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ABSTRACT
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate 

gene expression at post-transcriptional level. Increasing evidences show aberrant 
expression of miRNAs in varieties of diseases. Targeting the dysregulated miRNAs 
with small molecule drugs has become a novel therapy for many human diseases, 
especially cancer. Here, we proposed a novel computational approach to identify 
associations between small molecules and miRNAs based on functional similarity of 
differentially expressed genes. At the significance level of p < 0.01, we constructed 
the small molecule and miRNA functional similarity network involving 111 small 
molecules and 20 miRNAs. Moreover, we also predicted associations between drugs 
and diseases through integrating our identified small molecule-miRNA associations 
with experimentally validated disease related miRNAs. As a result, we identified 2265 
associations between FDA approved drugs and diseases, in which ~35% associations 
have been validated by comprehensive literature reviews. For breast cancer, we 
identified 19 potential drugs, in which 12 drugs were supported by previous studies. 
In addition, we performed survival analysis for the patients from TCGA and GEO 
database, which indicated that the associated miRNAs of 4 drugs might be good 
prognosis markers in breast cancer. Collectively, this study proposed a novel approach 
to predict small molecule and miRNA associations based on functional similarity, 
which may pave a new way for miRNA-targeted therapy and drug repositioning.

INTRODUCTION

MicroRNAs (miRNAs) are a class of small single-
stranded non-coding RNA molecules which regulate 
gene expression by inducting cleavage or inhibiting 
translation of target mRNAs [1]. These small non-coding 
RNAs play crucial roles in many biological processes, 
such as proliferation, differentiation and apoptosis, and 
are related to varieties of disorders [1, 2]. Modulation 
of aberrantly expressed miRNAs has been demonstrated 
as a feasible strategy for many diseases [3]. At present, 
many kinds of miRNA modulators have been used 
in preclinical and clinical studies, such as antisense 
oligonucleotides (also known as anti-miRs), miRNA 
sponges, miRNA mimics [4–6]. Therefore, targeting 
dysregulated miRNA is a potential therapeutic regimen 

to develop miRNA specific drugs [7]. For example, 
SPC3649 (a kind of locked nucleic acid) is the first 
miRNA-targeted drug in clinical trials to inhibit miR-122 
expression that is required by hepatitis C virus replication 
[8]. However, the major hurdles in oligonucleotides-
based therapy are the properties of inefficient delivery 
and suboptimal pharmacodynamics or pharmacokinetics, 
which urgently need for small molecule-based 
intervention strategies [9]. Small molecules maybe 
suitable agents to regulate miRNA expression, because 
they are less expensive to produce, easily diffuse across 
cell membranes, easily delivered into cells as well as 
having good solubility, bioavailability, and metabolic 
stability [10]. For example, Bose et al. have identified the 
small molecule streptomycin, which is widely used for 
treatment of tuberculosis, as an inhibitor of miR-21 with 
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a potential cancer therapeutic. Moreover, streptomycin 
could decrease miR-21 expression without affecting the 
expression levels of other related miRNAs [11].

Currently, a wide number of studies have devoted 
to develop high-throughput methods to screen small 
molecule modifiers of miRNAs, which may provide a new 
direction for miRNA-targeting therapies [4, 12–14]. Zhang 
et al. have presented the structure-based approaches, such 
as molecular docking, to screen compounds that targeting 
miRNAs [10]. In another structure-based method, Bose 
et al. reported a novel fluorescent molecular-beacon-
based high-throughput method to screen small molecules 
which inhibited miRNA expression by blocking the Dicer 
processing [4]. Besides the structure based method, Jiang et 
al. proposed a novel method to construct small molecule-
miRNA networks for 23 different cancers based on the 
similarity of transcriptional responses [15]. Similar work 
has also been done for Alzheimer’s disease [16]. However, 
since lack of miRNA-transfected datasets, we simulated 
the transcriptional responses of miRNA perturbation 
through intersecting target genes and differential expressed 
genes of specific disease. Along with the growth of 
miRNA transfection experiments, it is possible to regard 
the effects of the miRNA on gene expression at whole 
genome level, which more directly reflects alteration of 
gene expression affected by the perturbed miRNA. What’s 
more, miREnvironment and SM2miR database have 
been constructed to collect the experimentally supported 
associations between small molecules and miRNAs [17, 
18], Currently, miREnvironment database have collected 

complex interactions (3857 entries) among 1242 miRNAs, 
305 phenotypes and 394 environment factors (including a 
few small molecules). SM2miR database have collected 
the 5160 records between 255 small molecules and 
1680 miRNAs, and provided the effects (up-regulated 
and down-regulated) of small molecules on miRNA 
expression, and integrated all associations between drugs 
and miRNAs in miREnvironment database.

In this study, we proposed a novel approach to 
predict potential associations between small molecules and 
miRNAs based on functional similarity of differentially 
expressed genes of drug treatment and miRNA 
perturbation. In addition, through integrating the identified 
small molecule-miRNA associations with curated disease 
related miRNAs, we predicted drug-disease associations, 
which were used for drug repositioning. Finally, the 
miRNAs related to several predicted potential breast 
cancer drugs had the ability to distinguish patients with 
good or poor prognosis (the workflow diagram was 
shown in Figure 1). In a word, our method provides a 
novel prospect for developing miRNA-targeted drugs and 
predicting drug repositioning.

RESULTS

Small molecule-miRNA functional similarity 
network

In order to construct the functional similarity network 
between small molecules and miRNAs, we first collected 

Figure 1: The workflow diagram of our approach.
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gene expression profiles under perturbation of 88 miRNAs 
and treatment of 1309 bioactive small molecules. Second, 
we identified differentially expressed genes for small 
molecules and miRNAs. Then, we calculated functional 
similarity based on Gene Ontology (GO) enrichment 
analysis of the differentially expressed genes for each pair 
of small molecule and miRNA. As a result, we obtained 
the functional annotations of 1293 small molecules and 70 
miRNAs (details in materials and methods). Here, similarity 
scores followed an approximate normal distribution with 
mean and standard deviation equaling to 0.4882 and 0.0965, 
respectively (Figure 2). The threshold of similarity score 
was determined by the value of the normal distribution at 
the significance level of 0.01, which was 0.7127. Finally, 
we constructed the small molecule-miRNA functional 
similarity network (538 associations) under the threshold 
of similarity score (0.7127), including 111 small molecules 
and 20 miRNAs (Figure 3, details in Supplementary Table 
S1). Especially, all 20 miRNAs in our predicted associations 
have been proved to play important roles in cancer, which 
were supported by previous studies. Taking miR-21 as 
an example, miR-21 is an oncogenic miRNA which is 
overexpressed in several tumors including breast cancer 
[19]. When suppressing the expression of miR-21 in breast 
cancer cells, cancer cells significantly reduced invasion and 
metastasis [20]. Its associated small molecule Tretinoin (the 
similarity score is 0.745) is also known as all-trans-retinoic 
acid, which is an important regulator of cell reproduction, 
proliferation and differentiation. In addition, Tretinoin is 
usually used to treat acute promyelocytic leukemia [21] and 
has been demonstrated to have potential therapeutic action 

in breast cancer [22]. Therefore, miR-21 may be a potential 
target for Tretinoin in the treatment of breast cancer.

Next, we explored the topological properties of this 
similarity network. As shown in Supplementary Figure 
S1a, most small molecules (~40%) connected with a small 
number of miRNAs (less than 20%). In Supplementary 
Figure S1b, most miRNAs (50%) connected with a small 
number of small molecules (less than 20%).

Furthermore, we determined the characteristics of 
small molecule pairs connecting with the same miRNA or 
miRNA pairs connecting with the same small molecule. 
First, we computed the Meet/Min score for each pair of 
miRNAs to evaluate the extent of shared target genes 
[15, 16]. The Meet/min score between two miRNAs was 
defined as the number of common target genes of two 
miRNAs divided by the small number of target genes of 
the two miRNAs. Our result showed that miRNA pairs 
connected with the same small molecule had moderate 
target similarity (p = 0.1892). Second, we employed the 
two-dimensional Tanimoto chemical similarity score, 
which was measured by Small Molecule Subgraph 
Detector (SMSD) software [23], to evaluate the structural 
similarity between small molecules. The findings indicated 
that the small molecule pairs connecting with the same 
miRNA had moderate structure similarity (p = 0.1223). All 
above results were consistent with the previous study [24].

In addition, we further checked the potential 
relationship between functional similarity and the number 
of common targets of small molecule-miRNA pairs. We 
collected FDA approved drugs and their target information 
from the DrugBank database (http://www.drugbank.ca/), 

Figure 2: The distribution of functional similarity scores. The similarity scores followed an approximate normal distribution 
with the mean and standard deviation equaling 0.4882 and 0.0965. The cutoff was determined by the value of the normal distribution at the 
significance level of 0.01, which was 0.7127.
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which included 624 small molecule drugs and 378 drug 
targets intersected with our dataset [21]. Meanwhile, 
we obtained the experimentally validated miRNA target 
genes from miRecords (Release 4.0) [25], miRTarBase 
(Release 4.5) [26], and TarBase (Release 6.0) [27]. 
Through integrating these regulations, we finally got 
16510 miRNA-target gene pairs for 70 miRNAs in our 
study. For each association between FDA approved small 
molecule drug and miRNA, we counted the common target 
genes and compared with the similarity scores of these 
associations (Figure 4). The results demonstrated that the 
association with the higher similarity score tended to have 
the larger number of common target genes (Spearman’s 
rank correlation r = 1, p = 0.017).

Evaluation of the identified associations between 
small molecules and miRNAs

The receiver-operating characteristic (ROC) curve 
was employed to evaluate the performance of our approach 
base on the known small molecule-miRNA associations 
from SM2miR database (http://bioinfo.hrbmu.edu.cn/
SM2miR/). First, we obtained 110 associations between 
small molecules and miRNAs in SM2miR database, 
which also appeared in this study. The 110 associations 

were considered as gold standard set. For each association 
in the gold standard set, we randomly selected the same 
number of GO terms of the miRNA and recalculated the 
similarity between the randomly GO terms and the GO 
terms of small molecule. This procedure was repeated 99 
times and produced 99 fake functional similarity scores for 
each association. Considering the associations in the gold 
standard set as the positive instances and fake associations 
as negative instances, we calculated the sensitivity and 
the specificity of our approach at different cutoffs and 
plotted ROC curve (Figure 5). The area under roc curve 
(AUC) was 0.985, which suggested that the gold standard 
set indeed ranked on the higher position among 11000 
pairs (110 true associations and 10890 fake associations). 
This result indicated that our approach achieved good 
performance in prediction of associations between small 
molecules and miRNAs.

Prediction of drug indication based on small 
molecule-miRNA associations

The small molecule and miRNA functional similarity 
network could be used to predict drug repositioning. First, 
we collected experimentally validated disease related 
miRNAs from miR2disease [28]and HMDD (version 2.0) 

Figure 3: The small molecule-miRNA functional similarity network. The triangles and circles represent miRNAs and small 
molecules, respectively. The orange triangles and circles are hub nodes of miRNAs (degree greater than 50) and small molecules (degree 
greater than 10), respectively.
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[29] databases. Then, we integrated these two databases 
and obtained 8134 associations between miRNAs and 
diseases in total. All redundant associations were removed 
via converting the similar disease names into MeSH 
unique IDs (http://www.ncbi.nlm.nih.gov/mesh). For 
the 20 miRNAs in the identified small molecule-miRNA 
functional similarity network, we obtained 506 miRNA-
disease associations, involving 192 diseases. Combining 
the predicted 538 small molecule-miRNA associations 
in this study, we identified statistically significant small 
molecules-diseases pairs based on shared miRNAs by 
hypergeometric test. At the cutoff of adjusted p-value 
(FDR) < 0.1, 2265 pairs between 50 FDA-approved drugs 
and 155 diseases were identified. Among them, in 53 

pairs, the drugs have already been used for treatment of 
the corresponding disorders, and ~35% (779/2265) pairs, 
involving 43 FDA-approved drugs and 128 diseases, 
have been supported by in vitro or in vivo experiments 
in previous studies. For example, the association of 
acetylsalicylic acid and colorectal cancer was significant in 
our prediction (p=0.006, FDR=0.061). Acetylsalicylic acid 
(also known as aspirin) is a common drug for treatment 
of mild to moderate pain and clinically indicated in the 
treatment of others disorder, such as arterial and venous 
thrombosis [21]. The effectiveness of Acetylsalicylic 
acid in regulating growth and differentiation of cancer, 
such as colorectal cancer, has also been reported in vitro 
and in vivo experiments [30–33]. Thus, the predicted 

Figure 4: The relationship of the numbers of common target genes and the functional similarity scores. The x-coordinate 
is the number of shared target genes between FDA-approved small molecule and miRNA, and the y-coordinate is the similarity score 
between the pair of small molecule and miRNA.

Figure 5: The ROC curve of our method based on the gold standard set.
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potential drug indications based on the common miRNAs 
of small molecules and diseases might be used for drug 
repositioning.

Identification of prognosis marker miRNAs for 
breast cancer

In this study, 19 small molecule drugs were 
predicted to associate with breast cancer. 12 out of 19 
small molecule drugs have been supported in previous 
studies (Table 1). In order to investigate whether miRNAs 
that were associated with these small molecules could 
stratify patients into different prognosis groups, we 
collected datasets including miRNA expression and 
clinical information from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) database. 
In TCGA database, we obtained 465 breast cancer 
samples with miRNA expression and clinical information. 
All miRNA expression profiles were processed and 
calculated for RPM (reads per million). In GEO database, 
we obtained one dataset with enough samples (GEO 
accession number: GSE19783, 99 patients). All miRNA 

expression was quantified using Agilent Human miRNA 
Microarray 2.0. For each small molecule drug, we firstly 
extracted expressions of miRNAs associated with this 
small molecule. And then, we classified all patients into 
two groups using K-means cluster method (K=2) based on 
these miRNAs expression.

Finally, we discovered that 19 and 4 small molecule-
related miRNAs could classify the breast cancer patients 
into high-risk and low-risk groups significantly (log-
rank test p-value < 0.05) in TCGA and GEO datasets, 
respectively (Figure 6 and Supplementary Figure S2). The 
four small molecule drugs were marked red in Table 1. It 
was observed that miR-200c had associated with all of the 
four small molecules and tended to up-regulated in good 
prognosis groups. Analogously, we also found that miR-
26a was related to two of the four small molecule drugs 
and tended to be up-regulated in good prognosis groups 
(Table 2). In breast cancer, miR-200c and miR-26a have 
been proved to be aberrantly expressed [34–37]. MiR-
200c, the predominant member of the miR-200 family, 
could inhibit migration, invasion and cell polarization 
cancer-related processes [36]. MiR-26a has been reported 

Table 1: Predicted small molecule-disease associations in breast cancer

small molecule p-value FDR PMID

Chlorpromazine 0.022865 0.081112 --

Dobutamine 0.00804 0.062879 --

Acetylsalicylic acid 0.022865 0.081112 24945997

Dexamethasone 0.013933 0.070355 25556455

Diethylstilbestrol 0.013933 0.070355 25278253

Equilin 0.013933 0.070355 Treatment

Fluphenazine 0.022865 0.081112 3695509

Fulvestrant 0.022865 0.081112 25876901

Novobiocin 0.00804 0.062879 20039369

Pioglitazone 0.022865 0.081112 23959881

Sirolimus 0.023168 0.081467 24099044

Tretinoin 0.022865 0.081112 23602051

Valproic acid 0.000677 0.036818 20159363

Vorinostat 0.023168 0.081467 24903226

Amoxapine 0.00804 0.062879 --

Biperiden 0.009832 0.062879 --

Clozapine 0.020443 0.077678 --

Disopyramide 0.003099 0.052926 --

Pergolide 0.001621 0.046908 --

Note: “Treatment” indicates that the small molecule is a FDA approved drug for treatment of breast cancer. “--” represents 
that the associations haven't verified by literatures. The red records represent four small molecule drugs that their associated 
miRNAs could stratify patients into good and poor prognostic groups both in TCGA and GEO database.
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as tumor suppressor miRNA and inhibited proliferation 
and migration through repression of MCL-1 (an anti-
apoptotic member of the Bcl-2 family) in breast cancer 
[37]. These findings proved that the miRNAs related to 
small molecule drugs may be an efficient strategy for 
predicting the prognosis of diseases.

DISCUSSION

In this study, we successfully identified the 
associations between small molecules and miRNAs 
through calculating the functional similarities of their 

perturbed genes. We firstly collected the miRNA perturbed 
gene expression profiles from GEO database. In previous 
studies, because of lacking the miRNA transfection 
datasets, we simulated the dysregulated genes of miRNA 
perturbation through intersecting miRNA’s target genes and 
differentially expressed genes of one disease. Along with 
the miRNA transfection datasets, the effects of the miRNA 
on gene expression at the whole genome level more 
directly reflect the alteration of gene expression affected 
by miRNA. Meanwhile, we obtained the small molecule 
perturbed gene expression profiles from the Connectivity 
Map (cMap, build 02) database [38]. These expression 

Figure 6: The survival analysis of breast cancer patients. A, B, C, D. shows the Kaplan–Meier curves of good (in green) and poor 
(in orange) prognosis groups based on the TCGA datasets. Analogously, E, F, G, H. shows the Kaplan–Meier curves prognosis of good (in 
green) and poor (in orange) prognosis groups for the four small molecule drugs based on GEO datasets.

Table 2: The fold change of miR-200c and miR-26a expression between good and poor prognosis groups (TCGA and 
GEO).

Datasets MiRNA Amoxapine Dexamethasone Equilin Vorinostat

TCGA miR-200c-3p 1.270 1.270 1.270 1.274

miR-200c-5p 1.062 1.062 1.062 1.060

miR-26ac-3p 1.832 -- -- 1.815

miR-26ac-5p 1.113 -- -- 1.116

GEO miR-200c-3p 1.076 1.130 1.123 1.051

miR-200c-5p 1.455 1.813 1.623 1.183

miR-26a-5p 1.027 -- -- 1.053

Note: “--” represented that the small molecule drug was not related to the miRNA in our methods.
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profiles reflect the transcription response to small molecules 
rather than the ‘putative target’ that the small molecule 
can be modulating. Based on the transcription responses 
perturbed by small molecule, some research focusing on 
broader themes of mechanism of action (MoA) elucidation 
[39, 40], drug repositioning [41, 42] and biological 
understanding [43, 44] have been performed. Moreover, 
we selected the transcription profiles of cell lines treated 
by small molecules and miRNAs to screen the perturbed 
genes. The functional similarity score for each pair of small 
molecule and miRNA was finally calculated based on the 
GO annotations of their perturbed genes.

Consequently, we identified 538 associations between 
111 small molecules and 20 miRNAs. What’s more, we 
obtained the curated small molecule-miRNA associations 
from SM2miR database as gold standard set to evaluate 
the performance of our approach. As a result, the AUC was 
0.985. Furthermore, we identified small molecule-disease 
associations based on shared miRNAs, which provided a 
new way to predict the potential drug indications. Finally, 
survival analysis based on expression of miRNAs related to 
small molecule drugs for breast cancer revealed that these 
miRNAs might be good prognosis markers.

Some studies have devoted to predict the 
associations between small molecules and miRNAs. For 
example, Chen et al. predicted novel disease-related 
interactions between environmental factors (such as drugs) 
and miRNAs through a semi-supervised classifier based 
method [45]. Meng et al. proposed a novel method to 
predicted candidate small molecule-miRNA associations 
based on the similarity of transcription responses [46]. In 
this study, our approach tended to identify relationships 
between small molecules and miRNAs based on functional 
associations. Comparing with the transcription responses, 
functions were usually more reproducible.

In conclusion, we presented an approach to identify 
associations between small molecules and miRNAs based 
on functional similarities, which might provide a valuable 
perspective for repurposing drugs and predicting novel 
drug targets.

MATERIALS AND METHODS

Gene expression profiles under miRNA perturbation

We collected gene expression profiles from the 
GEO database by keywords “miRNA transfection” or 
“microRNA transfection”. We only reserved datasets with 
both miRNA transfected samples and control samples. 
We obtained 110 gene expression profiles of miRNA 
mimics (mimic endogenous miRNAs) or inhibitors (inhibit 
endogenous miRNAs) transfection in multiple species. We 
only chose 92 miRNA perturbed gene expression profiles 
(excluding gene expression profiles perturbed by multiple 
miRNAs or edited miRNAs) in human for further analysis, 
which involved 88 miRNAs (see Supplementary Table S2).

For single channel gene expression profiles with 
greater than or equal to two samples in each sample class 
(“transfection” or “control”), we applied significance 
analysis of microarray (SAM) [47] to identify significantly 
differentially expressed genes (FDR<=0.05). Otherwise, 
we identified the differentially expressed genes by 2-fold 
change method. For double channel gene expression 
profiles, 2-fold change was also used to measure the extent 
of differential expression of probes in each sample. Then, 
the conflict genes (gene appeared both in up-regulated and 
in down-regulated sets) were discarded. Only genes that 
were up-regulated or down-regulated in more than half 
samples were defined as differentially expressed genes.

Because some gene expression profiles measured 
under the same miRNA perturbation, we should combine 
the differentially expressed genes in these datasets. If the 
genes were up-regulated or down-regulated consistently 
in more than 2 datasets, the genes were considered 
differentially expressed under the miRNA perturbation.

Gene expression profiles under small molecule 
treatment

We collected the small molecule perturbed gene 
expression profiles from the cMap. The cMap contains 
6100 gene expression profiles of 1309 bioactive small 
molecules treatment and the corresponding controls. The 
differential expression was measured by amplitude (A), 
which was defined as:

( )
= −

+
A t c

t c1
2

where t is the expression value of the probe in treatment 
group, c is the expression value in the control group. 
We defined that the probes with more than 2-foldchange 
between treatment and control group as the differentially 
expressed probes. Namely, the A value more than 2/3 
means up-regulation, while the A value less than -2/3 
means down-regulation.

Several gene expression profiles were measured 
under the treatment of the same small molecule, so we 
should combine the differential expressed genes of the same 
small molecule. Analogous to the differentially expressed 
genes of miRNA, only genes that were up-regulated or 
down-regulated in at least two expression profiles were 
considered as the differentially expressed genes.

Functional enrichment analysis of small 
molecules and miRNAs

For the differentially expressed genes of miRNA (or 
small molecule), we implemented function enrichment 
analysis by the R package GOSim [48]. The version of 
GOSim package that we used in this study was 1.2.7.7. 
Biological Process (BP) was selected as the annotation 
category. Here, we chose the “elim” method, which improved 
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the enrichment analysis via removing the genes mapped to 
significant GO terms from all their ancestors and calculates 
the significance of these GO terms using Fisher’s exact 
test [49]. At the significance level of p< 0.01, we identified 
functions of 1293 small molecules and 70 miRNAs.

Functional similarity between small molecule 
and miRNA

For each pair of small molecule and miRNA, 
we calculated the functional similarity score based 
on the annotated GO function. We implemented the 
computational procedure of similarity analysis with the 
R package GOSemSim [50]. The version of GOSemSim 
that we used was 1.20.0. The GOSemSim presented five 
methods, including Resnik [51], Jiang [52], Lin [53], 
Schlicker [54]and Wang [55], to calculate the semantic 
similarity of two given GO terms and four measures, 
including max, avg, rcmax and BMA, to combine semantic 
similarity scores of multiple GO terms. Here, we chose the 
widely used “Lin” and “BMA” methods. “Lin” method 
determined the semantic similarity of two given GO terms 
based on the annotation information content (IC). The 
IC of a GO term denoted that the negative logarithm of 
probability of the term appearing in the GO corpus.

The probability of a given GO term t is defined as:

( ) =p t n
N
t

where nt is the number of its all children nodes plus itself, 
and N is the total number of terms in GO corpus. The IC 
is defined as:

( ) = −IC t log p t( ( ))

The Lin method is defined as:

( ) ( )=
+

sim t t IC MICA
IC t IC t

( , ) 2 ( )
1 2

1 2

where IC(MICA) is the information content of their closest 
common ancestor (t1 and t2), the method normalized 
similarity between two given terms ranging from 0 to 
1. The similarities among two sets of GO terms could 
organize as a matrix. The “BMA” measurement used the 
best-match average strategy to calculate the average of 
all maximum similarities on each row and column. Here, 
we selected the “BMA” method to compare the semantic 
similarity between two GO term sets.

The targets of miRNAs

Previous studies indicated that a combination of 
multiple algorithms might increase the reliable of miRNA 
targets [56]. Thus, we obtained miRNA targets from seven 
prediction algorithms as previous study [57], including 
DIANA-microT [58], miRanda [59], RNA22 [60], 
RNAhybrid [61], TargetScan [62], miRBase Targets [63] 
and Pictar [64]. Only miRNA targets that were predicted 
in at least two algorithms were considered as reliable. In 

total, we obtained 289469 miRNA regulations for 776 
miRNAs.

Chemical structure similarity between two small 
molecules

In order to calculate structure similarity between 
two small molecules, we download the SDF file from 
Pubchem database (https://pubchem.ncbi.nlm.nih.gov/) 
[65]. The small molecules without structure information 
were filtered out. The two-dimension Tanimoto chemical 
similarity score between small molecules was calculated 
by the SMSD software.

Survival analysis of breast cancer patients

In this study, we identified 19 potential small 
molecule drugs for breast cancer, in which 12 drugs 
have been validated by previous publication. Next, 
we further investigated whether the miRNAs that 
associated with the potential breast cancer drugs could 
distinguish breast cancer patients with good or poor 
outcome. Thus, we first collected breast cancer samples 
with miRNA expression and clinical information from 
TCGA and GEO database (GSE19783). As a result, we 
obtained 465 and 99 breast cancer patients from these 
two data resources, respectively. Then, we used the K-
means cluster method (K=2) to cluster the patients into 
two groups based on miRNA expression. Finally, we 
used log-rank test to evaluate the statistical significant 
of difference between the two groups, and drew the 
Kaplan-Meier curve of the two different prognostic 
groups with R package survival.
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