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A QSAR study on thiophenyl derivatives as SGLT2 inhibitors as potential antidiabetic agents was performed with thirty-three
compounds. Comparison of the obtained results indicated the superiority of the genetic algorithm over the simulated annealing
and stepwise forward-backward variable method for feature selection. The best 2D QSAR model showed satisfactory statistical
parameters for the data set (𝑟2 = 0.8499, 𝑞2 = 0.8267, and pred 𝑟2 = 0.7729) with four descriptors describing the nature of
substituent groups and the environment of the substitution site. Evaluation of the model implied that electron-rich substitution
position improves the inhibitory activity.The good predictive 3D-QSARmodels by k-nearest neighbor (kNN)method for molecular
field analysis (MFA) have cross-validated coefficient 𝑞2 value of 0.7663 and predicted 𝑟2 value of 0.7386. The results have showed
that thiophenyl groups are necessary for activity and halogen, bulky, and less bulky groups in thiophenyl nucleus enhanced the
biological activity. These studies are promising for the development of novel SGLT2 inhibitor, which may have potent antidiabetic
activity.

1. Introduction

One of the main features of diabetes is the elevation of blood
sugar with its deleterious consequences in a variety of tissues
[1]. Thus, control of the plasma glucose level is of utmost
importance in the treatment of this disease. In recent years,
the idea that affecting glucose absorption in the intestine
and/or the glucose reabsorption in the kidney might be a
possible way to control the sugar level has evolved. Diabetes
comprises a group of metabolic disorders characterised by
chronic hyperglycaemia with disorders in the metabolism
of carbohydrate, fat, and protein that result in defects in
secretion and action of insulin [2]. Dysfunction and failure
of various organs, especially the eyes, kidneys, nerves, and
heart, and the blood vessels are the usual complications of
diabetes [3, 4]. Diabetes is mainly divided into four main
types including insulin-dependent diabetes mellitus (type 1),
non-insulin-dependent diabetes mellitus (type 2), gestational
diabetes, and other specific types [5]. Diabetes mellitus type
2 (T2DM) accounts for almost 90% of diabetes cases, with
the property of insulin resistance and beta-cell dysfunction

that induces hyperglycemia [6]. Medical complications
associated with T2DM include cardiovascular disease, stroke,
nephropathy, retinopathy, renal failure, and amputations of
the extremities [7]. In recent years, much attention has been
given to sodium-dependent glucose cotransporters (SGLTs),
mediators of reabsorption of glucose in the human body.
Sodium-dependent glucose cotransporter 2 (SGLT2) is a
high-capacity, low-affinity transporter expressed selectively
in the S1 domain of the proximal tubule in the kidney
and is responsible for 90% of renal glucose reuptake.
Sodium dependent glucose cotransporter 1 (SGLT1), on
the other hand, is a low-capacity, high-affinity transporter
distributed in the kidney, gut, and other tissues, responsible
for the remaining 10% of glucose reuptake [8]. Na+-glucose
cotransporter (SGLT) is a membrane protein that plays
an important role in the reabsorption of glucose in the
kidneys. Sodium-dependent glucose cotransporters (SGLTs),
mediators of reabsorption of glucose in the kidney, have
recently emerged as novel drug targets for the treatment of
diabetes [9]. SGLT is known to have three isoforms (SGLT1,
SGLT2, and SGLT3) [10–12]. SGLT1 is expressed primarily
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in the brush border membrane of mature enterocytes in the
small intestine, where it absorbs dietary glucose and galactose
from the gut lumen [13]. SGLT2, expressed exclusively in
the kidney, is located in the S1 segment of the proximal
convoluted tubule of the kidney. It is a low-affinity, high-
capacity cotransporter and is responsible for 90% of renal
glucose reabsorption [14]. Several therapeutic agents are
available for monotherapy or for combination therapy with
different mechanisms to treat diabetics, such as metformin,
rosiglitazone, sitagliptin, acarbose, and glimepiride [15].
The obvious need for new approaches to treat patients with
uncontrolled T2DM has prompted continuous exploration
of alternative targets involved in maintenance of glucose
homeostasis. Several SGLT2 inhibitors have been reported as
undergoing clinical trials. Phlorizin [16], 3-(benzo[b]furan-
5-yl)-2,6-dihydroxy-4-methylpropiophenone-2-O-𝛽-D-
glucopyranoside [17], sergliflozin [18], and remogliflozin
[19] are O-glycosides and show strong inhibition of SGLT2.
They also demonstrate efficacy in vivo when administered
orally in rats or mice. They induce a glucosuric response,
the result of the blockade of renal glucose reabsorption, and
consequently lead to reduction of the blood glucose level
and improvement of insulin sensitivity [20]. Quantitative
structure-activity relationship (QSAR) studies can be
utilized to predict eye irritation potential as an alternative
in silico method, just as it has been used successfully to
predict several other toxicological endpoints for some
time [21]. Hence, in continuation to our efforts [22–67] in
developing QSAR studies for angiotensin II AT

1
receptor,

antitubercular agents, antimalarial activity, antimicrobial
activity, antibacterial activity, COX inhibitors, and so forth.

In this study, we have taken thiophenyl derivatives for
performing 2D and 3D quantitative structural-activity rela-
tionship analysis and calculations in order to understand
their stereoelectronic properties. Genetic algorithm (GA),
simulated annealing (SA), and stepwise forward-backward
variable selection methods have been employed for selec-
tion of relevant descriptors. The obtained results provide
further insight into some beneficial information in structural
modifications to design new potential SGLT2 inhibitors.
Moreover, new compounds with high predictive activities
were designed.

2. Materials and Methods

2.1. Data Set. Thebiological data set was chosen from a series
of thirty-three thiophenyl derivatives as SGLT2 inhibitors as
potential antidiabetic agents reported by Lee et al. [68]. The
biological activity values [IC

50
(nM)] reported in nanomolar

units were converted to their molar units pIC
50

and subse-
quently used as the dependent variable for theQSAR analysis.
The converted to pIC

50
for the QSAR analysis along with the

structure of the compounds in the series are listed in Table 1
(marked with asterisk). The test compounds were selected
manually such that the structural diversity and wide range
of activity in the data set were included. In this paper, a
series of thiophenyl compounds with substitutions at X and R
position of thiophenyl moiety are subjected to examining the

relationships between structural modifications and activities
against hSGLT2 inhibitors with the help of QSAR modeling.

2.2. Computational Details. All the computational studies
were performed by V-life MDS (Molecular Design Suite) 3.5
software supplied by V-life Sciences Technologies Pvt. Ltd.,
Pune, India [69]. The sketched structures were used for the
calculation of 2D molecular descriptors using QSARmodule
of Molecular Design Suite software. Each compound was
subjected to energy minimization and batch optimization
using Merck Molecular Force Field (MMFF), fixing Root
Mean Square Gradients (RMS) to 0.01 kcal/mol Å [70].

The sphere exclusion method [71] was adopted total set
of inhibitors was divided randomly into a training set (26
compounds) for generation of QSAR models and a test set
(7 compounds) for validation of the developed model. This
random division of data set will be done through several
cycles in order to get the best QSAR model. This study will
help in rational drug designing of these derivatives as SGLT2
inhibitors for the eradication of T2DM. The unicolumn
statistics of the training and test sets are reported in Table 2.
The maximum and minimum value in training and test set
were compared in a way that

(1) the maximum value of pIC
50
of test set should be less

than or equal to maximum value of pIC
50
of training

set,

(2) the minimum value of pIC
50

of test set should be
higher than or equal to minimum value of pIC

50
of

training set.

2.3. Calculating 2D Descriptors. In the current approach,
an attempt has been taken to understand the structural
and physicochemical requirements of a set of hSGLT2
inhibitors by the help of regression 2D quantitative structure-
activity relationship (2D QSAR). The energy-minimized
geometry was used for the calculation of the various 2D
descriptors such as topological, shape and geometrical, and
physicochemical parameters such as individual (H-Acceptor
count, H-Donor count, XlogP, retention index (Chi), element
count, estate numbers, estate contribution, and alignment-
independent descriptors were used as predictor variables), as
they were found to be appropriate for the development of
models. A considerable number of the 265 physicochemical
parameters, 300 alignment type parameters, and 99 atoms
types count descriptors calculations were done using the
V-life, MDS 3.5. The preprocessing of the independent
variables (i.e., 2D descriptors) was done by removing the
invariable (constant column) which resulted in a total of
216 molecular descriptors to be used for QSAR analysis.
The various alignment-independent descriptors were also
calculated. In this study to calculate AI descriptors, we have
used the following attributes: 2 (double bonded atom), 3
(triple bonded atom), C, N, O, S, H, F, Cl, Br, and I, and
the distance range of 0–7. The QSAR models were built with
the consideration of the applicability of the descriptor for the
activity. Various types of physicochemical descriptors have
been calculated which are shown in the data sheet (Table 3).
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Table 1: Structure and biological activity of thiophenyl derivatives hSGLT2 inhibitors.

O

OH

HO

HO

OH

S

X

R

S. number X R IC50 pIC50

1 Cl

OMe

86.5 7.0629

2 Cl

OEt

34.6 7.4609

3∗ Cl

OH

140 6.8538

4 Cl

O

65.0 7.1870

5 Cl

O

54.6 7.2628

6∗ Cl

O

111 6.9546

7 Cl

O

94 7.0268

8 Cl

O
O

115 6.9393
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Table 1: Continued.

O

OH

HO

HO

OH

S

X

R

S. number X R IC50 pIC50

9 Cl

O
O

70.7 7.1505

10∗ Cl

SMe

12.8 7.8927

11 Cl

SEt

48.4 7.3151

12 Cl

O

11.9 7.9244

13 Cl

O

57.2 7.2426

14∗ Cl

O O
H

162 6.7904

15 Cl 60.2 7.2204

16 Cl 4.47 8.3496
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Table 1: Continued.

O

OH

HO

HO

OH

S

X

R

S. number X R IC50 pIC50

17 Cl 10.3 7.9871

18 Cl
S

F 91.3 7.0395

19∗ H

OMe

11.5 7.9393

20 H

OEt

8.73 8.0589

21 H

OH

50.2 7.2992

22∗ H

O

27.5 7.5606

23 H

S

F 21.1 7.6757

24 H

OEt

71.4 7.1463
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Table 1: Continued.

O

OH

HO

HO

OH

S

X

R

S. number X R IC50 pIC50

25∗ H

OMe

68.9 7.1617

26 H

Cl

451 6.3458

27 H

t-Bu

88.3 7.0540

28 H 69.6 7.1573

29∗ H 24.8 7.6055

30 H 59.8 7.2232

31 Br 12.4 7.9065

32 OMe 49.5 7.3053
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Table 1: Continued.

O

OH

HO

HO

OH

S

X

R

S. number X R IC50 pIC50

33∗ Me 29.3 7.5331

∗Structures with (∗) are included in test set validation.

Table 2: Unicolumn statistics of training and test set for 2D QSAR studies.

Data set Average Max Min Std. dev. Sum
2D QSAR

Training 1.6127 2.6542 0.6503 0.4426 41.9299
Test 1.7765 2.2095 1.1072 0.3889 12.4355

3D QSAR
Training 1.5401 2.2095 0.6503 0.4163 36.9636
Test 1.9335 2.6542 1.3945 0.3452 17.4018

2.4. Calculating 3D Descriptors. Energy minimized and
geometry optimized structures of molecules were aligned by
the template-based method [72] where a template structure
is defined and used as a basis for alignment of a set of
molecules, and a reference molecule is chosen on which
the other molecules of the data set get aligned considering
the chosen template. In the present study, we aligned the
database by fitting all of the compounds on most active
compound 16 (Figure 1(a)) as an alignment template using a
common substructure with the V-life MDS routine database
alignment. The superimposition of all molecules based on
minimizing root mean square deviation (RMSD) is shown in
Figure 1(b).

The steric, electrostatic, and hydrophobic fields were
calculated at each lattice intersection of a regularly spaced
grid of 2.0 Å. Methyl probe of charge +1 with 10.0 kcal/mole
electrostatic and 30.0 kcal/mole steric and hydrophobic cutoff
was used for fields generation. This resulted in calculation of
4500 field descriptors (1500 for each steric, electrostatic, and
hydrophobic which theoretically form a continuum) for all
the compounds in separate columns (Table 3).

2.5. External Validation for 2D QSAR Models. The QSAR
models were assessed by the number of cross-validated 𝑅2
by leave-one-out method [73] (𝑞2), cross-validated standard
error (𝑞2 se), predicted 𝑅2 for external test set (pred 𝑟2),

and standard error for predicted 𝑅2 (pred 𝑟2se). The internal
cross-validated predictability (𝑞2) was evaluated by the equa-
tion given below:

𝑞
2
= 1 −

∑ (𝑦
𝑖
− 𝑦
𝑖
)
2

∑(𝑦
𝑖
− 𝑦mean)

2
, (1)

where 𝑦
𝑖
, 𝑦
𝑖
are the actual and predicted activity of the 𝑖th

molecule in the training set, respectively, and 𝑦mean is the
average activity of all molecules in the training set. For
external validation, activity of each molecule in the test set
was predicted using the model generated from the training
set. The pred 𝑟2 value is calculated as follows:

Pred 𝑟2 = 1 −
∑ (𝑦
𝑖
− 𝑦
𝑖
)
2

∑(𝑦
𝑖
− 𝑦mean)

2
, (2)

where 𝑦
𝑖
, 𝑦
𝑖
are the actual and predicted activity of the 𝑖th

molecule in the test set, respectively, and 𝑦mean is the average
activity of all molecules in the training set. Both summations
are over all molecules in the test set.Thus, the pred 𝑟2 value is
indicative of the predictive power of the current model based
on the external test set.

2.6. Evaluation of the Quantitative of Models. Among several
search algorithms, stepwise (SW) forward variable selection
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Table 3: Selected descriptors values for QSAR models.

SsCH3count T C Cl 1 S 1044 E 184 E 1139 H 1153
13.35725 1 −0.00234 −0.00103 0.070427 0.068996
14.89175 1 −0.00252 −0.03374 0.039663 0.110293
13.05024 1 −0.00332 −0.0034 0.045418 0.156499
12.66982 1 −0.00271 −0.07924 0.015991 0.205079
13.19176 1 −0.00718 −0.05341 0.01499 0.156726
13.4038 1 −0.00276 −0.02181 0.126288 0.213233
13.05024 1 −0.00272 −0.11568 0.049628 0.170716
14.11489 1 −0.00229 −0.04659 0.03041 0.190254
13.19176 1 −0.0037 −0.05161 0.007637 0.195659
13.85076 1 −0.00269 −0.09992 0.148325 0.170358
13.95209 1 −0.002 −0.05398 0.046206 0.178527
13.49164 1 −0.00307 −0.04381 0.022364 0.196138
13.8452 1 −0.00213 −0.03588 0.01794 0.135694
13.11122 1 −0.00219 −0.05675 0.025435 0.117383
11.57052 1 −0.0077 −0.03111 0.040108 0.13964
13.05024 1 −0.00148 −0.06435 0.079842 0.242054
13.05024 1 −0.00131 −0.03439 0.040536 0.219392
12.37104 1 −0.00205 −0.00201 0.013029 0.200942
13.85076 0 −0.00288 −0.02182 0.060327 0.072212
13.49164 0 −0.00392 −0.07865 0.052315 0.116761
11.65703 0 −0.00194 −0.0367 0.068249 0.151754
12.45755 1 −0.00638 −0.03708 0.025638 0.202708
13.35725 0 −0.00325 −0.0005 0.016382 0.181212
12.3107 0 −0.00272 −0.06519 0.139852 0.220012
13.11122 0 −0.00186 −0.04364 0.073036 0.168351
12.30098 0 −0.00406 −0.01576 0.034676 0.18917
13.1015 1 −0.00226 −0.03521 0.000739 0.211024
11.56143 1 −0.00212 −0.07403 0.159932 0.171132
12.11965 1 −0.00331 −0.02547 0.047064 0.188637
12.3107 1 −0.00178 −0.03979 0.004465 0.186037
12.92017 1 −0.0024 −0.03588 0.030881 0.137912
13.11122 1 −0.01145 −0.05675 0.032062 0.126376
13.35725 1 −0.00109 −0.00103 0.070427 0.137455
14.89175 1 −0.0011 −0.03374 0.039663 0.232216
13.05024 1 −0.00082 −0.0034 0.045418 0.257901
12.66982 1 −0.00144 −0.07924 0.015991 0.22212
13.19176 1 −0.00178 −0.05341 0.01499 0.144703
13.4038 1 −0.00071 −0.02181 0.126288 0.132103
13.05024 1 −0.00234 −0.11568 0.049628 0.068996
14.11489 1 −0.00252 −0.04659 0.03041 0.110293
13.19176 1 −0.00332 −0.05161 0.007637 0.156499

method, genetic algorithms (GA), and simulated annealing
(SA) based feature selection procedures are most popular for
building QSAR models and can explain the situation more
effectively. The models were also subjected to the test for
criteria of external validation as suggested by Golbraikh and
Tropsha [71]. To know predictive potential of the models,
squared correlation coefficient values between the observed
and predicted values of the test set compounds with intercept
(𝑟2) were calculated. Interchange of the axes gives the value

of 𝑟2. According to Golbraikh and Tropsha, models are
considered acceptable, if they satisfy all of the following
conditions:

(1) 𝑄2 > 0.5,
(2) 𝑟2 > 0.6.

When the observed values of the test set compounds
(𝑦-axis) are plotted against the predicted values of the
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Figure 1: (a) Thiophenyl ring (template structure). (b) Alignment of thiophenyl derivatives. (c) Contribution charts of the descriptors for
the 2D QSAR model-1. (d) Plot of observed versus predicted activity by 2D QSAR model-1. (e) Contribution plot for steric and electrostatic
interactions GA-PLS model. (f) Plot of observed versus predicted activity by 3D QSAR GA-PLS model. (g) Contribution plot for steric and
electrostatic interactions SA-PLS model. (h) Plot of observed versus predicted activity by 3D QSAR SA-PLS model. (i) Contribution plot for
steric, hydrophobic, and electrostatic interactions SW-PLS model. (j) Plot of observed versus predicted activity by 3D QSAR SW-PLS model.
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compounds (𝑥-axis) setting intercept to zero, the slope of the
fitted line gives the value of 𝑘.

3. Results and Discussion

QSAR study was performed on thiophenyl C-aryl glucoside
derivatives for their SGLT2 inhibitors as potential antidia-
betic agents. Comparison of the obtained results indicated
the superiority of the genetic algorithm over the simulated
annealing (SA) and stepwise forward-backward variable
method for feature selection:

pIC
50

= 0.6451 (±0.1584) SsCH
3
count + 0.4287

(±0.0851) T C Cl 1 − 0.2574 (±0.0036) LUMO energy
+ 0.2789 (±0.0487) SaaSE-index;
𝑁training = 26, 𝑁test = 7, degree of freedom = 21, 𝑟2 =
0.8499, 𝑞2 = 0.8267, 𝐹-test = 45.8975, 𝑟2 se = 0.3098,
𝑞
2 se = 0.3464, pred 𝑟2 = 0.7729, and pred 𝑟2se =
0.6158.

The significant model with 𝑟2 = 0.8499 was considered, as
model-1 showed an internal predictive power (𝑞2 = 0.8267)
and a predictivity for the external test set (pred 𝑟2 = 0.7729)
of about 77%. The 𝐹-test = 45.897 shows the statistical
significance of 99.99% of the model which means that the
probability of failure of the model is 1 in 10000. In addition,
the randomization test shows confidence of ∼99.9% that the
generated model is not random and hence it is chosen as
the QSAR model. Genetic algorithm-PLS model indicates
the positive contribution of SsCH

3
count, and SaaSE-index

showed that increase in the values of these descriptors is
beneficial for the SGLT2 inhibitors. From the above model,
it is clear that the descriptor T C Cl 1 contributes positively
to the SGLT2 inhibitors activity, which corresponds to count
of number of carbon atoms separated from any chlorine
atom by 1-bond distance. Thus, the presence of chloro
substituents (like in compounds 1–18) would increase the
activity. Descriptor SsCH

3
count indicates that increase in

methyl group of R position may lead to an increase in the
activity. Its positive value suggests that increasing the number
of such carbons will lead to better SGLT2 inhibitors. This
suggests that substituents such as methyl would increase
the activity. The above results are in close agreement with
the experimental observations, where compounds 10, 15, 16,
17, and 28–33 at the R position produce SGLT2 inhibitors.
Molecules with negative coefficient LUMO energy can accept
electrons more easily than those having high LUMO energy.
The SaaSE-index (∼24%) shows the sulphur atom connected
with two aromatic bonds in the molecule and is inversely
proportional to the activity. This further suggests that the
increase in electronegative atom environment adjacent to
indicated sulphur atom would result in increase in the activ-
ity. In addition, in agreement with QSAR model, presence of
more bulky and hydrophilic substituents like methoxy at ring
R led to an increase in SGLT2 potency. On the other hand,
more lipophilic halogens like chloro in this X position retain
the SGLT2 inhibition activities. The residuals (observed-
predicted activity) were found to be minimal and are pre-
sented in Table 4. The statistical results of best model and

the correlation matrix between the physicochemical param-
eters and the biological activity for model-1 are presented
in Table 5. The contribution chart of selected descriptors is
represented in Figure 1(c). Also, the graph for observed versus
predicted activity for the series is plotted in Figure 1(d) which
shows good correlation.

Molecular fields are the steric, electrostatic, and hydro-
phobic interaction energies which are used to develop a
model for 3D QSAR. In this study, 3D QSAR models
were generated by kNN-MFA in conjunction with genetic
algorithms (GA), simulated annealing (SA), and stepwise
(SW) forward-backward selection methods:

pIC
50

= S 1044 (−0.0317, −0.0317) − E 184 (−0.2885,
−0.2885) − S 931 (−0.0306, −0.0306);

𝑁training = 26, 𝑁test = 7, 𝑞2 = 0.7663, 𝑞2 se = 0.3389,
𝐹-test = 38.4683, and pred 𝑟2 = 0.7386.

The steric and electrostatic interaction energies are com-
puted at the lattice points of the grid using a methyl probe
of charge +1. The best GA-kNN MFA 3D QSAR model that
has a 𝑞2 of 0.7663 and pred 𝑟2 of 0.7386 was considered.
The points generated in GA-kNN MFA 3D QSAR model
are S 1044 (−0.0317, −0.0317), E 184 (−0.2885, −0.2885), and
S 931 (−0.0306, −0.0306). Figure 1(e) shows the contribution
plot of the three models for the electrostatic and steric fields,
respectively, and indicates relative regions of the local fields
around the aligned molecules leading to activity variation in
the model. For electrostatic field and steric fields, the lattice
points generated in the model are E 184 (−0.2885, −0.2885)
and S 1044 (−0.0317, −0.0317) and S 931 (−0.0306, −0.0306).
These points suggested the significance of electrostatic prop-
erties as indicated in the ranges in parentheses for maximum
SGLT2 inhibitory activity.The negative value for E 184means
that electron-withdrawing substituents in this region are
favorable and would increase SGLT2 inhibitory activity, as
shown by the presence of chlorine group in the active com-
pounds. Therefore, less steric and more steric substituents
were preferred at the position of generated data points S 1044
and S 931, respectively, for enhancing the biological activity
of thiophenyl pharmacophore. Two data points generated
at the position of R around thiophenyl nucleus were steric
points S 1044 and S 931 which indicates that less steric or
less bulky substituents are favorable on this site. On the other
hand, less electronegative groups such as hydroxyl and nitro.
The electrostatic blue ball model around R positions of the
thiophenyl suggested the electron-withdrawing groups on
this position benefited potency; this may be the reason why
compounds with double bonds at R positions had higher
potencies than other compounds. In addition, a red contour
near the position suggested the electron-withdrawing sub-
stituent would increase the activity. Therefore, the –OH at R
position resulted in significant increased activity. Electron-
withdrawing nature of the electronegative chloro atom does
contribute to the SGLT2 inhibitory activity of the molecule.
The graph for observed versus predicted activity for the
series is plotted in Figure 1(f) which shows good correlation.
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Table 4: Comparative observed and predicted activities (LOO) of thiophenyl SGLT2 inhibitors.

Com pIC50
2D model-1 3D model-GA-PLS 3D model-SA-PLS 3D model-SW-PLS

Pred. Res. Pred. Res. Pred. Res. Pred. Res.
1 7.0629 7.1845 −0.1216 7.1847 −0.1218 7.1718 −0.1089 7.0553 0.0076
2 7.4609 7.4978 −0.0369 7.3679 0.093 7.1283 0.3326 7.2289 0.232
3 6.8538 6.8737 −0.0199 6.7565 0.0973 6.9154 −0.0616 6.7295 0.1243
4 7.187 7.2319 −0.0449 7.0789 0.1081 7.1122 0.0748 7.1047 0.0823
5 7.2628 7.2564 0.0064 7.4543 −0.1915 7.2428 0.02 7.3525 −0.0897
6 6.9546 6.9448 0.0098 6.9121 0.0425 6.9393 0.0153 6.9875 −0.0329
7 7.0268 7.1464 −0.1196 7.0723 −0.0455 7.1174 −0.0906 7.1653 −0.1385
8 6.9393 6.9815 −0.0422 6.9644 −0.0251 6.9163 0.023 6.9128 0.0265
9 7.1505 7.1854 −0.0349 7.0746 0.0759 7.1649 −0.0144 7.1761 −0.0256
10 7.8927 7.8289 0.0638 7.8694 0.0233 7.8265 0.0662 7.8656 0.0271
11 7.3151 7.3283 −0.0132 7.3729 −0.0578 7.3247 −0.0096 7.1826 0.1325
12 7.9244 7.9135 0.0109 7.9918 −0.0674 7.9418 −0.0174 7.9356 −0.0112
13 7.2426 7.2857 −0.0431 7.2498 −0.0072 7.3821 −0.1395 7.2148 0.0278
14 6.7904 6.7845 0.0059 6.7954 −0.005 6.7991 −0.0087 6.7894 0.001
15 7.2204 7.2138 0.0066 7.2525 −0.0321 7.2862 −0.0658 7.1966 0.0238
16 8.3496 8.3791 −0.0295 8.3875 −0.0379 8.3424 0.0072 8.3446 0.005
17 7.9871 7.9845 0.0026 7.9949 −0.0078 7.9326 0.0545 7.9674 0.0197
18 7.0395 7.1278 −0.0883 7.1392 −0.0997 7.0734 −0.0339 7.0673 −0.0278
19 7.9393 7.9243 0.015 7.9418 −0.0025 7.9388 0.0005 7.9132 0.0261
20 8.0589 7.9275 0.1314 8.0692 −0.0103 8.0872 −0.0283 8.1471 −0.0882
21 7.2992 7.2961 0.0031 7.1491 0.1501 7.1449 0.1543 7.2307 0.0685
22 7.5606 7.5884 −0.0278 7.4281 0.1325 7.5161 0.0445 7.5319 0.0287
23 7.6757 7.6978 −0.0221 7.5946 0.0811 7.5988 0.0769 7.5975 0.0782
24 7.1463 7.1326 0.0137 7.1384 0.0079 7.2864 −0.1401 7.1125 0.0338
25 7.1617 7.0968 0.0649 7.1948 −0.0331 7.1289 0.0328 7.1799 −0.0182
26 6.3458 6.3291 0.0167 6.3259 0.0199 6.1643 0.1815 7.4332 −0.0874
27 7.054 7.1853 −0.1313 6.9342 0.1198 6.9768 0.0772 6.9087 0.1453
28 7.1573 7.2218 −0.0645 7.0202 0.1371 7.2738 −0.1165 7.2684 −0.1111
29 7.6055 7.6283 −0.0228 7.6163 −0.0108 7.6023 0.0032 7.6132 −0.0077
30 7.2232 7.2346 −0.0114 7.2458 −0.0226 7.2282 −0.005 7.2547 −0.0315
31 7.9065 7.8579 0.0486 7.8881 0.0184 7.8194 0.0871 7.8658 0.0407
32 7.3053 7.2982 0.0071 7.0424 0.2629 7.1921 0.1132 7.8928 −0.5875
33 7.5331 7.4728 0.0603 7.3466 0.1865 7.3308 0.2023 7.2733 0.2598

Table 5: Correlation matrix between descriptors present in the best QSAR model-1.

Parameter pIC50 SsCH3count T C Cl 1 LUMO energy SaaSE-index
pIC50 1.0000
SsCH3count 0.5431 1.0000
T C Cl 1 0.2165 0.4312 1.0000
LUMO energy 0.4964 0.5731 0.6823 1.0000
SaaSE-index 0.3731 0.4633 0.6591 0.8504 1.0000

The residuals (observed-predicted activity) were found to be
minimal and are presented in Table 4:
𝑁training = 26, 𝑁test = 7, 𝑞2 = 0.7254, 𝑞2 se = 0.3795,
𝐹-test = 31.8965, and pred 𝑟2 = 0.6938.

3D data points generated, which contribute to SA kNN-
MFA QSAR model, are shown in Figure 1(g). The external
predictability of the above 3D QSAR model using the test set

was determined by Pred 𝑟2, which is 0.6938. The points gen-
erated in SA kNN-MFA 3D QSAR model are E 1139 (0.1545,
0.1545) and S 646 (−0.3001, −0.3001), that is, electrostatic
and steric interaction fields at lattice points 1139 and S 646,
respectively. Positive values for E 1139 show that electron-
donating groups on the thiophenyl ring increase biological
activity of compounds. On the other hand, thiophenyl ring
might be substituted with either electron-withdrawing or
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electron-donating groups without loss of activity. 3D QSAR
studies showed requirement of steric group at R position.
The graph for observed versus predicted activity for the series
is plotted in Figure 1(h). The residuals (observed-predicted
activity) were found to be minimal and are presented in
Table 4:

𝑁training = 26,𝑁test = 7, 𝑞2 = 0.7359, 𝑞2 se = 0.3562, 𝐹-
test = 30.8743, and pred 𝑟2 = 0.6743.

The 3D model using the SW-kNN-MFA analysis method
𝑞
2 was found to be 0.7359 which suggests that the model
could be useful for predicting SGLT2 inhibitor for such thio-
phenyl derivatives. These points suggested the significance
and requirement of electrostatic and steric and hydrophobic
properties as mentioned in the ranges for structure-activity
relationship and biological activity of thiophenyl analogues.
It shows a positive contribution towards the activity, which
indicates that H 1153 hydrophobic substitution at R position
favors activity. Figure 1(i) showed the hydrophobic contour
the presence of a yellow contour covering the R positions of
the ring indicating that hydrophobic substituents may be well
tolerated in that region.The R position of the thiophenyl was
surrounded by a yellow contour which also indicated that
hydrophobic groups at this position may increase activity.
Less bulky substituents are tolerated at thiophenyl ring
meaning that increasing size of the groups substituted in
these regions reduces SGLT2 inhibitory activity, since S 190
have negative values. Positive values for the hydrophobic 1153
lattice points around ring indicate that SGLT2 inhibitory
activity could be increased by substitutingmore hydrophobic
groups in these regions. Similarly, the positive values of elec-
trostatic descriptors suggested the requirement of electropos-
itive or sterically bulky groups at the position of generated
data point E 1090 around thiophenyl pharmacophore for
maximum activity.The electrostatic E 1090 data point gener-
ated which indicates sterically bulky groups such as benzene,
methyl, ethyl, and isopropyl was required at R position. The
graph for observed versus predicted activity for the series
is plotted in Figure 1(j). The residuals (observed-predicted
activity) were found to be minimal and are presented in
Table 4.

4. Conclusions

QSAR study was performed on thiophenyl C-aryl glucoside
derivatives for their SGLT2 inhibitors as potential antidia-
betic agents. Genetic algorithms (GA), simulated annealing
(SA), and stepwise (SW) forward-backward selection meth-
ods have been employed for selection of relevant descriptors.
Comparison of the obtained results indicated the superiority
of the genetic algorithm over the stepwise method for feature
selection. 2D QSAR further revealed that a specific group
or type of descriptor is not sufficient to capture the true
factors responsible for the activity in the set of inhibitor
compounds.This study also revealed that SsCH

3
count, along

with LUMO energy and SaaSE-index, forms a powerful tool
to improve a QSAR model. This study used T C Cl 1 to
investigate whether a similarity based set generation method

would lead to better understanding of the QSAR models.
The 2D and 3D QSAR suggested the presence of negative
steric potential at R position in thiophenyl nucleus, that is,
R position in thiophenyl nucleus should acquire less steric
or less bulky substituents are favorable as well as according
to models. The constructed 3D QSAR models and structure-
activity relationship (SAR) analyses of the compounds used
in the study suggested that an electronegative and bulky
substituent at R position and one less bulky substituent
at X, R position of thiophenyl analogs are required to
design novel SGLT2 inhibitors. We emphasize in this study
that the E 1139 electron-donating groups on the thiophenyl
ring increase biological activity of compounds. Electron-
withdrawing groups are highly favorable. Furthermore, the
kNN-MFA maps offered enough information to understand
the structure-activity relationship and identified structural
features influencing the inhibitory activity. The correlation
of the results obtained from 3D QSAR study successfully
explored the primitive structure-activity relationship. The
findings can be quite useful to aid the designing of novel
antidiabetic agents with high predicted potent activity.
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