al. 2003; Schley et al. 2011; Schodel et al. 
2009; Weidemann et al. 2008) and chronic (e.g. Schley et al. 
2019; Tanaka et al. 2005b, c; Theilig et al. 2011) kidney 
injury, which induces the expression of a variety of tissue 
protective genes—in particular EPO but also HMOX1—for 
adaptation and repair.

Nevertheless, the underlying mechanism is very complex 
because several hundred genes are targeted by HIFs (Dengler 
et al. 2014), and time-, isoform- and compartment-specific 
actions of the HIF pathway seem of utmost importance. But 
whether activation of the HPHE pathway promotes or antag-
onizes renal fibrosis elicited by acute kidney injury (AKI), 
and particularly chronic kidney disease (CKD), is controver-
sial and shows variable outcomes (reviewed in Faivre et al. 
2021). Interestingly, a study using a remnant kidney model 
of CKD in rats has possibly shed some light on these diver-
gent results: Administration of a small molecule inhibitor 
of PHD dioxygenases (see “Therapy of TM nephrotoxicity, 
controversies, outlook, and conclusions”) at an early stage 
accelerated renal fibrosis, whereas at a more advanced stage 
it decreased renal fibrosis (Yu et al. 2012). Strikingly, the 
inhibitor given at the early stage activated both HIF1A and 
HIF2A, whereas given at the later stage it only activated 
HIF2A with no effect on HIF1A. Consequently, whether 
HIFs are pro- or anti-fibrotic seems context- and HIF iso-
form-dependent. The role of the renal HPHE signaling in 
protection against ischemic kidney injury was investigated 
in more details using a genetic approach to dissect the con-
tributions of endothelial HIF1A and HIF2A in murine mod-
els of hypoxic kidney injury induced by ischemia/reperfu-
sion injury (IRI) or ureteral obstruction (Kapitsinou et al. 
2014). In both models, inactivation of endothelial HIF2A, 
but not endothelial HIF1A, increased expression of renal 
injury markers and inflammatory cell infiltration in the 
post-ischemic kidney. Genetic or pharmacologic activation 
of HIF via HIF prolyl-hydroxylase inhibition protected wild-
type animals from ischemic kidney injury and inflamma-
tion; however, these protective effects were not observed 
in HIF prolyl-hydroxylase inhibitor-treated animals lacking 
endothelial HIF2A. This indicated that endothelial HIF2 
mediates protection and recovery from hypoxia-induced 
renal damage and represents a potential therapeutic target 
for renoprotection and prevention of fibrosis following acute 
ischemic injury.

In contrast, high TM ion concentrations may rapidly 
induce failure of the HPHE system due to cell death and 
disruption of mitochondrial function (see “Transition met-
als: environmental presence, exposure, general modes of 
toxicity in the kidney”; reviewed in Thévenod et al. 2020), 
thus abolishing physiological ROS signaling and HIF-alpha 
stabilization (see “Contribution of mitochondrial ROS to 
HPHE signaling”; reviewed in Lee et al. 2020) (Fig. 1). 
Chronic exposure to low TM ion concentrations could 
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activate the renal HPHE signaling axis (“preconditioning”; 
see above) that may delay onset of failure, which occurs after 
longer periods of exposure and is paralleled by other signs 
of chronic renal dysfunction. This may occur in organisms, 
such as humans and experimental animals, but also in cell 
lines. Hence, seemingly disparate or equivocal observations 
can be reconciled if concentrations and exposure times are 
considered. Moreover, the impact of toxic metal ions on 
renal HPHE signaling may vary depending on whether it 
occurs in a hypoxic or normoxic environment, or because 
metal ions may differentially affect  O2 binding to PHDs.

Iron (Fe)

Exposure and nephrotoxicity

Systemic Fe overload may occur in hereditary hemochro-
matosis or β-thalassemia, however, the major form of Fe 
overload is acquired by repeated blood transfusions (Sid-
dique and Kowdley 2012). Systemic Fe overload diseases 
are associated with chronic damage to a variety of organs, 
including the heart, liver and endocrine glands. Excess Fe 
accumulation in these organs is associated with cellular tox-
icity and death because of its pro-oxidant effects but has also 
been associated with a number of diseases, and in particu-
lar the development of cancer (Toyokuni 2009), wherein 
excess Fe may cause DNA damage leading to persistent 
mutations. In addition, Fe is also essential for maintaining 
the rapid growth rate of cancer cells and may nurture the 
tumor microenvironment and metastasis. However, Fe can 
also contribute to cancer defense by inducing toxic ROS 
and/or initiating specific forms of cell death, including fer-
roptosis, necroptosis and pyroptosis. Not surprisingly, the 
carcinogenicity of Fe has been under debate for quite a while 
(see for instance Huang 2003; Thévenod 2018; Torti et al. 
2018; Ying et al. 2021).

The kidney is rarely affected by systemic Fe overload but 
can be specifically targeted, e.g. in the context of hemo-
globin (Hb)-induced AKI subsequent to hemolysis, IRI or 
due to proteinuria associated with chronic kidney diseases 
(reviewed in Scindia Ph et al. 2019; Van Avondt et al. 2019; 
van Swelm et al. 2020). When present in excess and in non-
physiologic labile forms, Fe is toxic to the kidneys (as in 
Hb-associated AKI) and causes renal damage or aggravates 
AKI elicited by other insults (e.g. Moussavian et al. 2007; 
van Swelm et al. 2016; Zager and Gamelin 1989; reviewed 
in van Swelm et al. 2020). Labile (catalytic) Fe is a tran-
sitional pool of Fe (Leaf and Swinkels 2016; Slotki and 
Cabantchik 2015) that is readily available to participate 
in redox cycling and induces formation of ROS (Halliwell 
1991). Through the Fenton reaction (see “Transition metals: 
environmental presence, exposure, general modes of toxic-
ity in the kidney”) catalytic iron causes oxidative damage 

to cell membranes, proteins and DNA, which may trigger 
ER stress (van Raaij et al. 2018; van Swelm et al. 2018) and 
various forms of regulated cell death, such as ferroptosis 
(Linkermann et al. 2014) or necroptosis (van Swelm et al. 
2018). Yet Fe-induced oxidative damage may be mitigated 
by nuclear factor erythroid 2-related factor 2 (NRF2)-medi-
ated induction of heme oxygenase-1 (HO-1) (Adedoyin et al. 
2018; Alam et al. 2003; Rubio-Navarro et al. 2019; reviewed 
in Lever et al. 2016; Nath and Agarwal 2020; Tracz et al. 
2007). Still the role of Fe in this process appears to be more 
complex because apart from the obvious injuring effect of Fe 
on kidney tissue (see above), protective “preconditioning” 
(reviewed in Bernhardt et al. 2007; Heyman et al. 2011; Shu 
et al. 2019) by Fe may also occur (see “General considera-
tions” and Hou et al. 2013; Nath et al. 1992; Zager et al. 
2016; Zager et al. 2021; Zager et al. 1993).

Disruption of HPHE signaling by Fe

However, excess Fe represses the renal HPHE signaling 
(Oshima et al. 2017; Suzuki et al. 2018). Epo gene expres-
sion was suppressed in mice following Fe treatment (Oshima 
et al. 2017). HIF2A (but not HIF1A) was also diminished in 
the kidney of mice following Fe treatment (2 mg saccharated 
ferric oxide in a volume of 200 μl per 25 g mouse i.p. for five 
consecutive days). Moreover, anemia-induced increase in 
renal EPO and HIF2A expression were inhibited by Fe treat-
ment. Additional cell culture experiments using EPO-pro-
ducing HepG2 cells showed that Fe stimulation (50–200 µg/
ml for 24 h) reduces the expression of the Epo gene, as well 
as HIF2A. Moreover, Fe treatment augmented oxidative 
stress, and Fe-induced reduction of Epo and HIF2A expres-
sion was restored by the antioxidant Tempol. HIF2 interac-
tion with the Epo promoter was inhibited by Fe treatment 
and reversed by Tempol. Taken together, these findings sug-
gested that Fe supplementation reduces Epo gene expression 
via an oxidative stress-HIF2A-dependent signaling pathway 
(Oshima et al. 2017). This was confirmed and extended in 
a mouse model of EPO-deficient anemia to show that dur-
ing Fe overload renal interstitial fibroblasts accumulate Fe, 
and this impairs the hypoxia-driven transcription of the Epo 
gene via renal HIF2 (Suzuki et al. 2018). The authors used 
“ISAM” (“inherited super anemic mice”) mice, in which 
both alleles of the Epo gene are replaced with the green 
fluorescent protein (GFP) gene, resulting in constitutive acti-
vation of the mutant Epo-GFP gene in renal EPO-producing 
cells and hepatocytes due to chronic anemia conditions. By 
measuring EPO-GFP expression levels in ISAM mice with-
out any specific treatment, the ability of these mice to pro-
duce EPO in vivo can be evaluated. Injection of Fe-dextran 
(10 mg Fe a day for 2 days i.p.) in ISAM mice caused severe 
Fe deposition in renal interstitial fibroblasts, the site of EPO 
production. Fe overload induced by either i.p. injection or 
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feeding decreased activity of endogenous Epo gene expres-
sion by reducing levels of HIF2A. Administration of a Fe-
deficient diet to the anemic mice reduced hyperferremia in 
ISAM mice to normal concentrations and enhanced the abil-
ity of renal EPO production. These results demonstrate that 
Fe overload due to EPO deficiency anemia attenuates endog-
enous Epo gene expression in the kidneys. Thus, iron sup-
presses EPO production by reducing HIF2A concentration 
in renal interstitial fibroblasts (Suzuki et al. 2018), indicating 
that EPO and Fe are in a “conflicted alliance” (Ganz 2018).

In summary, the effects of Fe on the kidney are com-
plex and like a double-edged sword. Fe injures kidney 
tissues by inducing oxidative stress and various forms 
of cell death, in particular ferroptosis. At the same time 
Fe-induced ROS formation activates protective and adap-
tive signaling pathways, such as NRF2/HO-1 signaling. 
Whereas hypoxia and Fe may trigger activation of the 
renal HPHE signaling to protect against acute or chronic 
kidney injury (“hypoxic preconditioning”; see “General 
considerations”), excess Fe may also repress HPHE sign-
aling (see Table 2) and thereby prevent induction of tissue 
protective hypoxia-induced gene products, such as EPO 
and HMOX1.

Cobalt (Co) and nickel (Ni)

Co exposure and nephrotoxicity

Co in hard metal production represents the main source of 
occupational exposure, e.g. as Co metal dust in the fabri-
cation of tungsten carbide. Other less dominant sources 
are environmental, dietary, and medical (such as wear and 
tear of certain metal-on-metal hip prostheses) (reviewed 
in ATSDR 2004; Leyssens et al. 2017; Simonsen et al. 
2012). The evidence for Co nephrotoxicity is weak 
although it accumulates in the kidney (ATSDR 2004; 
Simonsen et al. 2012). Rather, Co may be beneficial by 
attenuating kidney damage induced by various forms of 
renal insult (see “Iron (Fe)” and below). For instance, 
in an acute ischemic tubule-interstitial injury model of 
rats induced by 45-min clamping of renal pedicles with 
contralateral nephrectomy, elevation of serum creatinine 
and morphologic injury after the ischemic insult was 
improved by co-administration of cobalt chloride (2 mM 
in drinking water from day − 10 to day 3) associated with 
amelioration of tubulo-interstitial damage and reduction 
of macrophage infiltration (Matsumoto et al. 2003).

Renal HIF‑alpha stabilization by Co

In the kidney of rats treated with Co, renal HIF1A protein 
was upregulated and mRNA or protein levels of several 

renoprotective genes, such as Hmox1, Epo, Slc2a1 and 
Vegfa, were increased before ischemic injury (Matsumoto 
et al. 2003). In a subsequent study (Tanaka et al. 2005c), 
the same group applied Co treatment (2.7 mg/kg, subcuta-
neously, once every 3 days for 3–5 weeks) to uninephrecto-
mized Thy1 nephritis rats, a tubulo-interstitial renal injury 
model. Although Co did not change glomerular structural 
damage or urinary protein excretion rate, tubulo-interstitial 
damage was improved in Co-treated animals and was asso-
ciated with upregulation of renoprotective HIF-regulated 
genes (Hmox1, Epo, Slc2a1, and Vegfa) as well as increased 
HIF1A, SLC2A1 and VEGFA proteins. TUNEL staining 
revealed that the number of apoptotic cells was reduced 
in the renal cortex by Co administration, suggesting that 
renoprotection was achieved partly through its antiapop-
totic properties. In another study, gentamicin-induced AKI 
was established in rats by intramuscular injection of 80 mg/
kg gentamicin once a day for 7 days (Ahn et al. 2012). 
Co was continuously infused (10 mg/kg/day for 7 days) 
into the rats to activate HIF. Co (or DMOG) significantly 
increased HIF1A expression as well as increased HIF-target 
gene Vegfa and reduced the number of gentamicin-induced 
apoptotic cells in rat kidneys. HIF activation ameliorated the 
extent of histologic injury, reduced macrophage infiltration 
into the tubular interstitium and improved creatinine clear-
ance and proteinuria in gentamicin-induced AKI. An impor-
tant study was performed by Rosenberger et al. (2002) who 
investigated the expression of HIF1A and -2A in nephron 
segments of rats exposed to Co  (CoCl2 injected subcutane-
ously twice, at a dose of 30 mg/kg, with a dosing interval 
of 12 h and animals were euthanized 6 h after the second 
injection). Proximal tubular cells were negative but marked 
induction of HIF1A was observed in 70–80% of distal tubu-
lar cross-sections, mainly in distal tubules and collecting 
ducts. In contrast, expression of HIF2A was weak. Unfor-
tunately, no such study was performed with Ni (see below). 
Interestingly, this nephron distribution of HIF1A matches 
apical expression of SLC11A2/DMT-1 in the rodent nephron 
(Ferguson et al. 2001), which transports divalent metal ions 
with a selectivity of Cd > Fe > Co >> Ni and shows compe-
tition of Co with Fe for uptake (Gunshin et al. 1997; Illing 
et al. 2012). This suggests that the effect of Co on HIF1A is 
limited by its uptake into nephron cells.

At the cellular level, HK-2 human renal cells were pre-
treated for 24 h with Co (150 µM) or DMOG (1 mM) to 
activate HIF and were then exposed to the nephrotoxic com-
pound gentamicin (3 mM) for another 24 h (Ahn et al. 2012). 
Co or DMOG significantly increased HIF1A expression in 
HK-2 cells and inhibited gentamicin-induced ROS forma-
tion. HIF1A also protected these cells from gentamycin-
induced apoptosis by reducing caspase-3 activity and the 
amount of cleaved caspase-3, and -9 proteins.
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Ni exposure and nephrotoxicity

Environmental pollution from Ni may be due to industry 
(e.g. for alloy production, electroplating, in the production 
of Ni–Cd batteries and as a catalyst in chemical and food 
industry), the use of liquid and solid fuels, as well as munici-
pal and industrial waste. Ni-plated water taps may contami-
nate water and soil; mining and smelting may dump Ni into 
wastewater; Ni–steel alloy cookware and Ni-pigmented 
dishes may release Ni into food. Ni contact can cause a 
variety of side effects on human health, such as allergy, 
cardiovascular and kidney diseases, lung fibrosis, lung as 
well as nasal cancer (reviewed in ATSDR 2005; Denkhaus 
and Salnikow 2002; Genchi et al. 2020). Ni absorbed by 
humans is excreted by the kidney into the urine. Hence, 
Ni is not inevitably a cumulative toxin, but larger doses 
or chronic inhalatory exposure may be toxic, even carci-
nogenic, and constitute an occupational hazard. When Ni 
accumulates in the kidney it may or may not induce acute or 
chronic nephrotoxicity, depending on the dosage and dura-
tion of exposure (ATSDR 2005; Das et al. 2008; Denkhaus 
and Salnikow 2002). Horak and Sunderman exposed rats 
to inhalation of Ni-carbonyl (0.6 mg/l of air per 15 min), 
which led to acute toxicity and death of about 20–30% of 
the animals within 2 h whereas the remaining animals sur-
vived for at least 3 days and showed increased proteinuria 
and aminoaciduria (Horak and Sunderman 1980). Expo-
sure of rats to Ni (44.7–223.5 mg/l via their drinking water 
for 13 weeks induced a significant decrease in urine vol-
ume and an increase in blood urea nitrogen at the highest 
dose group only, and both immune and pulmonary systems 
were more sensitive targets than the kidney (Obone et al. 
1999). In another chronic nephrotoxicity study, rats were 
given 100 mg/l of Ni (as Ni–sulfate) in drinking water for 
6 months which resulted in increased urinary excretion of 
albumin (but not N-acetyl-β-d-glucosaminidase (NAG) or 
β2-microglobulin), suggesting glomerular rather than tubu-
lar damage (Vyskocil et al. 1994).

Activation of renal HPHE signaling by Co and Ni 
through chemical hypoxia

When hypoxia causes increased ROS formation (Lee et al. 
2020), this triggers HO-1 expression (see “Iron (Fe)”; also 
reviewed in Agarwal and Nick 2000; Gozzelino et al. 2010). 
Co and Ni rapidly induce renal microsomal HO-1 under nor-
moxic conditions, similarly as other TM ions, such as Cd or 
Pt (see “Platinum (Pt)”; reviewed in Agarwal and Nick 2000; 
Sunderman 1987). Because HO-1 induction by metals was 
generally suppressed by treatments with SH compounds (for 
example, cysteine and glutathione) and enhanced by agents 
that deplete tissue SH levels (for example, diethyl maleate), 
Sunderman concluded that the induction mechanism may i.p
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involve binding of metal ions to SH-containing regulatory 
molecules. However, oxidative stress induced by metal ions, 
which affects the redox signature of kidney tissue (Stohs 
and Bagchi 1995) and results in cytoprotective induction of 
HO-1, is the other side of the coin (reviewed in Agarwal and 
Nick 2000; Gozzelino et al. 2010), where increased HO-1 
may be mediated by HIF induction as well (Lee et al. 1997). 
Cell culture experiments support oxidative stress induced by 
Co and Ni. Ni (1–500 µM for 12–72 h) increased the forma-
tion of ROS, lipid peroxidation, apoptosis and DNA damage 
in normal rat kidney (NRK) cells (Chen et al. 2010). Along 
the same lines, exposure of HK-2 cells to Ni (160–480 µM 
for 12–72 h) increased ROS, apoptosis, and DNA damage, 
which were prevented by pretreatment with N-acetylcysteine 
(Wang et al. 2012a).

Co and Ni caused EPO production in dog and rat kidneys 
after acute (4 h for Co) or chronic exposure (3 weeks for 
Ni), respectively (Fisher and Langston 1968; Hopfer et al. 
1984). At the cellular level, most mechanistic studies were 
performed on the human hepatoma cell line Hep3B, which 
regulates its production of EPO in a physiologic manner. 
Other studies mainly used respiratory human non-cancerous 
or cancerous cell lines because of the entry route of Co and 
Ni by inhalation (ATSDR 2004, 2005). No studies have been 
performed on kidney cell lines so far. Therefore, it is dif-
ficult to estimate whether the observations made in liver 
and respiratory cells are valid for the kidney. Historically, 
evidence for a mechanism common to hypoxia, Co, and Ni 
was obtained by demonstrating increased EPO production 
in Hep3B cells (Goldberg et al. 1988). Inhibition of EPO 
production at low partial pressures of  O2 by carbon mon-
oxide indicated that a heme protein is integrally involved in 
the  O2-sensing mechanism. Moreover, when heme synthesis 
was blocked, hypoxia-, Co- and Ni-induced EPO produc-
tion were all inhibited. The authors concluded that EPO is 
induced by hypoxia or Fe depletion and that its induction by 
the TMs Co or Ni results from substitution of the Fe atom 
in an “O2 sensor” (Goldberg et al. 1988). The most likely 
explanation at that time (which turned out to be inaccurate) 
was that the  O2 sensor is a heme protein in which Co and 
Ni can substitute for Fe in the porphyrin ring, whereby Fe-
protoporphyrin would bind  O2 with high affinity, Co-proto-
porphyrin with low affinity and Ni-protoporphyrin not at all 
(reviewed in Huang et al. 1997). EPO transcription is now 
known to be under the control of HIF proteins (Semenza 
and Wang 1992). In response to 75 µM  CoCl2, HIF1A and 
HIF1B mRNAs of Hep3B cells peaked at 4 h, declined at 
8 h, and increased again at 16 h (Wang et al. 1995). Exposure 
of human osteosarcoma (HOS) cells and a Ni-transformed 
derivative, SA-8, as well as MCF-7 and A549 human cancer 
cells to Co (0.2 mM) or Ni (1 mM) for 6–24 h has also been 
shown to induce HIF1A (Salnikow et al. 1999).

Maxwell and Salnikow (2004) have reviewed various 
mechanisms that could underlie “chemical hypoxia” asso-
ciated induction of HIF-alpha elicited by Co and Ni. One 
means by which Co and Ni may activate HIF-alphas was 
that they substitute for Fe in regulatory HIF dioxygenases, 
the PHDs (see Epstein et al. 2001; Ivan et al. 2001; Jaakkola 
et al. 2001 and “HIFs/PHDs: isoforms, regulation, tissue 
specific expression, mechanisms in the kidney”), and this 
substitution inactivates the enzymes (see above), as already 
demonstrated with phthalate dioxygenase (see above and 
Batie et al. 1987). Another mechanism was proposed follow-
ing in vitro experiments demonstrating that Co binds with 
high affinity to HIF2A via sites within the ODD domain in 
an  O2-dependent manner and that the Co binding site over-
laps with the VHL-binding site of HIF. Hence, Co and other 
TMs may disrupt the interaction between VHL protein and 
HIFs by directly binding to hydroxylated HIFs in vivo (Yuan 
et al. 2001). An alternative explanation to direct substitution 
for Fe in the regulatory dioxygenases was that Ni or (less 
strongly) Co could bind more tightly than  Fe2+ to the mem-
brane transporter SLC11A2/DMT-1 (Gunshin et al. 1997; 
Illing et al. 2012) and suppress delivery of ferrous iron into 
cells. Another option was that Co and Ni produce increased 
ROS levels in cells (see “Transition metals: environmental 
presence, exposure, general modes of toxicity in the kidney” 
and Fig. 1), which may stabilize HIF-alpha because (mito-
chondrial) ROS play an important role in HIF-alpha stabi-
lization (see “Contribution of mitochondrial ROS to HPHE 
signaling”; reviewed in Lee et al. 2020). Oxidative stress 
would either inactivate the PHDs directly or indirectly by 
AA depletion, which is necessary for optimal function of the 
enzymes. Alternatively, direct interaction of metals with AA 
could prevent entry of AA into cells resulting in depletion of 
intracellular AA (reviewed in Maxwell and Salnikow 2004).

Mechanisms of PHD inhibition by Co and Ni

Most publications investigating the role of Co and Ni in 
HPHE signaling were performed in human airway normal or 
carcinoma cell lines, although the conclusions drawn from 
these studies may not be applicable to the kidney, but the 
main results are summarized as follows. Undoubtedly, Co 
and Ni are good inducers of HIF-alpha, and ROS are pro-
duced during the exposure of cells to these TMs. However, 
Salnikow and colleagues concluded that the formation of 
ROS is not involved in HIF stabilization or the activation of 
HIF1-dependent genes (Andrew et al. 2001; Salnikow et al. 
2000a, b) (in contrast, see “Contribution of mitochondrial 
ROS to HPHE signaling” and Chandel et al. 1998 for dif-
ferent results obtained in Hep3B cells). One weakness of 
all these studies is that ROS formation was assayed using 
dichlorodihydrofluorescein diacetate, which cannot be reli-
ably used to measure intracellular  H2O2 and other ROS (see 
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Dikalov and Harrison 2014). Hence, Salnikow et al. pro-
posed that in addition to low oxygenation, Co, Ni (and possi-
bly other TMs) deplete intracellular AA by excessive oxida-
tion or insufficient supply of AA (due to inhibition of the AA 
transporter SVCT2) causing inhibition of PHDs, which are 
dependent on AA (Kaczmarek et al. 2007; Karaczyn et al. 
2006; Salnikow et al. 2004). The role of AA is to reduce 
PHD enzyme-bound Fe, which is important for maintain-
ing hydroxylase activity (Kaczmarek et al. 2009). The latter 
study indicated that the energy required for Fe substitution 
by Ni or Co in the enzyme is too high to be achieved in a 
biological system, thus contradicting the model favoring Fe 
replacement. Additionally, computer modeling identified a 
tridentate coordination of AA with the enzyme-bound Fe, 
which would explain the specific demand for AA as the Fe 
reductant. Thus, these data supported the hypothesis of Fe 
oxidation in the hydroxylases following exposure to TM 
ions (Kaczmarek et al. 2009). In contrast, using airway 
epithelial cell models as well the group of Costa and col-
leagues provided evidence that Ni and Co replace Fe in the 
hydroxylases and interfere with Fe uptake (Chen et al. 2005; 
Davidson et al. 2005, 2006; Li et al. 2006). Costa and cow-
orkers (Davidson et al. 2006) demonstrated that Ni stabilizes 
HIF1A and decreases VHL binding to the ODD domain of 
HIF1A. Furthermore, Ni inhibited cellular PHDs as well 
as purified PHD2 in vitro through direct interference with 
the enzyme. Through theoretical calculations, the authors 
demonstrated that Ni may be able to replace the Fe in the 
active site of this enzyme. Hence, in contrast to the work 
of Salnikow et al. (Kaczmarek et al. 2009, 2007; Karaczyn 
et al. 2006; Salnikow et al. 2004) these authors concluded 
that Ni can interfere with PHDs directly and does not inhibit 
the enzyme by depleting cellular factors, such as Fe or AA 
(Davidson et al. 2006).

In summary, chronic Ni accumulation in the kidney may 
disrupt renal HPHE signaling axis by causing cell death 
and fibrosis, whereas Co may be beneficial by attenuat-
ing kidney damage induced by various forms of renal 
insults, which is consistent with the hypothesis of protec-
tive hypoxic "preconditioning". Whereas various animal 
studies have investigated Co effects on HPHE signaling, 
no such studies have been published for Ni (see Table 2 
for a summary). At the cellular level, no studies have been 
performed on renal cell lines. Strikingly, there are few 
experimental data showing Co/Ni dependent stabiliza-
tion of HIF2A. The underlying mechanism of HIF-alpha 
stabilization remains a matter of debate and may involve 
iron substitution of PHDs, which inactivates the enzymes, 
disruption of the interaction between VHL protein and 
HIFs by directly binding to the ODD domain of HIFs, or 
ROS formation with consequent AA depletion and subse-
quent iron oxidation (see Fig. 1). Considering the current 
literature, it is difficult to explain why Ni should be more 

nephrotoxic than Co only on the base of their interaction 
with the (nephroprotective) renal HPHE signaling axis. 
Hence other factors will have to be considered, including 
the distribution of putative transporters for Co and Ni in 
different nephron segments, the affinities of Co and Ni to 
those transporters, their role in iron depletion or displace-
ment, their impact on the antioxidative status of tubule 
cells, etc., and all these factors may account for differential 
Co and Ni nephrotoxicities.

Cadmium (Cd)

Exposure and nephrotoxicity

Contamination of the environment by Cd may occur 
through anthropogenic and natural sources (WHO 1992, 
2010). Food and drinking water are the main routes of 
exposure to Cd for the nonsmoking general population. 
Although the efficiency of Cd absorption through inhala-
tion (25–50%) is much higher than that through inges-
tion (1–10%), concerns about airborne exposure is limited 
to special populations, including smokers, people living 
near smelters, and metal-processing workers. In contrast, 
dietary Cd intake is an important public health issue for 
the general world population despite the lower bioavail-
ability of Cd through the gastrointestinal tract. The real 
challenge setting seems to be the chronic (i.e., over dec-
ades or even throughout life) low (i.e., in concentrations 
barely exceeding the “natural” environmental Cd concen-
trations) Cd exposure (CLCE) from dietary sources and 
cigarette smoking. Modern agriculture globally uses Cd-
containing phosphate fertilizers to increase the efficiency 
of harvests. Plants, including tobacco, accumulate Cd, 
which is passed on to animals and man in the food chain 
(reviewed in Moulis and Thévenod 2010; Thévenod and 
Lee 2013). Cd in tobacco smoke takes a share in the devel-
opment of smoking-associated chronic ailments, such as 
cardiovascular diseases or diabetes mellitus. Moreover, Cd 
is a class I carcinogen because it interacts indirectly with 
DNA consequent to elevated ROS levels, interferes with 
major DNA repair systems, as well as inactivates tumor 
suppressor functions by targeting proteins with Zn-binding 
structures. This may cause genomic instability and pro-
mote tumor initiation and progression. Cd is stored in vari-
ous organs, and particularly in the kidney, with a half-life 
of several decades. Hence, CLCE damages multiple organs 
in humans and other mammalian organisms by causing 
nephrotoxicity, osteoporosis, neurotoxicity, genotoxic-
ity, teratogenicity, or endocrine and reproductive defects 
(Thévenod 2003, 2009; Thévenod and Lee 2013).
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Disruption of renal EPO production by Cd

An early study investigated nephrotoxicity and anemia in 
rats exposed to Cd (0.05 or 0.5 mg/kg b.w.) by intravenous 
application for 50 weeks (Hiratsuka et al. 1996). In the 
high Cd group, renal tubular disorders became marked at 
16 weeks and cortical fibrosis with glomerular dysfunction 
appeared at 50 weeks. Anemia occurred at 12 weeks and 
worsened over time. Early on, EPO levels increased as the 
hemoglobin level decreased, indicating intact renal HPHE 
signaling axis. In contrast, EPO levels were not elevated at 
50 weeks despite marked iron deficiency anemia, indicat-
ing that chronic renal damage and fibrosis disrupted the 
renal HPHE signaling axis (Hiratsuka et al. 1996). Con-
comitantly, another group confirmed these data (Horiguchi 
et al. 1996). Rats were exposed to 2.0 mg Cd/kg b.w. by 
subcutaneous injection once a week for 6 or 9 months and 
showed anemia with low levels of plasma EPO over time 
along with hypoinduction of Epo mRNA in the kidneys, 
which were accompanied by biochemical and histological 
renal tubular damage. The results indicated that chronic 
Cd-intoxication causes anemia by disturbing the EPO pro-
duction capacity of renal cells (Horiguchi et al. 1996). In 
a subsequent study, the same group investigated the local 
relationship between hypoxia-induced EPO production and 
renal tubular injury in control rats and rats injected with 
Cd at 2 mg/kg twice a week for 8 months (Horiguchi et al. 
2006). Anemia due to insufficient production of EPO was 
observed in chronic Cd-intoxication of rats. In situ hybrid-
ization detected Epo mRNA expression in proximal tubule 
(PT) cells of hypoxic control rats, but Cd-intoxicated rats 
showed atrophy of EPO expressing PT and tissue fibrosis 
(similar effects were observed a single dose of cisplatin at 
8 mg/kg, which targets PT). The authors concluded that 
Cd (and cisplatin) induces anemia through direct dam-
age of PT cells that mainly contribute to renal EPO pro-
duction (peritubular fibroblasts-like interstitial cells did 
not express Epo mRNA in this study; however, see Nagai 
et al. 2014 for a reevaluation of EPO production by the 
nephron). Using the same Cd-intoxication protocol, these 
authors also investigated the role of Cd-induced hemolysis 
on renal damage in rats (Horiguchi et al. 2011). Renal iron 
overload was observed after 3 months of Cd application 
and was accompanied by increased urinary levels of NAG, 
glucose, transferrin, and hemoglobin that are all indicative 
of PT damage. Furthermore, increased renal expression 
of Il6 indicated increased inflammation of damaged renal 
tissue. The authors concluded that in addition to direct 
damaging effects of Cd on PT, Cd-induced hemolysis leads 
to Fe accumulation in the kidneys with resulting oxidative 
stress and cell death (see also “Iron (Fe)”), which aggra-
vates renal damage and decreases EPO production, e.g. 

by destruction of EPO-producing cells (Horiguchi et al. 
2011).

Roles of Cd in HPHE signaling

Cell culture studies have been performed in an attempt to 
determine mechanistically the interference of Cd with HPHE 
signaling (Chun et al. 2000; Gao et al. 2013; Horiguchi et al. 
2000; Jing et al. 2012; Li et al. 2006; Obara et al. 2003), 
yet no study with renal cell lines has been published so far, 
which limits the conclusions drawn from these studies for the 
kidney (see also “Cobalt (Co) and nickel (Ni)”). Moreover, it 
is difficult to estimate whether the acute effects of exposure 
to submicromolar or low micromolar concentrations of Cd 
for up to 24 h in cell lines can be extrapolated to the more 
chronic effects observed after systemic application of Cd for 
weeks or months in vivo. Most importantly, only recently 
has an in vivo study determined the impact of chronic Cd 
exposure on several components of the renal HPHE signal-
ing axis (Jacobo-Estrada et al. 2018) and was able to pro-
vide information at the same biochemical level as the cell 
culture studies. In most studies with Cd cited above, hypoxia 
was used a stimulus to activate HPHE signaling (Chun et al. 
2000; Horiguchi et al. 2000; Obara et al. 2003), but some 
investigators triggered “chemical hypoxia” with Co (Gao 
et al. 2013; Horiguchi et al. 2000) or determined the effect 
of Cd under normoxic conditions (Jing et al. 2012; Li et al. 
2006). Several cell culture studies with the human hepatoma 
cell line, Hep3B, found that Cd at concentrations and expo-
sure times that do not affect cell viability (0.5–50 µM for 
16–24 h) inhibits HIF1A DNA-binding activity (Chun et al. 
2000; Horiguchi et al. 2000; Obara et al. 2003). This obser-
vation is relevant for the kidney because inhibition of HIF1A 
DNA-binding was recently confirmed in vivo in embryonic 
kidneys after exposure of pregnant rats to Cd (by inhalation 
for 2 h/day to a mist of a solution of 1 mg  CdCl2/ml from 
gestational day 8–20) and removal of embryonic kidneys at 
day 21 (Jacobo-Estrada et al. 2018). Accordingly, expression 
of hypoxia-inducible target genes, such as Epo or Vegfa, 
or hypoxia-induced luciferase reporter gene activity were 
reduced by Cd (Chun et al. 2000; Horiguchi et al. 2000; 
Jacobo-Estrada et al. 2018; Obara et al. 2003). However, 
the effect of Cd on HIF1A mRNA and HIF1A protein is 
less consistent in the literature. Chun et al. (2000) observed 
no change of HIF1A mRNA but decreased HIF1A protein, 
which they attributed to Cd stimulation of proteasomal activ-
ity, whereas Jacobo-Estrada et al. (2018) did not observe 
any effect of Cd on mRNA or protein levels of HIF1A and 
PHD2. Interestingly, using a recombinant catalytic domain 
of human PHD2 and non-denaturing ionization electrospray 
mass spectrometry, Mecinovic et al. have demonstrated Cd 
binding to the apo-enzyme at the catalytic site plus at a novel 
binding site (as well as with Zn, Cu and Co, but not Fe or Ni) 
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(Mecinovic et al. 2008). Cd could partially displace Fe from 
the PHD2 active site, suggesting Cd inhibition of PHD2. 
These in vitro data are in contrast to the above in vivo and 
cellular studies where Cd showed no increased HIF-alpha 
stabilization as well as to studies proposing AA depletion as 
the sole mechanism underlying PHD2 inhibition and exclud-
ing Fe displacement by other TMs (see “Cobalt (Co) and 
nickel (Ni)”; reviewed in Maxwell and Salnikow 2004).

Because Cd intake by organisms occurs through inha-
lation in addition to the oral route, Cd effects on HPHE 
signaling were also studied in airway epithelial cell lines. 
However, the results were variable, possibly because of 
differences in Cd concentrations, exposure times and cell 
lines used. Exposure of chemically hypoxic (Co treatment) 
rat lung fibroblasts (RFL6) to Cd resulted in inhibition of 
HIF1A DNA binding to the hypoxia-inducible gene lysyl 
oxidase Lox and reduced Hif1a mRNA expression (Gao et al. 
2013). Other studies showed either no effect of Cd on HIF1A 
expression in normoxic cells (Li et al. 2006) or increased 
HIF1A and VEGFA expression under normoxia (Jing et al. 
2012).

In summary, in renal tissue Cd may disrupt the renal 
HPHE signaling axis by interfering with HIF1A binding 
to DNA of hypoxia-inducible target genes and/or decrease 
Hif1a mRNA and protein expression, resulting in decreased 
renal EPO production and ensuing renal anemia, which may 
aggravate Cd-induced renal injury by disrupting nephro-
protective HPHE signaling. To the best of our knowledge, 
no study has addressed the effect of Cd on (renal) HIF2A 
expression. Table 2 summarizes data from animal studies.

Chromium (Cr)

Exposure and nephrotoxicity

Hexavalent Cr  (Cr6+) is often found in occupational set-
tings as a by-product of various industrial processes, such 
as leather working, smelting, welding, and metal plating 
(ATSDR 2012).  Cr6+ is also found in automobile exhaust 
and in tobacco products, such as traditional and electronic 
cigarettes and hookahs, (Williams et al. 2017) and is, there-
fore, a human respiratory carcinogen, and produces a variety 
of toxic effects through inhalation (ATSDR 2012). Systemic 
toxicity attributable to  Cr6+ has been documented in the res-
piratory and pulmonary system, gastrointestinal tract, der-
mis, and renal system (ATSDR 2012). Contact dermatitis is 
frequently documented following exposure to chromate and 
dichromate (Lejding et al. 2018). Exposure to  Cr6+ can also 
cause acute tubular necrosis, which is localized to the proxi-
mal convoluted tubules and may result in rapid onset of renal 
failure (Wedeen and Qian 1991). In addition, multiple mech-
anisms of  Cr6+ carcinogenesis have been proposed involving 
oxidative stress, DNA damage and genomic instability, and 

epigenetic modulation (reviewed in Chen et al. 2019b).  Cr6+ 
compounds, such as chromate and dichromate, are strong 
oxidizing agents at low or neutral pH. The product of  Cr6+ 
reduction,  Cr3+, is rather non-toxic and has even been con-
sidered an essential nutrient in humans for insulin, sugar, 
and lipid metabolism.

The mechanisms of Cr-associated nephrotoxicity are only 
partly elucidated. In rats, Cr selectively accumulates in the 
renal cortex at 6–20 times the level present in red blood cells 
or the liver (Weber 1983). Cr may induce nephrotoxicity in 
humans. However, tubular damage following occupational 
exposure is mostly due to acute absorption and transient 
in nature (Franchini and Mutti 1988; Sharma et al. 1978). 
Experimental studies in rats support acute Cr nephrotox-
icity caused by oxidative stress (Gumbleton and Nicholls 
1988; Ngaha 1981; Patlolla et al. 2009; Pedraza-Chaverri 
et  al. 2005; Seiken et  al. 1994; Zhou et  al. 2008). The 
involvement of different nephron segments in Cr-induced 
oxidative stress and toxicity was assessed in AKI induced 
by  K2Cr2O7 (Arreola-Mendoza et al. 2006). Rats received 
 K2Cr2O7 (a single dose of 15 mg/kg, s.c.). Altered PT func-
tion, decreased glomerular filtration, and distal segment dys-
function were accompanied by oxidative damage 48 h after 
exposure to Cr. In α-tocopherol-treated animals (125 mg/
kg by gavage 5 days before and during Cr exposure) proxi-
mal reabsorptive and secretory functions were preserved, 
implying that oxidative damage contributes to Cr toxicity. In 
contrast, glomerular or distal dysfunction were not prevented 
by α-tocopherol, suggesting nephron segment specificity of 
Cr-induced oxidative stress.

Chronic Cr nephrotoxicity has also been described in 
humans and experimental animals. Nuyts et  al. (1995) 
observed that occupational chromium exposure increases the 
risk of chronic renal failure by about threefold in industrial 
areas, which was confirmed in subsequent studies (Tsai et al. 
2017; Wang et al. 2011). Animal experiments are consistent 
with these observations and indicate chronic Cr nephrotox-
icity induced by oxidative stress (Soudani et al. 2010). In 
another study,  K2Cr2O7 administrated to female rats during 
late pregnancy and early postnatal periods provoked kid-
ney damage mediated by oxidative stress in dams and their 
offspring (Soudani et al. 2011). Malondialdehyde (an indi-
cator of lipid peroxidation), GSH and NO levels increased 
in kidneys of Cr-treated mothers and their suckling pups. 
Activities of SOD, CAT and glutathione peroxidase were 
increased in dams and decreased in their pups. Significant 
decrease in creatinine clearance was also found in treated 
mothers and in their progeny.

At the cellular level, a few studies have investigated 
mechanisms of acute Cr toxicity in cultured renal cells. 
Dartsch et al. (1998) compared opossum kidney and HepG2 
liver cells because acute Cr nephrotoxicity is known to be 
more prominent than hepatotoxicity in vivo.  Cr6+ (0.01 
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µM to 1 mM for 24 h), but not  Cr3+, had a dose-dependent 
cytotoxic effect with loss of cell viability (EC50 ~ 5 µM for 
kidney and ~ 50 µM for liver epithelial cells). Chloride chan-
nel blockers did not inhibit cell damage, suggesting that the 
uptake of  Cr6+ did not occur through anion transporters. 
In another study, the contribution of oxidative damage was 
investigated in HK-2 cells incubated with 10 μM  K2Cr2O7 
for 24 h (Lin et al. 2018). Supplementation with AA (30 μg/
ml) inhibited damage to HK-2 cells, if incubated within 
1–8 h of Cr toxicity by preventing ROS generation, apopto-
sis, and autophagy, as well as Cr entry into cells, possibly 
by reduction of  Cr6+ to  Cr3+.

Mechanisms of  Cr6+‑induced HIF‑alpha stabilization

Salnikow and colleagues tested their hypothesis that TM 
ions can induce HIF-alpha by depleting intracellular AA via 
oxidation and by inhibiting AA uptake by cells (Karaczyn 
et al. 2006; Salnikow et al. 2004).  Cr6+ is known to oxidize 
AA directly (Zhitkovich 2005) and is a principal AA oxidant 
in rat liver and kidneys (Standeven and Wetterhahn 1991). 
Salnikow and coworkers (Kaczmarek et al. 2007) compared 
the accumulation of HIF1A protein in human lung epithelial 
cells (1HAEo- and A549) following Ni (500 µM) or  Cr6+ 
(5 µM) exposure. The experiments showed that there is a 
difference in the time course of this accumulation. Thus, 
HIF1A protein was induced only by  Cr6+ at 1–8 h and dis-
appeared after the latter was reduced to  Cr3+. This corre-
lated with cell-free experiments showing a rapid phase of 
AA oxidation by  Cr6+, which ends after the completion of 
 Cr6+ reduction to  Cr3+. In contrast, extended stabilization 
of HIF1A was observed following acute exposure to Ni for 
up to 24 h. Ni was found to be a catalyst, which facilitates 
continuous oxidation of AA by ambient  O2. A HIF1A-
dependent reporter assay revealed that 20–24 h was required 
to fully develop HIF1 transcriptional response and the acute 
exposure to Ni, but not Cr, met this requirement. However, 
repeated (chronic) exposure to  Cr6+ also led to extended 
stabilization of HIF1A. Thus, these data emphasized the 
important role of AA in regulation of HIF1 transcriptional 
activity in metal-exposed human lung cells. In a very recent 
study, another aspect of the regulation of HPHE signaling 
was investigated in HepG2 cells exposed to Cr (Nishimura 
et al. 2021). At variance with the report by Kaczmarek et al. 
(2007), the authors reported that  Cr3+ (100 µM for 24 h) 
increases HIF1A protein, EPO mRNA expression and EPO 
protein levels in HepG2 cells. The effect of Cr on EPO pro-
duction was abolished by co-incubation with the inhibitor of 
proliferator-activated receptor γ (PPARγ), SR-202 (100 µM), 
suggesting a different mode of action of  Cr3+ on HIF1A pro-
tein levels that was mediated by PPARγ induction of HIF1A, 

and which is supported by other studies (Tsave et al. 2016; 
Urakami-Takebayashi et al. 2018; Zhou et al. 2009).

Epigenetic mechanisms in HPHE signaling affected by  Cr6+

Hypoxia-induced HIF1A stabilization is known to regulate 
epigenetic mechanisms, e.g. by promoting histone demeth-
ylation (Beyer et al. 2008; Krieg et al. 2010; Pollard et al. 
2008; Wellmann et al. 2008; Xia et al. 2009), which may 
act as signal amplifiers to facilitate hypoxic gene expres-
sion and ultimately enhance tumor growth (reviewed in Han-
cock et al. 2015; Watson et al. 2010). Costa and coworkers 
(reviewed in Chervona et al. 2012) proposed that Cr (as well 
as Ni) may induce post-translational histone modifications 
and affect the enzymes that modulate them, i.e., members of 
the Fe- and 2-oxoglutarate-dependent dioxygenase family, 
including PHD2, histone demethylases JHDM2A/JMJD1A, 
and DNA repair enzymes ABH3 and ABH2, as well as his-
tone methyltransferases, G9a. Hence, given the effects that 
these metals may exert on the epigenome, their involvement 
in the dynamics of histone modifying enzymes could also 
account for their respective toxicities and carcinogenicities.

In summary, there is ample evidence that  Cr6+ causes 
acute and chronic nephrotoxicity. Strikingly, no studies are 
available studying the impact of  Cr6+ on HPHE signaling 
in the kidney or kidney cell lines. As a “chemical hypoxia 
mimetic”  Cr6+ is a HIF1A stabilizer, but the underlying 
mechanism is not clear because only few studies have inves-
tigated this process, although it may not displace Fe from 
PHDs. The role of  Cr6+ on other aspects of HPHE signal-
ing (e.g. on HIF2A) and on nephroprotection remains to be 
investigated.

Platinum (Pt)

Exposure and nephrotoxicity

Platinum is mainly used in the automobile industry for auto-
catalysts, sensors and spark plugs. Other uses in industrial 
applications, such as in electronics, and jewelry make up 
the worldwide demand for this metal (Rauch and Morri-
son 2008). Interactions of platinum compounds with bio-
logical systems have been well reported in the literature. It 
was first observed that bacterial, viral and fungal pathogens 
could be rendered nonviable by platinum metals (Cochran 
and Maassab 1970; LeRoy 1975; Rosenberg et al. 1967; 
Shulman and Dwyer 1964). Based on these observations, 
platinum compounds were tested in leukemia and sarcoma 
cancers, which were implanted into mice. Of the four metal-
amine complexes reported in the study, cis-Pt(II)(NH3)2Cl2, 
commonly known as cisplatin or Peyrone’s salt, was the 
most effective in reducing sarcoma tumor mass (by > 95%) 
or prolonging mean survival time (by > 80%) in the leukemic 
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mouse model (Rosenberg et al. 1969). Moreover, the mice 
remained cancer-free for six months post-treatment. By 
1972, phase I clinical trials with cisplatin were completed 
and in 1978, it was approved by the FDA for treatment of tes-
ticular, ovarian and bladder cancer. Cisplatin therapy is tied 
with toxicities predominantly in the kidney, intestinal tract 
and ear (Barabas et al. 2008; Karasawa and Steyger 2015; Qi 
et al. 2019), due to uptake of the drug by membrane trans-
porters (Ciarimboli 2014), in particular organic cation trans-
porters (Ciarimboli et al. 2005; Zhang et al. 2006), which 
are prevalent in these tissues (Lee et al. 2009). Nephrotoxic-
ity seems to be the limiting factor in therapeutic dosing of 
cisplatin. Despite this and development of drug resistance, 
cisplatin is widely used to treat a number of solid tumors. 
A number of less toxic analogs have since been developed, 
including carboplatin and oxaliplatin (Sharma et al. 2022).

Cisplatin’s square-planar configuration predominantly 
undergoes nucleophilic substitution and, therefore, permit-
ting its activation by displacement of the chloride ions by 
water molecules. Hydrolyzation of cisplatin results in a 
potent electrophile, which reacts with sulfhydryl groups on 
proteins and nitrogen donor atoms on nucleic acids (Dasari 
and Tchounwou 2014; Sharma et al. 2022). Hence, cispl-
atin’s antitumor action is not dependent on redox reactions 
of platinum itself. Rather, it attacks several intracellular tar-
gets, such as deoxyribonuclease I (Basnakian et al. 2005), 
involved in DNA and protein syntheses as well as intercalat-
ing into DNA, reducing  Na+/K+-ATPase activity and total 
GSH levels (Courjault et al. 1993) to render its cytostatic 
actions. Of note, these aforementioned mechanisms appear 
to be specific to the antitumor action of cisplatin whereas the 
toxic effects are primarily consequent of oxidative stress due 
to mitochondrial dysfunction.

Role of cisplatin and HPHE signaling in renal injury

Hypoxia and HIFs have been implicated in both cisplatin-
induced injury and advancement of drug resistance in the 
kidney (reviewed in Li et  al. 2021). Following cellular 
uptake, cisplatin elicits an inflammatory response as well 
as mitochondrial dysfunction and decreasing antioxida-
tive capacity, which culminates in increased levels of ROS 
and renal cell injury (reviewed in Holditch et al. 2019; 
McSweeney et al. 2021; Volarevic et al. 2019). The exact 
role of hypoxia and HIFs in renal damage elicited by cis-
platin is hampered by conflicting data. In immortalized 
PTCs, hypoxia protected against cisplatin-induced apop-
tosis by attenuating Bax accumulation and cytochrome c 
release yet was independent of the activated HIF1A (Wang 
et al. 2006). Rather, the authors postulated a role for p53 
activation by cisplatin that is suppressed by hypoxia, and 
inhibition of the mETC (Wang et al. 2006). Conversely, 

cisplatin-induced apoptosis was augmented by hypoxia in 
a cell line resembling principal cells of the renal collect-
ing duct (Schwerdt et al. 2005). Cisplatin concentrations 
up to 30 µM did not induce proapoptotic caspase-3 activ-
ity whereas co-incubation with mETC inhibitors activated 
caspase-3 by up to 20-fold over controls and initiated DNA 
laddering. Inhibition of the mETC (to mimic hypoxic condi-
tions), but not cisplatin per se, increased lactic acid thereby 
reducing intracellular pH and potentiated caspase-3 activa-
tion. Furthermore, caspase-3 activity was elevated by > two-
fold in cisplatin-treated cells under severe hypoxic condi-
tions. These conflicting studies could be explained by the 
cell models (proximal tubule versus collecting duct) used 
wherein the HIF turnover is regulated differently based 
on the  O2 tension. Due to physiological low  O2 tension in 
the renal medulla, wherein collecting ducts are located, 
higher expression levels of PHD2 and PHD3 were detected 
(Schodel et al. 2009), presumably to maintain low HIF lev-
els. Cisplatin treatment in Sprague–Dawley rats depreciated 
total PHD2 and PHD3 expression in parallel with increased 
blood creatinine, though in the absence of HIF induction, 
indicating HIFs are not essential to renal injury progression, 
which has been confirmed in resistant cell clones following 
repeated episodes of hypoxia (Brooks et al. 2007). Thus, 
whether hypoxia protects against or exacerbates cisplatin 
nephrotoxicity depends on the origin of the renal cells and 
does not seem to involve HPHE signaling.

The activation of HIFs following cisplatin is also unre-
solved. Tanaka et al. (2005a) observed increased HIF expres-
sion in the outer medulla three days after cisplatin admin-
istration to rats and Zhao et al. (2021) detected HIF1A in 
mouse renal tubules and primary and immortalized PTCs 
post-cisplatin treatment whereas Weidemann et al. (2008) 
did not find increased HIF1A in immortalized PTCs or rat 
renal tubules after exposure to cisplatin. Only hypoxic pre-
conditioning with 0.1% carbon monoxide (without cisplatin) 
led to marked increase in HIF1A, in particular in the outer 
medulla (Weidemann et al. 2008), coincidently as observed 
by Tanaka et al. (2005a). In both studies, elevated HIF1A 
protected against cisplatin-induced tubular cell apoptosis 
and improved renal function compared to without hypoxic 
preconditioning (Weidemann et al. 2008) or expression of 
dominant negative HIF1A (Tanaka et al. 2005a).

HIF‑alpha protection against cisplatin‑induced renal injury

In contrast to the role of HIFs in cisplatin-induced injury, 
there is a general consensus that HIFs play a key role in con-
ferring drug resistance through expression of drug transport-
ers, such as ABCB1, detoxification of cisplatin, increased 
antioxidative capacity, disruption of apoptosis signaling or 
strengthened ability to repair DNA damage (reviewed in 
Belisario et al. 2020; Kim and Lee 2017; Shenoy et al. 2017). 
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Indeed, it has been postulated that low HIF expression is 
decisive in determining the chemosensitivity of testicular 
cancer (Shenoy et al. 2017) and induction of pseudohypoxia 
in renal carcinoma cells culminates in augmented chemore-
sistance and cell motility, which is signaled through HIF-
alpha (Liu et al. 2017). In agreement with the notion that 
HIF upregulation confers protection against cisplatin injury, 
enhanced HIF1A-induced mitochondrial autophagy (Li et al. 
2020), increased HO-1 expression (Bolisetty et al. 2016; 
Shiraishi et al. 2000) and increased HO-1 activity induced by 
hemin (Al-Kahtani et al. 2014; Schaaf et al. 2002; Shiraishi 
et al. 2000) ameliorated oxidative stress, attenuated cispl-
atin-induced apoptosis of PTCs and increased antioxidative 
capacity, respectively, in both cell culture and animal mod-
els. Co-culture of genetically-engineered HIF1A-expressing 
stem cells with renal cells (Wang et al. 2014, 2015), admin-
istration of conditioned medium from mouse Hmox1+/+ stem 
cells (Zarjou et al. 2011) or implantation of EPO-secreting 
stromal cells (Eliopoulos et al. 2011) to cisplatin-treated 
mice reduced cisplatin-induced apoptosis and renal injury 
in a paracrine manner. Furthermore, infusion of rat fetal kid-
ney stem cells ameliorates cisplatin-induced apoptosis with 
concomitant HIF1A, VEGFA and NOS upregulation, cul-
minating in increased capillary density (Gupta et al. 2015). 
Finally, recombinant EPO conferred renoprotection against 
cisplatin-induced injury (Kong et al. 2013; Mohamed et al. 
2013; Rjiba-Touati et al. 2011; Zafirov et al. 2008).

In summary, HIFs protect against cisplatin-induced injury 
to renal cells and fosters development of drug resistance 
whereas cisplatin toxicity is not HIF-dependent (Table 2). 
The role of hypoxia in cisplatin nephrotoxicity remains 
unresolved.

Therapy of TM nephrotoxicity, controversies, 
outlook, and conclusions

Chelation of TMs is an obvious therapeutic strategy to 
prevent further damage, once they have entered the body 
(reviewed in Flora and Pachauri 2010; Smith 2013). Another 
important aspect of acute and chronic TM nephrotoxicity is 
unregulated and overwhelming formation of free radicals 
(see “Transition metals: environmental presence, exposure, 
general modes of toxicity in the kidney”), which disrupt 
physiological ROS signaling, including mitochondrial ROS-
dependent activation of the HPHE pathway (see “Contribu-
tion of mitochondrial ROS to HPHE signaling” and Fig. 1). 
In addition, ROS cause detrimental effects to cells through 
oxidation of proteins, lipids and nucleic acids, which results 
in cell damage and death. Consequently, application of natu-
ral or synthetic antioxidants may be beneficial in the pre-
vention and attenuation of TM-induced renal damage (Flora 
2009; Forman and Zhang 2021; Halliwell 2011).

Modulation of the different components of HPHE sign-
aling may also be advocated using pharmacological PHD 
inhibitors (PHIs) to induce endogenous defense mechanisms, 
as described with “hypoxic preconditioning” for various 
causes of AKI and CKD, including TMs (reviewed in Shu 
et al. 2019; Tanaka 2016; Tiwari and Kapitsinou 2021); see 
also “General considerations” in “Impact of toxic metal ions 
on the renal HPHE signaling axis”). PHIs are specific drugs 
that activate HPHE signaling and were developed to stimu-
late the production of endogenous EPO in anemia of CKD 
(Haase 2021). Three oral PHIs (daprodustat, vadadustat, 
and roxadustat) have advanced to global phase III clinical 
development (see Table 3 for an overview). On the plus side, 
PHIs could be useful in the prophylaxis or treatment of TM 
nephrotoxicity by affecting different mechanisms regulated 
by HPHE signaling (provided the HPHE axis is intact; see 
above). They may reduce cell death by inducing HIF activa-
tion (Bernhardt et al. 2006a; Conde et al. 2012; Tanaka et al. 
2005a; Weidemann et al. 2008), increase HIF-dependent 
EPO production (for review see Moore and Bellomo 2011), 
and promote tissue regeneration by HIF activation (Ceradini 
et al. 2004).

However, regarding therapy of acute versus chronic TM-
induced nephrotoxicity a more differentiated approach and 
a note of caution are necessary. In TM-induced AKI, the 
literature suggests that PHIs could be useful to increase 
survival and nephroprotection (reviewed in Li et al. 2021; 
Shu et al. 2019; Tiwari and Kapitsinou 2021). In contrast, 
therapeutic application of PHIs for CKD induced by TM 
ions may be a double-edged sword, first because of the puta-
tive proapoptotic (reviewed in Mazure and Pouyssegur 2010; 
Piret et al. 2002) and pro-fibrotic potential of HPHE acti-
vation, due to the interdependence between inflammatory 
(e.g. nuclear factor kappa B) and HPHE signaling pathways 
(reviewed in Faivre et al. 2021; Imtiyaz and Simon 2010; 
Taylor et al. 2016). Second, HIFs induce the expression of 
proteins involved in Fe/TM transport and homeostasis (e.g. 
DCYTB, SLC11A2, TF, TFRC, FTH1, HAMP1, MT1A) 
(reviewed in Shah and Xie 2014; Simpson and McKie 2015). 
Hence, activation of these two processes could exacerbate 
chronic renal damage induced by TMs (see also “Transition 
metals: environmental presence, exposure, general modes of 
toxicity in the kidney” and “Impact of toxic metal ions on 
the renal HPHE signaling axis”). Moreover, the carcinogenic 
potential of metal ions, such as Cd, in the kidney (Hartwig 
2013), may be accelerated by activation of HPHE signaling, 
as exemplified by the proposed role of HIF2A in promoting 
clear cell renal cell carcinoma (Choueiri et al. 2021; Dufies 
et al. 2021). On the other hand, PHIs could be beneficial 
in advanced kidney cancer (reviewed in Burrows and Max-
well 2021). When carefully balancing pros and cons, at the 
present stage the use of PHIs in humans to slow down or 
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revert CKD induced by nephrotoxic TM ions does not seem 
recommendable and awaits further developments in the field.

To conclude, acute exposure to relatively high concen-
trations of TM ions leads to cell death primarily associated 
with either apoptosis or necrosis, with the latter triggering 
inflammation and fibrosis. Consequently, these endpoints of 
acute renal damage may promote disruption of the HPHE 
pathway, preventing a protective response to damage. 
Indeed, acute (and chronic) exposure to TMs, such as Fe, 
Ni, Cd,  Cr6+ or Pt has been shown to damage the kidney 
and disrupt HPHE signaling (see “Impact of toxic metal 
ions on the renal HPHE signaling axis” and Table 2). On 
the other hand, exposure to low TM ion concentrations may 
trigger activation of renal HPHE signaling, e.g. by mimick-
ing hypoxia, but also depends on the exposure time. Indeed, 
Co as well as Fe and Ni (at doses that are not nephrotoxic) 
do induce HPHE signaling and protect against kidney dam-
age (“preconditioning”; see “General considerations” in 
“Impact of toxic metal ions on the renal HPHE signaling 
axis”). Hence, activation of the renal HPHE signaling axis 
(e.g., by application of pharmacological PHIs under specific 
circumstances) may delay the onset of acute or chronic renal 
dysfunction induced by TMs. Strikingly, current knowledge 
of the field is still very sketchy. For instance, for Ni and 
 Cr6+, so far no animal studies on renal HPHE signaling have 
been performed. Further, for Fe, Ni, Cd and  Cr6+ no stud-
ies investigating HPHE signaling are available in renal cell 
lines. Clearly, mechanistic elucidation of the role of renal 
hypoxia–HIF–PHD–EPO signaling in TM nephrotoxicity is 
necessary before contemplating a rational approach to pre-
vention or therapy.
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