
RESEARCH ARTICLE

The complete mitogenome of Lysmata vittata

(Crustacea: Decapoda: Hippolytidae) with

implication of phylogenomics and population

genetics

Longqiang ZhuID
1,2,3, Zhihuang ZhuID

1,2*, Leiyu Zhu1,2, Dingquan Wang3,

Jianxin Wang3*, Qi Lin1,2,3*

1 Fisheries Research Institute of Fujian, Xiamen, China, 2 Key Laboratory of Cultivation and High-value

Utilization of Marine Organisms in Fujian Province, Xiamen, China, 3 Marine Microorganism Ecological &

Application Lab, Zhejiang Ocean University, Zhejiang, China

* xmqlin@sina.com (QL); jxwang@zjou.edu.cn (JW); zhu.zhi.huang@163.com (ZZ)

Abstract

In this study, the complete mitogenome of Lysmata vittata (Crustacea: Decapoda: Hippolyti-

dae) has been determined. The genome sequence was 22003 base pairs (bp) and it

included thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes (tRNAs),

two ribosomal RNA genes (rRNAs) and three putative control regions (CRs). The nucleotide

composition of AT was 71.50%, with a slightly negative AT skewness (-0.04). Usually the

standard start codon of the PCGs was ATN, while cox1, nad4L and cox3 began with TTG,

TTG and GTG. The canonical termination codon was TAA, while nad5 and nad4 ended with

incomplete stop codon T, and cox1 ended with TAG. The mitochondrial gene arrangement

of eight species of the Hippolytidae were compared with the order of genes of Decapoda

ancestors, finding that the gene arrangement order of the Lebbeus groenlandicus had not

changed, but the gene arrangement order of other species changed to varying degrees. The

positions of the two tRNAs genes (trnA and trnR) of the L. vittata had translocations, which

also showed that the Hippolytidae species were relatively unconserved in evolution. Phylo-

genetic analysis of 50 shrimp showed that L. vittata formed a monophyletic clade with Lys-

mata/Exhippolysmata species. This study should be helpful to better understand the

evolutionary status, and population genetic diversity of L. vittata and related species.

Introduction

The genus Lysmata is an important group in family Hippolytidae, contains more than 48

described species, most of which are small shrimp living in shallow waters [1,2]. For a long

time, the classification of Hippolytidae was the most controversial family in Decapoda, espe-

cially the monophyly of Hippolytidae and the position of the genus Lysmata [3,4]. In the past

few decades, the studies of Lysmata mainly focused on morphology, with relatively few studies

on population genetic structure. Meanwhile, most of the selected marker genes are partial
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sequences of rrnL, rrnS and cox1, and these gene fragments often fail to provide enough infor-

mation to make the study of population genetics and species evolution.

The mitogenome is a significant tool for studying identification and phylogenetic relation-

ships in the different species [5]. In shrimps, the mitochondria is maternally inherited, usually

is circular and approximately 15 to 20 kb in length, including thirteen PCGs, two rRNAs,

twenty-two tRNAs and one CR. The mitogenome contains abundant gene information, and

the phylogenetic tree based on the mitogenome sequences has the advantages of stable and

reliable structure. Analyzing the genetic relationship of species through the establishment of

the 13PCGs sequence of the mitogenome can better solve the problems encountered in species

classification.

Lysmata vittata (Crustacea: Decapoda: Hippolytidae) belongs to a small marine ornamental

shrimp, commonly known as peppermint shrimp, which is popular in the marine aquarium

trade. The species has a special sexual system, ie, protandric simultaneous hermaphrodite

(PSH) [3]. It is a member of the clean shrimp family, a common marine ornamental species

that originated in the Indian Ocean-Pacific region, including coastal areas such as China,

Japan, Philippines and Australia [6–8]. L. vittata prefers to move in the range of 2~50 m below

the sea surface, usually hiding in the reef during the day and activating at night [9]. In recent

years, with the continuous breakthroughs in genomics technology, the phylogenetic research

of the Lysmata species has gradually moved from the morphological level to the genome level.

As a relatively important marine ornamental species, the determination of L. vittata mitogen-

ome is of great significance for the development of genetic diversity and evolutionary history

of Lysmata.

In this study, the mitogenome of the L. vittata has been successfully determined, and its

structure and phylogenetic status have been analyzed. This work should help to further under-

stand the evolutionary relationship and population genetic diversity between the L. vittata and

related species.

Materials and methods

Mitochondria DNA sequencing and genome assembly

Specimens of L. vittata were collected in Xiamen, Fujian province, China. The morphological

characteristics of the species follow the previous description of Abdelsalam [1]. Approximately

5g of muscle tissue was harvested for mtDNA isolation using an improved extraction method

[10]. After DNA isolation, the isolated DNA was purified according to manufacturer’s instruc-

tions (Illumina), and then 1 μg was taken to create short-insert libraries, whose insertion size

was 430 bp, followed by sequencing on the Illumina Hiseq 4000 [11] (Shanghai BIOZERON

Co., Ltd). The high molecular weight DNA was purified and used for PacBio library prep,

BluePippin size selection, then sequenced on the Sequel Squencer.

The raw data obtained by sequencing was processed and then the duplicated sequences

were assembled. The mitogenome was reconstructed using a combination of the PacBio Sequel

and the Illumina Hiseq data. Assemble the genome framework by the both Illumina and Pac-

Bio using SOAPdenovo2.04 [12]. Verifying the assembly and completing the circle or linear

characteristic of the mitogenome, filling gaps if there were. Finally, the clean data were mapped

to the assembled draft mitogenome to correct the wrong bases, and the most of the gaps were

filled through local assembly.

Validation of mitogenome data

In order to ensure the accuracy of the L. vittata mitogenome data, we resequenced the samples

on the Illumina HiSeq X10 platform (Nanjing Genepioneer Biotechnologies Co. Ltd).
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Genome annotation and sequence analysis

Mitogenome sequences were annotated using homology-based prediction and de novo predic-

tion, and the EVidenceModeler v1.1 [13] was used to integrate the complete genetic structure.

Twenty-two tRNAs and two rRNAs were predicted by tRNAscan-SE [14] and rRNAmmer 1.2

[15]. The circular of the complete L. vittata mitogenome graphical map was drawn using Orga-

nellarGenomeDRAW v1.2 [16]. The RSCU of thirteen PCGs (remove incomplete codons) was

calculated using MEGA 5.0 [17]. The composition skewness of each component of the genome

was calculated according to the following formulas: AT-skew = (A-T)/(A+T); GC-skew =

(G-C)/(G+C) [18]. The secondary cloverleaf structure of tRNAs was examined with MITOS

WebServer (http://mitos2.bioinf.uni-leipzig.de/index.py) [19].

Phylogenetic analysis

To reconstruct the phylogenetic relationship among shrimp, the PCGs sequences of the 49

Decapoda species were downloaded from GenBank database (S1 Table). The PCGs sequences

of Harpiosquilla harpax (NC_006916) were used as outgroup. The nucleotide and amino acid

sequences of 13 PCGs were aligned using MEGA 5.0 [17]. Gblocks was used to identify and

selected the conserved regions [20]. Subsequently, Bayesian inference (BI) and Maximum like-

lihood (ML) analysis were utilized for reconstructing phylogenetic tree by MrBayes v3.2.6 [21]

and PhyML 3.1 [22]. According to the Akaike Information Criterion (AIC) [23], TVM + I + G

model was considered as the best-fit model for analysis with nucleotide alignments using jMo-

deltest [24], and MtArt + I + G + F model was the optimal model for the amino acid sequence

dataset using ProtTest 3.4.2 [25]. In BI analysis, two simultaneous runs of 10000000 genera-

tions were conducted for the matrix. Sampling trees every 1000 generations, and diagnostics

were calculated every 5000 generations, with three heated and one cold chains to encourage

swapping among the Markov-chain Monte Carlo (MCMC) chains. Additionally, the standard

deviation of split frequencies was below 0.01 after 10000000 generations, and the potential

scale reduction factor (PSRF) was close to 1.0 for all parameters. Posterior probabilities over

0.9 or bootstrap percentage over 75%, the results were regarded as credible [26,27]. The result-

ing phylogenetic trees were visualized in Fig Tree v1.4.0.

Results and discussion

Genome structure, organization and composition

The mitogenome of L. vittata was a typical circular molecule of 22003 bp in size. It contained

37 mitochondrial genes (thirteen PCGs, twenty-two tRNAs, two rRNAs and three CRs) (Fig 1

and S2 Table). Among the 37 genes, the coding direction of the twenty-three genes was clock-

wise (F-strand), and the coding direction of the remaining fourteen genes was counterclock-

wise (R-strand) (Fig 1 and S2 Table).

The nucleotide composition of the mitogenome was biased toward A and T (T = 37.15%,

A = 34.35%, C = 16.69%, G = 11.80%) (Table 1). The relatively AT contents of the complete

mitogenome were calculated [mitogenome (71.50%), PCGs (69.79%), tRNAs (69.58%) and

rRNAs (69.29%)] (Tables 1 and 2). However, with the exception of Thor amboinensis
(73.10%), the AT content of L. vittata mitogenome was higher than other species in the Hippo-

lytidae (Table 1). Among the nine species of Hippolytidae, the AT-skew values of L. vittata
(-0.039) was similar with L. boggessi (-0.040), and the AT-skew values of Lebbeus groenlandicus
(0.062), Exhippolysmata ensirostris (0.009) and Saron marmoratus (0.110) was positive. In

addition, with the exception of Thor amboinensis (-0.081), the GC-skew value for L. vittata
(Guangdong) was the biggest negative comparing to that of other mitogenomes (Table 1). By
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comparing the mitogenome sequence of L. vittata (Fujian) with that of L. vittata (Guangdong),

it was found that the whole mitogenome sequence of L. vittata (Fujian) could completely over-

lap with L. vittata (Guangdong) except that it was 1146 bp bases longer than that of L. vittata
(Guangdong). The base distribution of L. vittata (Guangdong) deletion was shown in S1 Fig.

The reason for sequence deletion may be related to sequencing method and sequence splicing.

All original sequence data in this study were submitted to the NCBI database under accession

number MT478132.

Fig 1. Mitogenome map of Lysmata vittata. The genes outside the map were coded on the F strand, whereas the genes on the inside of the map are coded on

the R strand. The middle black circle displays the GC content and the inside purple and green circle displays the GC skew.

https://doi.org/10.1371/journal.pone.0255547.g001
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PCGs and codon usage

The PCGs region was 11144 bp long, and accounted 50.6% of the L. vittata mitogenome. Fur-

thermore, a contrast of nucleotide composition, AT-skew value, and GC-skew value of PCGs

Table 1. Composition and skewness of mitogenome in 9 Hippolytidae species.

Species Size (bp) T% C% A% G% A+T % ATskewness GCskewness

Whole genome

L. vittata 22003 37.15 16.69 34.35 11.80 71.50 -0.039 -0.172

L. vittata (Guangdong) 20857 36.87 17.03 34.36 11.74 71.23 -0.035 -0.184

L. amboinensis 16735 32.36 21.65 31.68 14.31 64.05 -0.011 -0.204

L. debelius 16757 34.11 19.70 33.04 13.15 67.15 -0.016 -0.199

L. boggessi 16979 35.01 19.55 32.33 13.10 67.34 -0.040 -0.197

L. groenlandicus 17398 30.37 21.37 34.41 13.85 64.78 0.062 -0.213

E. ensirostris 16350 31.93 21.31 32.52 14.24 64.45 0.009 -0.199

S. marmoratus 16330 30.21 21.70 37.68 10.42 67.89 0.110 -0.351

T. amboinensis 15553 37.01 14.54 36.09 12.36 73.10 -0.013 -0.081

PCGs

L. vittata 11144 41.09 15.25 28.70 14.96 69.79 -0.178 -0.010

L. vittata (Guangdong) 11285 41.17 15.18 28.75 14.90 69.92 -0.178 -0.009

L. amboinensis 11192 36.66 19.12 25.94 18.28 62.60 -0.171 -0.022

L. debelius 11162 38.66 17.17 27.40 16.78 66.05 -0.170 -0.011

L. boggessi 11165 38.83 17.65 27.02 16.50 65.85 -0.179 -0.034

L. groenlandicus 11175 37.19 18.93 25.66 18.23 62.85 -0.184 -0.019

E. ensirostris 11062 36.77 19.30 26.05 17.87 62.83 -0.171 -0.038

S. marmoratus 11135 37.53 17.45 28.50 16.52 66.03 -0.137 -0.027

T. amboinensis 11178 41.39 13.36 30.26 14.99 71.65 -0.155 0.058

https://doi.org/10.1371/journal.pone.0255547.t001

Table 2. Composition and skewness of Lysmata vittata mitogenome.

Lysmata vittata Size(bp) T (%) C (%) A (%) G (%) A+T (%) AT-skew GC-skew

atp6 675 40.15 19.41 28.30 12.15 68.44 -0.17 -0.23

atp8 165 43.64 15.76 35.15 5.45 78.79 -0.11 -0.49

cob 1137 39.40 20.14 27.88 12.58 67.28 -0.17 -0.23

cox1 1614 37.73 17.91 27.76 16.60 65.49 -0.15 -0.04

cox2 693 37.95 19.77 28.43 13.85 66.38 -0.14 -0.18

cox3 756 39.29 18.25 27.91 14.55 67.20 -0.17 -0.11

nad1 927 44.01 10.79 27.29 17.91 71.31 -0.23 0.25

nad2 1005 43.28 18.01 29.05 9.65 72.34 -0.20 -0.30

nad3 354 42.66 18.93 26.27 12.15 68.93 -0.24 -0.22

nad4 1336 43.11 9.51 28.59 18.79 71.70 -0.20 0.33

nad4l 246 45.12 7.72 26.02 21.14 71.14 -0.27 0.46

nad5 1732 41.17 9.82 31.64 17.38 72.81 -0.13 0.26

nad6 504 44.64 17.06 28.57 9.72 73.21 -0.22 -0.27

tRNAs 1512 33.27 14.02 36.31 16.40 69.58 0.04 0.08

rRNAs 2315 32.40 11.88 36.89 18.83 69.29 0.06 0.23

CR1 650 42.15 9.85 38.31 9.69 80.46 -0.05 -0.01

CR2 3821 38.50 14.39 33.73 13.37 72.23 -0.07 -0.04

CR3 888 42.34 13.51 34.91 9.23 77.25 -0.10 -0.19

https://doi.org/10.1371/journal.pone.0255547.t002
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from other species in the Hippolytidae were also exhibited in Table 1. Nine of thirteen PCGs

(atp6, atp8, cob, cox1-3, nad2-3 and nad6) were encoded on the light (F) strand, while the

other four genes (nad1, nad4L and nad4-5) were encoded on the heavy (R) strand (S2 Table).

Each PCG was initiated by a canonical ATN codon (ATG for atp6, atp8, nad2-5 and cob; ATT

for cox2 and nad1; ATC for nad6), except for cox1 (TTG), nad4L (TTG) and cox3 (GTG) (S2

Table). Two of the thirteen PCGs (nad5 and nad4) terminated with incomplete stop codon T,

one PCG (cox1) terminated with stop codon TAG, and the other ten PCGs terminated with

the canonical termination codon TAA (S2 Table).

The RSCU values of L. vittata mitogenome were analyzed and the results were shown in

Table 3. The total number of codons in thirteen PCGs was 3714 except eleven canonical stop

codons and two incomplete stop codons and the most common amino acids were Ile (AUR)

(499), Phe (UUR) (357) and Leu2 (UUR) (315), whereas codons encoding Cys (UGR) (41) and

Met (AUR) (24) were rare (Fig 2). The overall A + T content of thirteen PCGs was 69.79%, the

AT-skews and GC-skews were negative which implied a higher occurrence of Ts and Cs than

As and Gs (Table 1).

Transfer RNAs and ribosomal RNAs

The mitogenome of L. vittata contained twenty-two tRNAs and these genes ranged from 60

(trnA) to 77 bp (trnN) (S2 Table). The tRNAs showed a strong A +T bias (69.58%), while they

also exhibited positive AT-skew (0.04) and GC-skew (0.08) (Table 1). Eight tRNAs [trnQ
(CAA), trnC (UGC), trnY (UAC), trnF (UUC), trnH (CAC), trnP (CCA), trnL1 (CUA) and

trnV (GUA)] were present on the R strand and the remaining fourteen were present on the F

strand (S2 Table). The examined secondary structure of twenty-two tRNAs was shown in S2

Fig. The other twenty-one tRNAs had typical cloverleaf secondary structure except that trnS1
(AGA) lacked the dihydropyridine (DHU) arm [18,19,27,28] (S1 Fig). In the secondary struc-

ture of the tRNAs, the most common non-Watson–Crick base pair was G–U (e.g. trnC, trnE),

followed by U–U (e.g. trnA, trnC) [19]. In addition, several mismatches were common in

tRNAs, such as A–C (e.g. trnA), C–U (e.g. trnA, trnG) and A–A (e.g. trnM, trnS1) (S1 Fig).

Table 3. The codon number and relative synonymous codon usage (RSCU) in L. vittata mitochondrial protein coding genes.

Codon Count RSCU Codon Count RSCU Codon Count RSCU Codon Count RSCU

UUU(F) 300 1.68 UCU(S) 129 2.46 UAU(Y) 101 1.57 UGU(C) 32 1.56

UUC(F) 57 0.32 UCC(S) 29 0.55 UAC(Y) 28 0.43 UGC(C) 9 0.44

UUA(L) 283 3.13 UCA(S) 92 1.76 UAA(�) 10 0.29 UGA(W) 92 2.68

UUG(L) 32 0.35 UCG(S) 12 0.23 UAG(�) 1 0.03 UGG(W) 15 1

CUU(L) 131 1.45 CCU(P) 101 2.71 CAU(H) 53 1.47 CGU(R) 12 0.4

CUC(L) 33 0.36 CCC(P) 14 0.38 CAC(H) 19 0.53 CGC(R) 2 0.07

CUA(L) 59 0.65 CCA(P) 28 0.75 CAA(Q) 55 1.62 CGA(R) 38 1.26

CUG(L) 5 0.06 CCG(P) 6 0.16 CAG(Q) 13 0.38 CGG(R) 11 0.36

AUU(I) 266 1.6 ACU(T) 85 1.95 AAU(N) 108 1.65 AGU(S) 45 0.86

AUC(I) 42 0.25 ACC(T) 23 0.53 AAC(N) 23 0.35 AGC(S) 7 0.13

AUA(I) 191 1.15 ACA(T) 61 1.40 AAA(K) 83 1.77 AGA(S) 93 3.08

AUG(M) 24 1 ACG(T) 5 0.11 AAG(K) 11 0.23 AGG(S) 25 0.83

GUU(V) 95 1.82 GCU(A) 93 2.14 GAU(D) 56 1.51 GGU(G) 61 1.06

GUC(V) 8 0.15 GCC(A) 25 0.57 GAC(D) 18 0.49 GGC(G) 20 0.35

GUA(V) 87 1.67 GCA(A) 50 1.15 GAA(E) 64 1.35 GGA(G) 106 1.84

GUG(V) 19 0.36 GCG(A) 6 0.14 GAG(E) 31 0.65 GGG(G) 43 0.75

https://doi.org/10.1371/journal.pone.0255547.t003
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Two rRNA genes were found on the R strand. The rrnL was 1494 bp and rrnS was 821 bp,

one located between trnL1 and trnV and another located between trnV and CR1 (S2 Table and

Fig 1). The total A+T content of the two rRNAs was 69.29%, with a positive AT-skew (0.06)

(Table 2).

Overlapping and intergenic regions

The mitogenome of L. vittata contained four overlapping regions, these four pairs of genes

were presented: atp8/atp6, trnE/trnF, nad4/nad4L and trnL1/rrnL, with the longest 23 bp over-

lap located between trnL1 and rrnL (S2 Table). The 27 intergenic regions were found with a

length varying from 2 ~ 3821 bp (S2 Table). Three putative CRs had been identified in L. vit-
tata mitogenome. The CR1 was located between rrnS and trnI, with a length of 650 bp, and the

A+T content was 80.46%. The CR2 was located between cox1 and trnL2, with a length of 3821

bp, and the A+T content was 72.23%. The CR3 was located between trnL2 and cox2, with a

length of 888 bp, and the A+T content was 77.25% (Tables 2 and S2).

To our knowledge, the complete mitogenome sequence of L. vittata is the longest in the

existing research on shrimp. How multiple CRs were generated and evolved in the

Fig 2. RSCU and Codon distribution in the mitogenome of L. vittata. The left ordinate represents RSCU, and the right ordinate represents the number of

the Codon distribution.

https://doi.org/10.1371/journal.pone.0255547.g002
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mitogenome of Lysmata is a novel problem that has not yet been solved, and more mitogen-

omes of Lysmata are still needed to clarify the mechanism forming this phenomenon.

Gene rearrangement

In terms of gene rearrangement, compared with the genes order of the ancestor of Decapoda

[20,29], the order of the genes of L. groenlandicus remains unchanged, and all species of the

Lysmata had multiple CR regions. Among them, L. amboinensis, L. debelius and L. boggessi
had 2 CR regions, L. vittata has three CR regions and the positions of the two tRNA genes

(trnA and trnR) had been translocated. In addition, the mitochondrial genes order of E. ensir-
ostris, S. marmoratus and T. amboinensis all had varying degrees of translocation compared

Fig 3. Linear representation of gene rearrangements of Hippolytidae species.

https://doi.org/10.1371/journal.pone.0255547.g003
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with the gene order of Decapoda (Fig 3). The position of cox2 and trnL2 of E. ensirostris was

translocated, and the trnC and gene block (trnM-nad2-trnW) of S. marmoratus were translo-

cated. T. amboinensis produced more translocations, including two gene block (nad6-cob-

trnS2 and nad5-trnH-nad4-nad4l) translocations and single tRNA (trnQ, trnT, trnE, trnH,

trnY, trnP, trnC and trnM) translocations (Fig 3). In fact, gene rearrangement was a very com-

mon phenomenon in the mitogenome and the rearrangement mainly occurred in tRNA

genes. Gene arrangement was stable, and it could be used as an important phylogenetic marker

in the analysis of evolutionary perspective on shrimp. Comparing the order of the

Fig 4. Phylogenetic tree inferred from nucleotide sequences of 13 PCGs of the mitogenome using ML and BI methods (BP/PP).

https://doi.org/10.1371/journal.pone.0255547.g004
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mitochondrial genes of various species of Hippolytidae, it indicates that the species of Hippoly-

tidae are not conserved in evolution.

Phylogenetic analysis

The taxonomic status of genus Lysmata within Hippolytidae has been a highly contentious

issue for a long time. In this study, using ML and BI analysis methods, phylogenetic analysis

was performed based on the nucleotide and amino acid sequences of thirteen PCGs of the spe-

cies in S1 Table, and the analysis results were presented (Figs 4 and 5). The phylogenetic tree

based on the nucleotide sequence of thirteen PCGs showed that Lysmata and Exhippolysmata
formed a monophyletic group, while S. marmoratus, L. groenlandicus and T. amboinensis was

clustered into a monophyletic group with species of Alpheidae and Palaemonidae (Fig 4). This

analysis supported Christoffersen’s [30,31] proposal to classify the Lysmata into the same clas-

sification level as the Lysmatidae. The phylogenetic tree based on the amino acid sequence of

13 PCGs revealed that the species of Hippolytidae clustered into a large branch, among which

Lysmata-Exhippolysmata formed a monophyletic branch, which was in sister relationship with

S. marmoratus-L. groenlandicus/T. amboinensis (Fig 5). The topological structures of the

Fig 5. Phylogenetic tree inferred from amino acid sequences of 13 PCGs of the mitogenome using ML and BI methods (BP/PP).

https://doi.org/10.1371/journal.pone.0255547.g005
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phylogenetic trees constructed based on the nucleotide sequence and amino acid sequence

were slightly different within the Hippolytidae, but the monophyleticity of Lysmata-Exhippo-
lysmata had been fully verified in previous studies [32–35]. Furthermore, the phylogenetic

analyses confirmed that L. vittata (Fujian) and L. vittata (Guangdong) were closely related.

The two shrimps were clustered together and the branch length was zero. Especially their

branch nodes were strongly supported (ML BP = 100%; BI PP = 1), indicating that there was

almost no difference between L. vittata (Fujian) and L. vittata (Guangdong). The phylogenetic

relationship among other suborder/superfamily of Decapoda was similar to Ma et al. [36]

research.

Conclusion

In this study, we successfully obtained the mitogenome sequence of the L. vittata, which was

also the first species of the Hippolytidae to publish the mitogenome sequence in the GenBank

database. The genome sequence was 22003 base pairs (bp) and it included 37 genes and three

CRs. Each PCGs was initiated by a canonical ATN codon, except for cox1, nad4L and cox3,

which were initiated by a TTG, TTG and GTG. Two of the thirteen PCGs (nad5 and nad4) ter-

minated with incomplete stop codon T, and one (cox1) terminated with stop codon TAG. The

AT-skew (-0.04) and the GC-skew (-0.17) were both negative in the mitogenomes of L. vittata.

Compared with the gene order of a Decapoda ancestor, the gene arrangement order of the L.

vittata has changed. Futhermore, phylogenetic analyses showed that L. vittata formed a mono-

phyletic branch with other species of the genus Lysmata/Exhippolysmata.
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