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Abstract: Biometric signals can be acquired with different sensors and recognized in secure identity
management systems. However, it is vulnerable to various attacks that compromise the security
management in many applications, such as industrial IoT. In a real-world scenario, the target template
stored in the database of a biometric system can possibly be leaked, and then used to reconstruct a
fake image to fool the biometric system. As such, many reconstruction attacks have been proposed,
yet unsatisfactory naturalness, poor visual quality or incompleteness remains as major limitations.
Thus, two reinforced palmprint reconstruction attacks are proposed. Any palmprint image, which
can be easily obtained, is used as the initial image, and the region of interest is iteratively modified
with deep reinforcement strategies to reduce the matching distance. In the first attack, Modification
Constraint within Neighborhood (MCwN) limits the modification extent and suppresses the reckless
modification. In the second attack, Batch Member Selection (BMS) selects the significant pixels
(SPs) to compose the batch, which are simultaneously modified to a slighter extent to reduce the
matching number and the visual-quality degradation. The two reinforced attacks can satisfy all
the requirements, which cannot be simultaneously satisfied by the existing attacks. The thorough
experiments demonstrate that the two attacks have a highly successful attack rate for palmprint
systems based on the most state-of-the-art coding-based methods.

Keywords: reinforced biometric reconstruction attack; palmprint recognition; modification constraint
within neighborhood; batch member selection; visual quality; naturalness

1. Introduction

In secure identity management systems, biometric signals can be acquired with dif-
ferent sensors and recognized for automatic authentication/identification [1]. Generally,
biometric recognition includes signal acquisition, pre-processing, feature extraction, and
matching. The acquired signals are usually images for many biometric modalities, such as
the face, iris, and palmprint. Feature extraction generates the templates that are transmitted
to the communication channels and stored in databases. The probe template and gallery
template are compared for the recognition decision. To reduce the privacy leakage from
the original images, and also reduce the transmission burden and storage load, original
biometric images are typically neither transmitted nor stored. As shown in Figure 1, images
are in the image domain, while templates are in the template domain.

Unfortunately, biometric systems suffer from various attacks [2–4], which compromise
their security management in many applications, such as industrial IoT. Reconstruction
attacks have not been sufficiently considered, but they seriously threaten the security of
identity management systems. In reconstruction attacks, an internal attacker can obtain the
target template of a genuine user, which is stored in the database. Then the attacker uses
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the target template to reconstruct the corresponding fake original image to impersonate the
target/genuine user and cheat the biometric system.
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Figure 1. The two domains in biometric systems.

The basic requirement of a reconstruction attack is “similarity”. To satisfy similarity,
the dissimilarity (/similarity) between the templates of the reconstructed fake image and
target template of the genuine user is less (/higher) than a threshold, and then the attack
is successful.

However, similarity, which is measured in the template domain, is not enough for a
state-of-the-art reconstruction attack. To further comprehensively evaluate reconstruction
attacks, three requirements in the image domain are defined as follows.

Naturalness: The reconstructed images should look like biometric images.
Visual quality: The reconstructed images should not have a remarkable noise-like

appearance that implies they are fake images.
Completeness: The whole original image, rather than the region of interest (ROI),

should be reconstructed. Since the acquired images are firstly pre-processed, such as
segmentation and ROI localization, the original complete biometric image must be recon-
structed.

It is highly difficult to simultaneously satisfy all the aforementioned indicators; thus,
it is necessary to employ some reinforcement strategies to improve the attack performance.

Palmprint is a promising and representative biometric modality; that is, the methods
for palmprint recognition can be conveniently transplanted or extended to other biomet-
ric modalities, so the reconstruction attacks in this paper are conducted on palmprint
systems [5].

As shown in Figure 2, the traditional and our fake ROI images were reconstructed
from the hill-climbing (HC) algorithm and our method, respectively. Both the traditional
and our fake ROI images satisfy similarity; however, traditional fake ROI images have
neither high naturalness nor high visual quality. Our method can reconstruct complete
fake palmprint images with high naturalness and high visual quality.
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This paper develops two novel reinforced palmprint reconstruction attacks based on
reinforcement strategies, and the main contributions are summarized as follows:

(1) In order to comprehensively evaluate biometric reconstruction attacks in identity
management systems, more indicators are proposed, including similarity, naturalness,
visual quality, and completeness.

(2) Any palmprint, which can be easily obtained, is used as the initial image, so natural-
ness can be ensured. The ROI of the initial image is iteratively modified with deep
reinforcement strategies to reduce the matching distance. There is no remarkable
sudden change near the boundaries of ROI in the complete fake image, so both visual
quality and completeness can be satisfied.

(3) In the first attack, Modification Constraint within Neighborhood (MCwN) is proposed
to limit the modification extent and suppress the reckless modification to enhance the
naturalness and visual quality.

(4) In the second attack, Batch Member Selection (BMS) is proposed to select the signif-
icant pixels (SPs) to compose the batch, in which the SPs, i.e., the batch members,
are modified simultaneously to reduce the matching number, i.e., computational
complexity. Since the pixels in the batch are modified together, their modifications are
slighter, and accordingly both the naturalness and visual quality are maximized.

The experiments were sufficient and confirm that two reinforced palmprint recon-
struction attacks have a highly successful attack rate for the palmprint systems based on
the most state-of-the-art coding-based methods. In addition, the two reinforced attacks
can satisfactorily meet all the indicators, which cannot be simultaneously satisfied by the
existing attacks.

The rest of this paper is organized as follows. Section 2 introduces the related works
on biometric reconstruction attacks and palmprint recognition methods. Section 3 specifies
the proposed novel palmprint reconstruction attacks. The experiments are discussed in
Section 4. Finally, the conclusions are drawn in Section 5.



Sensors 2022, 22, 591 4 of 16

2. Related Works
2.1. Reconstruction Attacks

Some reconstruction attacks have been developed and conducted on some biometric
modalities, including fingerprint, face, iris, and palmprint. Table 1 compares the reconstruc-
tion attacks. Similarity is the basic requirement, so each attack must satisfy it. Similarity
requirement is typically measured by a successful attack rate. The existing methods cannot
satisfy the four evaluation indicators simultaneously, including similarity, naturalness,
visual quality, and completeness.

Table 1. Comparison of the reconstruction attacks in biometric systems (L, M, and H denote low,
medium, and high, respectively).

Ref. Year Modality Methodology Naturalness Visual Quality

[6] 2001 Fingerprint

The orientations were reconstructed from the singular
points (core, delta) based on pole zero model. Some lines
were drawn through the details, resulting in only a sketch

of the fingerprints.

L M

[7] 2004 Fingerprint The minutiae image was reconstructed using HC. L L

[8] 2007 Fingerprint The direction, category and ridge of the original
fingerprint were extracted from the minutiae template. L M

[9] 2007 Fingerprint
Local detail model was used to initialize the image, and

then Gabor filter was iteratively applied to the image
formed by the detail parts.

M M

[10] 2009 Fingerprint The orientation field was used to reconstruct the
continuous phase that was combined with spiral phase. M M

[11] 2011 Fingerprint The phase image was reconstructed from fingerprint
minutiae template, and then converted into a gray image. M H

[12] 2012 Fingerprint

A binary ridge pattern was generated, which has a similar
ridge flow to that of the original fingerprint. The

continuous phase was intuitively reconstructed by
removing the spirals in the phase image estimated from

the ridge pattern.

M H

[13] 2015 Fingerprint

The prior knowledge of fingerprint ridge structure was
coded through the direction patch and continuous phase

patch dictionary. Then the direction field and ridge
pattern were reconstructed.

M H

[14] 2018 Fingerprint Fingerprint images were reconstructed using cGNA and
fingerprint minutiae templates. M H

[15] 2003 Face
A candidate image was slightly modified by an eigenface
image, and the modifications improving the match score

were kept.
L L

[16] 2004 Face Face images were reconstructed using HC. L L

[17] 2007 Face
Given the coordinates of the targeted subject in the affine
space, the original template was reconstructed based on

inverse affine transformation.
M H

[18] 2009 Face The HC based on Bayesian adaption was used to
reconstruct face images. M H

[19] 2010 Face
According to the global distribution calculated on the user

set, the local characteristics of the attacked client are
adapted.

M H

[20] 2012 Face The HC based on uphill-simplex algorithm was used to
reconstruct face images. M H
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Table 1. Cont.

Ref. Year Modality Methodology Naturalness Visual Quality

[21] 2013 Face A simple reconstruction method was proposed based on
RBF regression in face eigenspace. M H

[22] 2014 Face Perceptual learning and HC were used to reconstruct
real-valued features from the binary template. M M

[23] 2018 Face
A Neighbor Deconvolutional Neural Network (NbNet)
was proposed to reconstruct face images from deep face

templates.
M M

[24] 2010 Iris
The initial template was divided into blocks of the same

size. The pixels in blocks were modified by genetic
algorithm.

M M

[25] 2011 Iris The texture image was generated from iris template and
embedded into a real iris image. M M

[26] 2013 Iris Genetic algorithm was used to reconstruct images from
binary templates. M M

[27] 2020 Palmprint Palmprint images were generated by Generative
Adversarial Network (GAN) for false acceptance attack. H H

Compared with other biometric modalities, it is difficult to reconstruct complete
palmprint images. The reconstructed face ROI can be directly pasted onto a complete face
image due to the smoothness of the face skin. The inner hole and outside region of the iris
are the pupil and the eyelids/sclera, respectively. The inner and outer boundaries of the
iris are sharp, so it is easy to paste the reconstructed iris ROI onto a complete iris image.
A palmprint ROI is typically a region on the palm. Visual quality requires the boundaries
of the ROI to be smooth. If the reconstructed palmprint ROI is directly pasted onto a
complete palmprint image, the boundaries of the ROI are inevitably sharp. A complete
palmprint image is used as the initial image in our methods, which is slightly modified, so
the degradation of the visual quality is slight.

Wang et al.’s method [27] trained a generative adversarial network (GAN) with a large
number of palmprint images and used the trained generator to generate a large number of
palmprint images to attack the palmprint recognition system by brute force. Although the
palmprint images generated by Wang et al.’s method [27] have good naturalness and visual
quality, a large number of palmprint images are required to train the GAN, which is also
time-consuming. In contrast, only one palmprint is required in the attacks in this paper,
and any palmprint image, which is easily obtained, can be used as this required image.

2.2. Palmprint Recognition

A palmprint is a promising and representative biometric modality. Palmprint recogni-
tion methods can be roughly categorized into subspace-based [28,29], statistical-based [30,31],
deep-learning-based [32], and coding-based [33] methods. Coding-based methods are free
from training and have a low storage cost and fast computational speed, so they are popular
for palmprint recognition.

Texture is one of the most discriminative features in palmprint images, so many
existing palmprint recognition methods extract the discriminative texture features and
coded them according to pre-defined rules [34]. The main problems for coding-based meth-
ods include how to accurately describe the texture and exactly extract the discriminative
features [35].

Zhang et al. [36] proposed PalmCode, which utilized a 2D Gabor filter along “45◦”
to extract the palmprint feature. PalmCode only extracts single-orientation texture while
ignoring the texture information along other orientations. To relieve this problem, Guo
et al. [37] proposed Binary Orientation Co-occurrence Vector (BOCV), which used six Gabor
filters along different orientations to extract the texture features, where the final matching
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distance was the average value of the six matching distances. Sun et al. [38] proposed
Ordinal Code, where the ordinal information was extracted and coded as the feature from
three pairs of the orthogonal orientations. Kong et al. [39] proposed Fusion Code, which
applied four Gabor filters to extract the texture and phase as the features.

Dominant orientation is another popular feature for palmprint recognition. Kong and
Zhang [40] proposed Competitive Code (CompCode), which used six Gabor filters to extract
features, and then selected the index of the best response at each position as the feature.
Similar to CompCode, Jia et al. [41] proposed Robust Line Orientation Code (RLOC). The
difference between RLOC and CompCode was the choice of the filter; a modified finite
Radon transform, rather than Gabor filter, was used in RLOC to extract the texture features.
Fei et al. [42] proposed a Double Orientation Code (DOC) with the fine-tuned Gabor filters
to describe each pixel more accurately. DOC selected the indices of the top-2 best responses
at each position as the feature. Xu et al. [43] proposed Discriminative Competitive Code
(DCC) and Discriminative Robust Competitive Code (DRCC). The dominant orientation
and the relationship between its two neighbor orientations were coded as the feature.
Different from DCC, DRCC applied a Gaussian filter to smooth the palmprint image.

3. Methodology

Two novel reinforced palmprint reconstruction attacks with reinforcement strategies,
namely, Modification Constraint within Neighborhood (MCwN) and Batch Member Selec-
tion (BMS), are proposed in this paper, which can satisfy the four indicators simultaneously.

3.1. Modification Constraint within Neighborhood

Hill-climbing (HC) method is a simple greedy search algorithm that selects a top-like
solution from the proximity to the current solution until it reaches a locally optimal solution.
In HC, all pixels are modified to reduce the matching distance until the reconstructed
image can satisfy similarity. Unfortunately, the optimization objective of similarity cannot
maintain, and even damages, the naturalness and visual quality.

Any palmprint, which can be easily obtained, can be used as the initial image in
this paper, so the naturalness is satisfied. Strong modification can reduce the matching
distance (improve similarity), but definitely damages the naturalness and visual quality.
The slighter the modification is, the higher the naturalness and visual quality are. Modifica-
tion Constraint within Neighborhood (MCwN) is proposed for “single-pixel modification”
to reduce the modification extent, and accordingly maximize the naturalness and visual
quality; so, MCwN satisfactorily balances the conflict between similarity and naturalness/
visual quality.

The modification includes direction and stride. There are two modification directions—
positive and negative directions—that control the increase and decrease in pixel value,
respectively. Stride is the modification range every time.

f denotes the current version of the palmprint ROI image with M× N size, and f ′ is
its modified version. f (x, y) is the pixel in f , 1 ≤ x ≤ M, 1 ≤ y ≤ N. ∆ f and k represent
the modification direction and stride, respectively. Then the modified version is

f ′(x, y) = ∆ f × k + f (x, y) (1)

∆ f = +1 and −1 for positive and negative directions, respectively. The set of neigh-
bors at the current location is represented by f

(
sx, sy

)
.

sx = {x− 1, x, x + 1} (2)

sy = {y− 1, y, y + 1} (3)

Rmax = max
({

f (sx, sy
)}

) (4)

Rmin = min
({

f (sx, sy
)}

) (5)
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where Rmax and Rmin represent the maximum and minimum pixel values in the neighbor-
hood, respectively. The normalized distance dis′ is measured by the dissimilarity between
the template of f ′(x, y) and the target template in the database. The normalized distance
dis is measured by the dissimilarity between the template of f (x, y) and target template.

For each pixel, firstly, ∆ f = −1. If the two conditions are both satisfied, namely
f ′(x, y) ∈ [Rmin, Rmax] and dis′ ≤ dis, f (x, y) = f ′(x, y) is implemented; that is, the pixel
value is changed from f (x, y) to f ′(x, y), and then the modification position moves to the
next pixel.

If the two conditions are not both satisfied, ∆ f = +1. Then, if the two conditions are
both satisfied, f = f ′ is implemented; that is, the pixel value is changed from f (x, y) to
f ′(x, y), and then the modification position moves to the next pixel.

If the current pixel is not modified, the modification position directly moves to the
next pixel.

Please note that dis′ ≤ dis is one condition. The performance of dis′ < dis is not
good because the modification is not conducted if dis′ = dis. In contrast, in the condition
dis′ ≤ dis, the modifications dis′ = dis are conducted, which ensure the momentum is
enough to persistently keep reducing the matching distance. One experiment in Section 4.3
confirms this conclusion.

The traversal way is from left to right, and from top to bottom. The above single-pixel
modification is conducted on each pixel until dis′ is less than the threshold or the maximum
number of matchings (iterations) is reached.

3.2. Batch Member Selection

The effect of each single-pixel modification on similarity is slight. The interference
probably exists between the single-pixel modifications of the adjacent pixels; i.e., the latter
modification probably damages the effects of the former modifications. Thus, single-
pixel modification is time-consuming and not highly effective. In addition, single-pixel
modification easily damages the smoothness while enhancing the sharpness, so naturalness
and visual quality are probably degraded.

In batch modification, all the pixels in the batch are modified together, so its effect on
similarity is more remarkable than that of single-pixel modification. Thus, batch modifi-
cation can sharply reduce the matching distance (improve similarity) and the number of
matching (iteration). Furthermore, batch modification avoids the degradation of natural-
ness and visual quality. Batch Member Selection (BMS) is critical in batch modification,
i.e., how to select the significant pixels as the members of the batch. The SPs, i.e., batch
members, are modified simultaneously. The SPs are defined as the pixels that have more
remarkable effects on similarity. Only the SPs are modified while the other pixels are
unchanged, which maximizes the naturalness and visual quality.

In the existing coding-based palmprint recognition methods, the upper-left pixel of
each 4 × 4 block is typically selected as the downsampled representative of this block.
Thus, the upper-left pixels of the blocks are more important. However, directly modifying
the upper-left pixels definitely damages the naturalness and visual quality. To solve this
problem, it is necessary to select the SPs to compose the modification batch and conduct
batch modification.

The pixels with large absolute values in a filter typically have great effects on similarity,
so they are selected as the SPs. The real value of an entry in the filter is α, and |·| is
the absolute value function. The absolute values of the entries in the filter is |α|. |α| is
normalized to |α|N in the range [0, 1].

|α|N =
|α|

|α|max − |α|min
(6)

|α|max and |α|min are the maximum and minimum |α|. A threshold value τ is used to
control the number of SP. If |α| ≥ τ, the pixel is selected as SP. The larger τ is, the smaller
the number of SP is.
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SPs are divided into two sets: positive SP if α≥ 0, and negative SP if α < 0. To enhance
the response, the values of positive SPs are increased, i.e., ∆ f = +1; in turn, the values of
negative SPs are decreased, i.e., ∆ f = −1.

If dis′ ≤ dis, batch modification is conducted, and then the modification position
moves to the next batch. The traversal way is from left to right, and from top to bottom.
The above single-pixel modification is conducted on each pixel until dis′ is less than the
threshold or the maximum number of matchings (iterations) is reached.

Some palmprint recognition systems have multiple filters, each filter producing a
template. The filters have their specific modification batches, and batch modification is
conducted on these filters in turn.

The window of the filter for BMS slides from left to right, and from top to bottom.
The SPs in each window are selected and compose the batch in this window. The batch
modifications in two overlapped windows probably have conflicts; that is, the latter modi-
fication probably damages the effects of the former modifications. To avoid this problem,
traversal gap is leveraged to reduce the area of overlapped region, as shown in Figure 3.
The black dots represent the upper-left pixel in each 4 × 4 block. The length between the
centroids of two successively traversed windows is the traversal gap that depends on the
size of the filter.
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BMS has higher successful attack rate than MCwN; however, it requires prior knowl-
edge of the filters.

4. Experiments
4.1. Dataset and Palmprint Recognition Methods

The palmprint database PolyU [33] was used in the experiments, which contains
7752 grayscale palmprint images taken from 386 palms in two sessions. The database was
divided into two parts: PalmBigDatabaseA and PalmBigDatabaseB. The images in Palm-
BigDatabaseA were used as the target images, which are all attacked in the experiments.
The images in PalmBigDatabaseB were used as the initial images for the attack methods.
The PalmBigDatabaseA contains the first 1000 images of 50 palms, which were used as
the target images. As described in Section 3, a real palmprint image, which can be easily
obtained, is used as the initial image. PalmBigDatabaseB contains the images of 286 palms,
which are randomly selected as the initial images. The two databases do not share the
common palm categories, so it is impossible that the initial image and the target image are
from the identical palm.

The experiments are conducted on eight coding-based palmprint recognition algo-
rithms: PalmCode [36], BOCV [37], Ordinance Code [38], FusionCode [39], CompCode [40],
RLOC [41], DOC [42], and DRCC [43]. The false non-match rate (FNMR) and false match
rate (FMR) were calculated. When FNMR = FMR, their value is defined as equal error
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rate (EER). Normalized Hamming distance (NHD) measures the dissimilarity between
two palmprint templates. Table 2 shows the NHD at EER, FNMR = 0, and FMR = 0 on
PalmBigDatabaseA. The NHDs in Table 2 are not used for accuracy comparison, but to
determine the different NHD thresholds at which the attack performance should be tested.

Table 2. Normalized Hamming distances at EER, FNMR = 0, and FMR = 0 on PalmBigDatabaseA.

NHD (FNMR = 0) NHD (EER) NHD (FMR = 0)

PalmCode [36] 0.425 0.370 0.330
BOCV [37] 0.450 0.390 0.365

OrdinalCode [38] 0.440 0.340 0.285
FusionCode [39] 0.430 0.370 0.335
CompCode [40] 0.160 0.130 0.115

RLOC [41] 0.475 0.410 0.390
DOC [42] 0.465 0.420 0.400

DRCC [43] 0.445 0.390 0.360

4.2. Attack Performance

Although many reconstruction algorithms exist, as summarized in Section 2.1, most of
them are unsuitable for the palmprint modality. Our attacks are compared with Galbally
et al.’s attack [26]. Galbally et al.’s attack uses multiple real iris images as the initial
population and uses the matching distance as the fitness function. After multiple iterations
of the genetic algorithm, the reconstructed image can impersonate the target user and cheat
the iris recognition system. Then reconstructed image is embedded in a high-quality iris
image to improve the naturalness and visual quality of the final reconstructed image. The
reasons for choosing Galbally et al.’s attack for comparison are as follows: First, Galbally
et al.’s attack is designed on a coding-based iris recognition system, which is similar
to the coding-based palmprint recognition systems and can be applied to the coding-
based palmprint recognition systems. Second, Galbally et al.’s attack requires the same
prerequisites as the attacks proposed in this paper; i.e., the constant matching distance of
each iterative modification. Third, the reconstructed images generated by their method
have a medium naturalness and visual quality.

To test [26], a palmprint image is randomly selected from PalmBigDatabase as the
embedded image. For our attacks, an image is randomly selected from PalmbigDatabaseB
as the initial input. Each palmprint image in PalmbigDatabaseA is a target image. We list
the successful attack rates at FNMR = 0, EER, FMR = 0, the average number of matching,
peak signal-to-noise ratio (PSNR), and structural similarity (SSIM). PSNR and SSIM are
calculated between the reconstructed ROI image and the initial ROI image. The two
methods proposed in this paper and the compared methods all use a high-quality real
palmprint as an initial image, and the reconstructed image is iteratively modified on the
basis of it. It can be considered that the real palmprint image has high naturalness, so
the PSNR and SSIM values between the reconstructed image and initial image can be
calculated. The lower the PSNR and SSIM values are, the larger the modification range is,
and the more seriously the naturalness degrades. The results of the different coding-based
palmprint recognition methods are shown in Tables 3–10.

All the methods yielded an attack success rate of nearly 100%. The matching number
refers to how many times the reconstructed image was modified; i.e., how many times the
fake template was matched with the target template. Since all these methods are based on
iterative evolution, the matching number, as an important dynamic characteristic, measures
the convergence speed. In addition, our methods have advantaged the naturalness and
visual quality. Since the initial image is a real palmprint image, it is possible to satisfy
similarity at FNMR = 0 or even EER at the beginning, so infinite (Inf) PSNR is possible. The
number of the initial images with Inf PSNR was recorded, and these images were excluded
when calculating the PSNR.
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In [26], 10 real palmprints are used as the initial individuals, so it is more probable
to satisfy similarity at the beginning at FNMR = 0. However, the NHD is very large at
FNMR = 0, so the threshold is commonly set at EER, and the results at FNMR = 0 are
unimportant. The following discussions focus on the results at EER and FMR = 0. BMS has
lower matching numbers, so its computational complexity is low. Both BMS and MCwN
outperform [26] in terms of PSNR and SSIM; while BMS yields the best results of PSNR
and SSIM. In [26], several palmprint images are required as the initial individuals, while
our attacks need only one palmprint image as the initial input.

Table 3. Attack performance of PalmCode [36].

PalmCode [36]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 1.0 6.760 940 23.2 3.392 0.988 0.050
Galbally (EER = 0) 465.6 364.91 15 24.1 2.754 0.795 0.087
Galbally (FMR = 0) 1618.7 893.351 1 22.2 1.855 0.695 0.086
MCwN (FNMR = 0) 1108.3 1101.942 317 35.0 3.868 0.972 0.028

MCwN (EER) 6013.9 1791.945 4 28.6 1.635 0.866 0.045
MCwN (FMR = 0) 9866.2 2192.273 0 26.4 1.179 0.794 0.060
BMS (FNMR = 0) 86.3 82.409 293 48.3 5.133 0.999 0

BMS (EER) 577.1 246.770 4 40.3 1.658 0.992 0
BMS (FMR = 0) 1511.2 655.849 0 36.9 1.098 0.983 0

Table 4. Attack performance of BOCV [37].

BOCV [37]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 0 0 0 36.1 1.574 0.973 0
Galbally (EER = 0) 1117.8 875.181 0 28.7 2.546 0.927 0.022
Galbally (FMR = 0) 3731.1 2743.178 0 27.9 1.894 0.913 0.020
MCwN (FNMR = 0) 248.5 587.795 727 40.2 5.835 0.995 0.010

MCwN (EER) 8865.1 2484.256 1 29.3 1.708 0.880 0.037
MCwN (FMR = 0) 13,549.7 3292.596 0 27.5 1.400 0.822 0.050
BMS (FNMR = 0) 23.5 42.123 389 54.9 7.598 0.999 0

BMS (EER) 1188.3 546.249 0 34.7 1.999 0.977 0.010
BMS (FMR = 0) 2261.9 903.541 0 32.5 1.058 0.964 0.010

Table 5. Attack performance of OrdinalCode [38].

OrdinalCode [38]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 0 0 998 / / 1 0
Galbally (EER = 0) 783.5 617.210 47 23.8 2.535 0.785 0.100
Galbally (FMR = 0) 5656.8 4221.575 0 20.6 1.392 0.579 0.094
MCwN (FNMR = 0) 67.7 360.238 944 36.5 4.875 0.998 0.010

MCwN (EER) 9577.8 3352.793 3 26.8 1.813 0.797 0.076
MCwN (FMR = 0) 20,139.2 6879.100 0 23.8 1.646 0.626 0.114
BMS (FNMR = 0) 6.8 15.533 944 41.8 4.020 1.000 0

BMS (EER) 742.8 1051.393 3 30.2 2.075 0.943 0.022
BMS (FMR = 0) 1956.0 2222.085 0 26.9 1.135 0.895 0.026
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Table 6. Attack performance of FusionCode [39].

FusionCode [39]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 0 0 997 15.2 0 1.000 0.010
Galbally (EER = 0) 789.0 912.764 30 23.7 2.539 0.776 0.096
Galbally (FMR = 0) 4544.6 3667.629 0 21.2 1.554 0.617 0.093
MCwN (FNMR = 0) 320.6 693.742 729 36.6 4.719 0.992 0.017

MCwN (EER) 6968.7 2152.851 4 28.4 1.788 0.856 0.050
MCwN (FMR = 0) 11660.5 2540.917 0 26.2 1.260 0.774 0.064
BMS (FNMR = 0) 25.4 48.533 647 52.8 6.235 1.000 0

BMS (EER) 952.4 692.114 3 39.5 2.185 0.991 0
BMS (FMR = 0) 2972.4 2503.948 0 36.6 1.162 0.984 0

Table 7. Attack performance of CompCode [40].

CompCode [40]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Gabally (FNMR = 0) 0 0 998 / / 1 0
Gabally (EER = 0) 1535.4 1323.859 7 23.1 2.717 0.736 0.114
Gabally (FMR = 0) 7630.8 6221.137 0 20.7 1.492 0.586 0.100

MCwN (FNMR = 0) 5.2 41.978 976 45.8 6.306 1.000 0
MCwN (EER) 6600.8 1782.556 0 27.9 1.618 0.839 0.052

MCwN (FMR = 0) 11,016.4 2224.044 0 25.6 1.179 0.749 0.070
BMS (FNMR = 0) 4.4 3.255 787 54.6 3.308 1.000 0

BMS (EER) 394.6 173.592 0 34.4 1.613 0.978 0.010
BMS (FMR = 0) 1081.9 711.593 0 31.4 0.941 0.960 0.010

Table 8. Attack performance of RLOC [41].

RLOC [41]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 0 0 998 / / 1.000 0
Galbally (EER = 0) 1094.7 845.827 9 23.6 2.587 0.763 0.098
Galbally (FMR = 0) 2809.6 1691.399 0 22.0 1.861 0.676 0.093
MCwN (FNMR = 0) 16.0 99.884 959 41.4 4.549 1.000 0

MCwN (EER) 4514.2 1282.262 0 29.2 1.592 0.887 0.036
MCwN (FMR = 0) 6416.3 1386.419 0 27.6 1.156 0.843 0.041
BMS (FNMR = 0) 6.2 12.336 814 60.4 4.705 1.000 0

BMS (EER) 1628.5 605.921 0 39.1 1.735 0.988 0
BMS (FMR = 0) 2561.4 692.470 0 37.3 1.065 0.982 0

The reconstructed ROI image can be embedded into its original complete palmprint
image to replace the original ROI region. Such a complete palmprint image, into which the
reconstructed ROI is embedded, can be input into the system and pre-processed. Since the
modifications in our attacks are slight, the difference between the reconstructed ROI image
and its original version is weak. It is difficult to find the forgery appearance in the final
complete palmprint image, as shown in Figure 4.
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Table 9. Attack performance of DOC [42].

DOC [42]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 0 0 998 / / 1.000 0
Galbally (EER = 0) 973.0 831.115 12 23.7 2.628 0.767 0.097
Galbally (FMR = 0) 3595.0 2740.069 0 21.6 1.610 0.647 0.091
MCwN (FNMR = 0) 159.7 396.768 741 40.9 5.285 0.996 0.010

MCwN (EER) 6569.4 1802.938 0 30 1.850 0.896 0.033
MCwN (FMR = 0) 10,054.7 1934.229 0 28.2 1.316 0.851 0.040
BMS (FNMR = 0) 17.3 28.167 448 56.7 6.767 1.000 0

BMS (EER) 813.6 809.699 0 38.8 1.890 0.990 0
BMS (FMR = 0) 1839.0 1896.114 0 36.4 1.078 0.984 0

Table 10. Attack performance of DRCC [43].

DRCC [43]
Matching
Number
(Mean) ↓

Matching
Number
(Std) ↓

PSNR (Inf) ↑ PSNR
(Mean) ↑

PSNR
(Std) ↓

SSIM
(Mean) ↑ SSIM (Std) ↓

Galbally (FNMR = 0) 0 0 998 / / 1.000 0
Galbally (EER = 0) 815.2 892.207 21 23.4 2.608 0.766 0.097
Galbally (FMR = 0) 6313.7 4771.276 0 20.7 1.402 0.590 0.084
MCwN (FNMR = 0) 45.5 213.826 924 41.3 6.267 0.999 0

MCwN (EER) 6841.4 1982.581 1 29.5 1.691 0.884 0.038
MCwN (FMR = 0) 12,168.2 2467.356 0 27.2 1.221 0.810 0.050
BMS (FNMR = 0) 7.3 14.359 585 60.5 5.091 1.000 0

BMS (EER) 693.3 373.336 1 39.3 1.905 0.991 0
BMS (FMR = 0) 2164.1 1533.112 0 36.1 1.008 0.983 0
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4.3. Ablation Experiment

Figure 5 compares the results of the conditions dis′ ≤ dis and dis′ < dis of single-
pixel modification on PalmCode [36]. The attack of dis′ ≤ dis is much better than that of
dis′ < dis, because the modifications are conducted when dis′ = dis, which ensures the
momentum is enough to keep persistently reducing the matching distance.
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Figure 5. Two modification modes when distance is not changed.

Figure 6 shows the effects of τ on matching numbers, PSNR, and SSIM. All the three
values increase with the increment in τ. The increments in PSNR and SSIM are stable and
durative, while the matching number increases slowly at first, but sharply so when τ > 0.6.
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Figure 6. The effects of the threshold for BMS: (a) Matching number; (b) PSNR; (c) SSIM.

Figure 7 shows the effects of the traversal gap on matching number, PSNR, and SSIM.
The matching number decreases at first and then increases, while the trends in PSNR and
SSIM are just the opposite. The results are best when the gap is 12.
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5. Conclusions and Future Works

In this paper, in order to comprehensively evaluate biometric reconstruction attacks in
secure identity management systems, more indicators are proposed, including similarity,
naturalness, visual quality, and completeness. The existing reconstruction attacks cannot
simultaneously satisfy the indicators. Two novel reinforced reconstruction attacks with
reinforcement strategies are proposed for palmprints, which is a promising and representa-
tive biometric modality. Any palmprint image, which can be easily obtained, is used as
the initial image, and the region of interest is iteratively modified to reduce the matching
distance. Modification Constraint within Neighborhood (MCwN) and Batch Member Se-
lection (BMS) are proposed, which have completeness and can maximize the naturalness
and visual quality. In addition, BMS has a much smaller matching number and lower
computational complexity. The two reinforced attacks can satisfy all the requirements,
which cannot be simultaneously satisfied by the existing attacks. Our works show that
unprotected biometric templates are vulnerable to reconstruction attacks. In the future,
we will test the attack performance of the proposed methods on biometric systems with
template protection. We will also try to design defense methods to resist reconstruction
attacks in biometric systems.
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