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The effect of interventions on the 
transmission and spread of HIV 
in South Africa: a phylodynamic 
analysis
Eduan Wilkinson1,2,3, Dennis Maletich Junqueira2,3, Richard Lessells   3, Susan Engelbrecht   4,5, 
Gert van Zyl4,5, Tulio de Oliveira2,3 & Marco Salemi1

The epidemic in South Africa is characterized by high genetic diversity driven by multiple independent 
introductions. The bulk of these introductions occurred between 1985–2000 during which time 
HIV prevalence increased exponentially. Epidemic growth has stabilized in recent years with 
the implementation of several interventions. Here we identified distinct HIV clades from a large 
sequence dataset of southern African HIV sequences (n = 15,332). Each clade was characterized using 
phylodynamic and phylogeographic methods to infer their growth through time and space. The 
estimated date of origin for the 18 clades that were found, fell between 1979–1992 with strong growth 
during the 1990’s. Phylogeographic reconstruction revealed wide dispersal of clades throughout the 
country with the city of Johannesburg as the focal point of viral dispersal. We found clear signs of 
decreasing growth rate in four of the clades since the advent of interventions, while other clades have 
continued to growth and expand. Our results demonstrate that interventions do not affect the HIV 
epidemic universally with major difference between different clades over time and space. Here we 
demonstrate the utility and flexibility of molecular epidemiological methods and demonstrate how 
they can potentially be a powerful tool in HIV epidemic monitoring in South Africa.

South Africa and southern Africa falls in the epicentre of the HIV/AIDS pandemic. The region is home to <2% 
of the world’s population, yet accounts for a third of the global HIV disease burden. The HIV epidemic in South 
Africa exploded in the 1990’s. Prevalence measured amongst women attending antenatal clinics increased from 
<1.0% in 1990 to ~24.5% by the end of the decade1. The South African government’s response to the epidemic 
was initially slow, but since the early 2000s, has become more responsive. The government’s reversal on their prior 
policy stance – that HIV does not cause AIDS – has been central to this change. Several national campaigns to 
combat the spread of the virus been launched such as prevention of mother to child transmission (pMTCT), as 
well as the combination antiretroviral therapy (cART) and medical male circumcision. In September of 2016, the 
government further committed to the adoption of the UNAIDS 90–90–90 strategy, which aims at having 90% of 
infected individuals diagnosed by 2020, 90% of whom should be on cART, and 90% of those on cART virologi-
cally suppressed2.

In the context of mass interventions to stop the transmissionim and spread of HIV such as cART, there is 
a growing need for tools or studies that can measure their effects on the epidemic. Standard epidemiological 
techniques would traditionally be the preferred choice of platform for such studies. However, in recent years, 
molecular epidemiology studies have emerged, which can provide a broad nuanced view of the epidemic. This 
makes molecular epidemiology studies attractive measures to complement traditional epidemiological studies3–5. 
These studies draw from recent advancements in sequencing technologies, computational biology and the large 
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amount of HIV sequence data routinely being generated as part of standard of care (i.e. drug resistance testing). 
The added advantage of molecular epidemiology studies over traditional methods is that they are more cost effec-
tive and quicker to perform.

Previously, we reconstructed the history of the HIV subtype C epidemic in South Africa to shed light on when 
the epidemic emerged, as well as to dynamically model changes in the past viral population size of the epidemic. 
Molecular clock analysis placed the time to the most recent common ancestor (tMRCA) of the epidemic around 
1960 with the 95% confidence intervals (CI) ranging between 1956 and 19646. More over, a random longitudinal 
sampling of viral linages within each southern African country will produce similar estimated dates for subtype 
C. Therefore, its clear that the southern African HIV-1 subtype C epidemic share a common ancestor around 
the 1960. Phylodynamic modelling also revealed periods of strong epidemic growth during the late 1970 s and 
throughout the 1980s in the southern African region. However, when analysing only South African sequences 
the period of epidemic growth appears to be approximately ten years later with most growth in the mid-80’s 
and throughout the 1990’s. This 10-year lag in the epidemic growth phase of the South African epidemic is also 
consistent with HIV prevalence estimates. By the start of the 1990 s the HIV prevalence rate in South Africa was 
~1.0% of the adult population, while prevalence in Zimbabwe at the time was ~10.0%7. In phylogenetic recon-
structions of the southern African epidemic we also observe a strong panmixia pattern of dispersal of southern 
African sequences – with no clear spatial clustering (i.e. lack of supported monophyletic clades including strains 
specific geographic area).

Based on such findings, we hypothesized that several independent introductions of HIV subtype C into South 
Africa over time must have occurred to give rise to the viral genetic heterogeneity we observe today. To this end, 
we conducted a phylogeographic study of a large southern African dataset (n = 11,289) to infer the number of 
viral exchanges (imports and exports) of HIV between South Africa and its neighbours through a phylogeo-
graphic reconstruction8. The results confirmed our hypothesis and identified that the bulk of viral exchanges 
occurred between 1985 and 2000 with little to no subsequent events. This period of viral introductions coincided 
with mass inward migration of people from neighbouring countries into South Africa as Apartheid was abolished 
and South Africa was re-integrated into the Southern African Development Community (SADC). From these 
results, it is clear that the HIV epidemic in South Africa is actually a composite of multiple, parallel sub-epidemics 
spreading in the country at the same time, giving rise to the heterogeneity we observe today. This implies that 
even though the subtype C epidemic in South Africa share a common ancestor as far back as 1960, it does not 
mean that HIV was already circulating in the country at the time. Rather, a large number of independent intro-
ductions from across the southern African region much later (1985–2000) has shaped the epidemic, giving rise to 
the extreme genetic diversity we observe today.

We used a similar approach as that used by Novitsky and colleagues3, in the present study. We analysed a 
large sequence dataset of HIV patients from South Africa and its neighbouring countries to identify clades that 
represent sub-epidemics. We applied phylodynamic and phylogeographic methods to each clade to infer their 
temporal origin and growth as well as their spatiotemporal distribution. We were particularly interested in two 
main questions: (i) What temporal changes in the growth of clades have occurred, particularly in the period of 
interventions (2005–2015); and (ii) What has been the spatio-temporal characteristics of clades?

Results
Dataset and clade identification.  Aggregated viral genotypes from four different sources produced a 
sequence dataset of 15,332 sequences. Subtyping and recombination analyses identified 75 sequences that were 
not pure subtype C isolates or showed statistically significant signs of viral recombination. These 75 sequences 
were removed from the sequence dataset, which resulted in a final dataset of 15,257 sequences. No duplicate 
sequences were identified. Manual editing produced a codon alignment of 1,088 base pairs (bp). The final length 
of the alignment after 33 codon positions associated with major drug resistance mutation sites were removed 
was 989 bp long. A breakdown of the 15,257 subtype C polymerase (pol) sequences is provided in Supplementary 
Figure 1.

We used the 15,257 subtype C sequences to construct a maximum likelihood (ML) tree topology that was 
used to identify clades in PhyloType. We first conducted a sensitivity analysis in PhyloType increasing the genetic 
distance threshold by 0.5% incrementally starting at 2% and working up towards 10%. Based on this exercise, an 
8% genetic distance cut-off was identified as optimal. At this threshold, we identified a total of 18 clades of interest 
containing 907 South African sequences (Fig. 1). The largest contained 110 sequences that were sampled over 
the course of ~15 years, while the smallest contained 27 sequences that were sampled over the course of ~9 years 
(Table 1). Of the 18 clades, 14 had good temporal signal as determined by TempEst, which would allow for phy-
lodynamic and phylogeographic reconstruction. The remaining four had a negative correlation between genetic 
diversity and sampling times and was not suited for molecular clock analyses.

Phylodynamic characterization of clades.  The 14 transmission clades that had good temporal signal 
were analysed under various coalescent tree priors in a molecular clock framework to infer their estimated dates 
of origin (Supplementary Figure 2) as well as their past population growth dynamics (Fig. 2). Using the mar-
ginal likelihoods inferred under the different coalescent tree priors, Bayes factor calculations favoured the use 
of a SkyRide coalescent tree prior over the use of all other models. This was the case for all of the clades. Based 
on these SkyRide estimates the inferred tMRCA for clades fell in the period between 1979 and 1992. The oldest 
clade (#12541) had an estimated date of origin around 1979.5 (95% CI: 1973.5–1985.4) while the youngest clade 
(#9402) had an estimated date of origin around 1992.2 (95% CI: 1987.1–1996.7). These estimated dates of origin 
are consistent with our previous findings that showed many viral introductions into South Africa from neigh-
bouring countries during the period8.
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Phylodynamic modelling of the past population growth through time of the 14 clades revealed strong expo-
nential growth in the effective population size (Ne) throughout the 1980’s and 90’s. Since 2000 the growth in 
clades appears to have stabilized. These observations are in concordance with the rising prevalence trends of HIV 
that was observed in South Africa during this period. We observed decreases in the effective population size for 

Figure 1.  Large-scale phylogenetic reconstruction of the HIV-1 subtype C epidemic in the southern African 
region. The tree contains 15,257 HIV subtype C pol sequences from across the southern African region and 
is rooted with the HXB2 reference strain. The maximum likelihood phylogeny was construct in IQ-TREE 
(GTR + I + G) with 1,000 bootstrap replicates. The scale bars at the bottom represent the number of substitutions 
per site along branches in the tree topologies. The 18 clades we identified in the ML-tree topology at an 8% 
genetic distance threshold in PhyloType are highlighted in blue and annotated according to the PhyloType IDs 
as in Table 1. The values in brackets below each sequence ID represent the number of sequences in that clade (n), 
while the last number (B) represents the bootstrap support for the parental branch for each clade.

Clades
R2 from 
TempEst

Date range 
(in years)

Size of 
clade

Intra-cluster genetic 
diversity (%)

Bootstrap 
support (%)

#5302 0.213 16.753 41 6.50 95

#6804 0.355 18.460 29 6.90 97

#8460 0.086 9.847 29 5.40 96

#9402 0.329 8.838 54 6.00 98

#10779 0.137 8.710 31 6.50 96

#11400 0.172 11.279 108 6.70 99

#12541 0.116 17.581 88 7.40 96

#13212 0.219 17.471 54 7.10 97

#13580 0.154 8.288 27 5.60 97

#14595 0.233 8.460 36 7.50 96

#15545 0.069 9.299 27 6.30 97

#23106 0.217 15.134 110 7.80 96

#23376 0.287 7.784 64 7.00 100

#24589 0.285 10.819 30 6.80 99

#25111 0.033 11.460 65 7.20 100

#25877 0.326 8.825 31 7.90 95

#26797 0.056 8.647 38 8.00 100

#28759 0.159 10.310 45 7.80 96

Table 1.  Summary of the 18 clades that were identified in the PhyloType analysis of the ML-tree.
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several clades (#5302, #6804, #10779, #11400, #12541, #13212, #23106, #23376 and #25877) in more recent years. 
These decreases coincide with the period of interventions (2005–2015), such as the role-out of cART and med-
ical male circumcision campaigns. However, these decrease were not observed in all of the clades. For exam-
ple, in clade #9402, a small period of decline in the population size was observed between 2005 and 2010, but 
has since entered a new growth phase. Similarly, small decreases was observed for clades #13580, #24589 and 

Figure 2.  The inferred phylodynamic trends of 14 South African clades. On the x-axis time in calendar years 
are represented while on the y-axis the effective population size (Ne) are presented. These phylodynamic plots 
were inferred in Tracer using the mean tree height estimate. The grey shaded area represents the 95% confidence 
interval for Ne estimates, while the black line represent the median estimate through time.
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#28759 however these decreases were not significant based on their 95% confidence intervals. Finally, instead of a 
decrease, a small increase in growth was observed for clade #14595 over the period from 2010 to 2015.

Birth-Death coalescent reconstruction of epidemiological parameters.  Epidemiological parame-
ters that were inferred from clades under the Birth-Death coalescent model (Fig. 3 and Supplementary Figure 3) 
correlates with our phylodynamic reconstruction of the past population size (Ne) of clades (Fig. 2). In four clades 
we observed the median R0 estimate as well as the 95% CI fall below 1 at the most recent time of sampling. The 
inferred temporal changes in R0 for clade #11400 revealed high R0 estimates for the period leading up to 2012 
when R0 decreased to ~0.651 (95% CI: 0.420–0.887). On the other hand, the becoming uninfectious rate for this 
clade were very low leading up to 2012, when it increased to approximately a rate of 1.118 (95% CI: 0.432–2.081). 
For clade #23106, the inferred temporal changes in R0 suggest high growth potential up until 2006/2007 after 
which is decrease slightly for about two years. Our inference further suggests that this small decrease were fol-
lowed by a small expansion (2010–2012) after which R0 decreased to a median of 0.676 (95% CI: 0.317–0.922). 
Conversely, the δ rate for this clade remains very low up until 2006/2007, which is followed by three incremental 
increases. At the last point of sampling the median δ rate was 1.245 (95% CI: 0.369–2.710).

The inferred temporal changes in R0 and the δ rate for clade #23376 revealed consistently high R0 estimates 
up until ~2009 after which R0 decreased. Conversely, the δ rate for this clade remained fairly low until ~2012 after 
which it increased. At the last time point of sampling the median R0 estimate was 0.708 (95% CI: 0.428–0.988), 
while the median δ estimated was 1.164 (95% CI: 0.409–2.188). Finally, our inferred temporal changes in R0 
and the δ rate for clade #25877 revealed high R0 estimates leading up to 2005, after which it has decreased until 
~2012. However, during this period the R0 95% CI remain fairly wide until ~2012 after which R0 decreased to a 
median of 0.475 (95% CI: 0.263–0.908). On the other hand, the δ rate for this clade remains very low throughout 
its lifespan up until ~2012, after which it increases to ~1.465 (95% CI: 0.382–3.365).

For the other clades for which we observed a decrease in the Ne (clades #5302, #6804, #10779, #12541 and 
#13212) at the most recent time of sampling, we observed decreases in R0 below 1, while the δ rate increases. 
However, the 95% CI for R0 at the most recent time of sampling still falls above 1, therefore we cannot be abso-
lutely sure about the decreasing trend in these clades. For the remaining clades (#9402, #13580, #14595, #24589, 
#28759) the relatively high R0 estimates and low δ rates partially explains why some of these clades continue to 
grow and why some clades remain stable in the era of HIV interventions.

Phylogeographic reconstruction of South African clades.  We were able to reconstruct the geographic 
diffusion of transmission chains for 13 of the 14 clades with good molecular clock signal, which revealed a wide 
geographic circulation throughout the country. Keeping with prior convention, the phylogeographic reconstruc-
tion of the seven clades with clear signs of a decrease in the growth of clades are presented in the main text here 
(Fig. 4), while the remaining seven clades’ the phylogeographic reconstruction are presented in supplementary 
materials (Supplementary Figure 4). For clades #5302 and #6804, our phylogeographic reconstruction revealed 
the central region of KwaZulu-Natal as the most likely ancestral location for these transmission clades. For both 
clades our reconstruction inferred spread from this central location in KwaZulu-Natal to the northern regions of 
the province close to the Mozambican and Swaziland borders as well as viral spread to the city of Johannesburg 
by 2004. Since then these transmission chains have widely been dispersed including locations in Cape Town, Port 
Elizabeth, Mthatha and the central interior of the country.

The spatiotemporal reconstruction of all other clades revealed the city of Johannesburg, as the most like ances-
tral location for all of the other clades. From Johannesburg, clades appears to spread quickly to other locations 
within South Africa, including hyper endemic areas of KwaZulu-Natal, to Kimberly and Bloemfontein in the 
interior of the country, to Mpumalanga in the lowveld, and areas in the Western and Eastern Cape. Due to a lack 
of geographic variation in the sampling locations of sequences, phylogeographic reconstruction of clade #23376 
could not be performed as 98% of this clade’s sequences were generated from sampling of HIV infected patients 
from Chris Hani Baragwanath Hospital in Soweto.

Discussion
The phylogenetic reconstruction and phylotype analysis of the southern African HIV-1 subtype C epidemic 
revealed 18 South African clades of interest containing 907 sequences (9.7% of all South African sequences). Each 
one of these clades represents putative chains of HIV transmission within the country. Phylodynamic modelling 
of clades identified distinct growth patterns through time. Since the introduction and expansion of cART and 
other HIV interventions, the majority of clades decreased in size. However, in the context of these interventions 
others have actually expanded, which suggests that interventions do not affect the growth of clusters uniformly. 
More importantly, we have demonstrated here that molecular epidemiological inference of HIV can be used as a 
potentially powerful tool in the future to monitor the epidemic in South Africa. In the context of mass interven-
tions such as cART and 90-90-90, these methods in the future has the potential to identify demographic groups 
or geographic areas where interventions are not performing optimally, complimenting existing surveillance of the 
epidemic. In turn the resulting information that is gained can be used to strengthen the public health response 
and design better targeted interventions amongst key demographic group or geographic areas.

Due to the high degree of genetic diversity that characterizes the HIV epidemic in the southern African region 
(Supplementary Figure 1D), we deliberately used very stringent criteria towards the identification of clades. 
Traditionally, closely associated viral strains of HIV are normally identified through the combined use of branch 
support and the use of a genetic distance threshold3–5. For the identification of transmission clusters, conserva-
tive cut-off values are normally used. For example, high branch support (>90%) and a low intra-cluster genetic 
distance threshold (2–4.5%)4,5,9. Our aim was not to identify highly similar clusters that represent putative chains 
of transmission, but rather to identify clades of HIV-1 subtype C in South Africa representing “sub-epidemics” 
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resulting from independent introductions into the country. To this end we used a very conservative >95% branch 
support threshold cut-off. The use of a genetic distance threshold in molecular epidemiology studies, as with 
branch support thresholds, has often been an ad-hoc choice, with no clear cut-off, which prompted us to explore 
different genetic distance thresholds (Supplementary Figure 5). Our sensitivity analysis favoured the use of an 

Figure 3.  The inferred temporal changes in the estimated basic reproductive number and becoming 
uninfectious rate for seven South African clades for whom decreases in Ne was observed. The red solid lines 
represents the median estimate for R0 while the red shaded areas represent the 95% confidence interval for R0 
estimates. The solid blue lines represent the median estimate for δ, while the blue shaded areas represents the 
95% confidence interval for δ estimates.
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8.0% genetic distance cut-off to optimize the size and numbers of clades. In a recent publication we demonstrated 
that as you move from the terminal tips of the tree towards the root we observe a sharp decrease in Felsenstein’s 
bootstrap10. Therefore, given the relative depth of branches leading to our clades of interest and the large number 
of taxa in our phylogeny we are confident in the assignment of these clades.

Figure 4.  Temporal dynamics of HIV-1 subtype C spatial diffusion in seven South African clades. Lines 
between sites represent possible transitions of the virus between South African towns or cities. All transitions 
between locations have been plotted in this figure. Circle diameters are proportional to the square root of the 
number of MCC branches that maintain the same location state at each time-point. The map is based on satellite 
pictures available in Google Earth (http://earth.google.com).
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Of the 18 clades that were identified, only 14 showed good signs of having good molecular clock signal. 
Bayesian coalescent reconstruction of the 14 clades place their estimated dates of origin in the 1980’s or early 
1990’s. This falls within the 1985–2000 time period, which is consistent with our earlier findings, which proofed 
that several viral introductions into South Africa occurred during this time period that gave rise to several 
sub-epidemics. The reconstruction of the clades past population dynamics revealed strong growth in the Ne 
throughout the 1990’s (Fig. 3). These trends are consistent with HIV prevalence estimates over this time period as 
national prevalence trends increased from <1.0% to ~24.5%7. The reduction in the growth of Ne for some clades 
follows the initiation of the national cART campaign in 2004 and coincides with the expansion of access to ther-
apy since 2009 and other interventions. In particular the decline and growth phase we observe in cluster #9402 
really emphasises the potential power of molecular epidemiology methods to alert healthcare works of on going 
growth in some sup-epidemics, which can be used to design better targeted interventions.

However, the effective population size as a measure of relative genetic diversity only provides us with a nascent 
view of the past population dynamics. To investigate the observed decline in the Ne since the introduction of 
cART in greater detail we reconstructed the basic reproductive number of clades through time using a structured 
birth-death coalescent model11. The basic reproductive number provides an estimate of the number of new infec-
tions every infection would cause over the course of their infectious life. A R0 of one would indicate a stable epi-
demic with no growth or decline, while a R0 below one represents a shrinking epidemic (i.e. a decline in growth). 
Our birth-death coalescent reconstruction of the clades identified four (#11400, #23106, #23376 & #25877) where 
the median R0 estimate, including the 95% CI, were below one at the most recent time of sampling. This reduc-
tion in R0 was also accompanied with an increase in the uninfectious rate over the same time period. However, 
this decrease has only been observed in four of the fourteen clades on which molecular clock and birth-death 
coalescent modelling was performed. In the remaining clades no clear signs of decline in the R0 were noticed. It 
is therefore clear that some clades have stopped growing in the era of interventions (2005-present), while others 
have either remained stable or has continued to grow and spread. Given the lack of additional patient information 
that can be analysed in conjunction with the sequences it is difficult to ascertain exactly why other clades have 
continued to expand despite interventions such as increasing access to HIV testing and treatment.

The national cART campaign was launched in 2004. However, role out was initially slow with therapy only 
being administered at a CD4 cell count of <200-cells/ml blood12. Between 2004 and 2009, only ~600,000 peo-
ple were initiated on therapy at this threshold. By 2009, government adjusted initiation criteria upwards to 
<350-cells/ml of blood for patients co-infected with HIV and TB and for all pregnant women who are infected. 
By 2013, initiation criteria were adjusted to <350-cells/ml blood for all patients and in 2015 was adjusted upwards 
again to <500-cells/ml blood. By 2015, ~3 million HIV positive South Africans were enrolled on therapy, making 
the South African national HIV treatment campaign the largest in the world, which constitutes a 30-fold increase 
in the number of individuals on cART when compared to 200512,13 (Table 2). Since the introduction of therapy 
the national HIV incidence estimate amongst the sexually active population (aged 15–49 years) has decreased 
from 1.88 to 0.91. Of course its difficult to quantify what effect access to therapy has had, but it is safe to assume 
that this decline in incidence can in part be attributed to it. Conversely, the HIV prevalence rate amongst the 
same population group has remained stable over the same time period (2004–2017)13. This is to be expected as 
more HIV infected individuals are living longer due to the benefits of therapy. However, as of 2015 only 48.6% 
(95% CI: 46.0–51.2%) of HIV positive individuals were on cART. Additionally, of the HIV positive population in 
South Africa only ~26% were on cART and virally suppressed. This figure is extremely low considering that viral 
suppression is the most important determinant of future HIV incidence trends in the South Africa12,14.

The phylogeographic reconstruction of transmission chains revealed a diverse geographic diffusion through-
out the country over time (Fig. 3). The spatio-temporal reconstruction revealed linkage between urban and rural 
population centres across the country. Johannesburg appears to be a major centre for HIV transmission in South 
Africa. Phylogeographic reconstruction placed the estimated ancestral location of all but two of the clades in the 
city, with clades (#5302 & #6804) originating in KwaZulu-Natal from where they spread to Johannesburg and 
further throughout the country. The cluster for which phylogeographic reconstruction was not possible, due 

Province 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Eastern Cape (EC) 5200 11600 22000 38000 61000 92000 132000 186000 237000 287000 327000 359000

Free State (FS) 2300 4000 7000 14000 25000 42000 64000 91000 119000 147000 169000 187000

Gauteng (GT) 12400 29200 54000 95000 14000 208000 292000 409000 521000 631000 712000 774000

KwaZulu-Natal (KZ) 13500 27500 54000 106000 173000 262000 376000 521000 665000 807000 933000 1045000

Limpopo (LP) 2100 4400 9000 19000 34000 54000 81000 117000 148000 176000 198000 216000

Mpumalanga (MP) 3300 5800 11000 23000 37000 57000 84000 121000 165000 217000 267000 316000

Northern Cape (NC) 400 1200 3000 6000 9000 12000 15000 19000 24000 31000 38000 46000

North West (NW) 3000 7800 16000 28000 46000 63000 89000 122000 149000 173000 191000 204000

Western Cape (WC) 2500 10100 20000 32000 47000 65000 85000 108000 131000 154000 173000 190000

Total 44700 98000 196000 361000 446000 855000 1218000 1694000 2159000 2623000 3008000 3337000

Table 2.  Number of HIV positive individuals on combination antiretroviral therapy (cART) since the start 
of the national treatment campaign in 2004. A breakdown of the number of patients accessing treatment per 
province is provided while the total at the bottom represents the estimated number of HIV infected people on 
treatment nationally.
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to constrains in its sequence locations, were predominantly sampled in and around the city of Johannesburg. 
The general trends we observed in our reconstruction supports the hypothesis that migrants, primarily in large 
urban areas, introduced HIV into South Africa from where it then spread onwards to rural communities. These 
urban-rural viral diffusion pathways coupled with high rates of infection has resulted in the extremely high prev-
alence rates that we now observe in hyper-endemic rural settings of KwaZulu-Natal such as those covered by the 
AHRI and CAPRISA population surveillance platforms9,15. These rural-urban transmission pathways and the 
vast geographical dispersal of clusters underscore the need for increased testing and treatment of individuals in 
high incidence and prevalence communities and the engagement of high-risk individuals (MSM, commercial sex 
workers, migrants and long distance truck drivers) throughout the country.

There are a couple of caveats to our reconstruction of the South African HIV epidemic. Firstly, our reconstruc-
tion was restricted to the use of a small fragment of the polymerase gene of the virus. The use of a small fragment 
from a single gene fundamentally limits our ability to accurately reconstruct the epidemic in the region and such 
a study would greatly benefit from the use of whole genome HIV sequences, as their use would assure better sup-
port for the branching structure in viral genealogies. However, the availability of whole genome HIV sequences 
from the region is limited to a small number contained in sequence databases (n < 500) or to very specific studies 
and research sites. The use of whole genome sequences for this study would therefore have restricted us to only a 
few hundred sequences as compared to several thousand when using pol. Furthermore, it has been demonstrated 
previously that HIV pol carries enough phylogenetic signal to accurately reconstruct phylogenetic clades/clus-
ters16. Our study, using pol sequences, should therefore be able to reconstruct the underlying epidemic dynamics 
of HIV in the region to a reasonably good degree of success.

Secondly, given the convenient nature of sampling sources such as those drawn from drug resistance cohorts 
and public databases, it is evident that sampling from some geographic regions of South Africa and the south-
ern African region might be underrepresented. For example, no sequences are currently available from Lesotho 
or Namibia, even though these countries are ranked second and fifth in the world in terms of HIV prevalence 
respectively. Their absence from any phylogenetic reconstruction of the epidemic in the region therefore consti-
tutes a serious limitation. Moreover, within the South African context, sequences from North West province are 
lacking entirely, while genotypes from Mpumalanga, Limpopo, the Northern Cape and the Free State were gener-
ally underrepresented in comparison to the other provinces (Supplementary Figure 1). Conversely, the inclusion 
of sequences coupled to large demographic study sites such as ARHI and CAPRISA could lead to the overrep-
resentation of sampling from two hyper endemic settings in KwaZulu-Natal. The over- and underrepresentation 
of sequences from different geographic loci could therefore bias the phylogenetic and phylogeographic recon-
struction that we were performed in the current study. Therefore, we can only reliably discuss viral spatial diffu-
sion patterns between the four most highly sampled locations within the country (i.e. Gauteng, KwaZulu-Natal 
and the Eastern and Western Cape province). That being said, the results overwhelmingly support the hypothesis 
that Johannesburg was indeed the focal point of viral spread in South Africa, from where clades quickly spread to 
other urban centres and rural areas.

Finally, the genotype dataset that we used provided us with no other additional clinical, demographic, behav-
ioural or socio-economic data. This has limited our reconstruction of the epidemic only to both time (temporal 
changes) and space (geographic spread). The inclusion of additional variables would have allowed us to identify 
how different risk factors contribute to HIV epidemic spread in the region. Such information would have been 
useful to determine why some clusters have shrunk since the introduction of cART and why some continue to 
grow and expanded in the presence of HIV interventions. This underscore the need for a national HIV sequence 
and patient database which could serve as the basis for the development of dynamic systems that can track the 
spread of HIV in the era of mass interventions.

In conclusion, our results clearly demonstrate that in the current context, where ~50% of HIV infected indi-
viduals are accessing treatment we could only observe clear decreases in the size of four of the clades we identi-
fied. Furthermore, our phylogeographic reconstruction underscores the wide geographic dispersal of HIV within 
South Africa. Given the wide geographic dispersal and the large scope of the HIV epidemic it is clear that wide 
ranging HIV interventions on a national scale is urgently needed – above and beyond the current status quo - to 
curb the growth of the epidemic. The proposed 90-90-90 strategy holds great promise, but in the context of the 
current poor viral suppression rates, there is little evidence that the final 90% object can be achieved. It is clear, 
that continued surveillance of the epidemic is needed to capitalize on the expansion of treatment. In the con-
text of mass interventions, phylogenetic and phylodynamic methods, applied to the ever-increasing number of 
viral genotypes that are being produced, can provide insights about the underlying dynamics that is shaping the 
epidemic in the country. This knowledge in turn could be used by local and national health services to design 
better-targeted interventions in the future.

Methods
Ethical considerations.  The use of sequences from public sequence repositories like Genbank and the HIV 
database at Los Alamos National Laboratory (LANL) are not subject any Ethics board as they are within the 
public domain. The sequences from the Division of Medical Virology, Tygerberg National Health laboratory 
Services (NHLS), were obtained with a waiver of informed consent from the Health Research Ethics Committee 
(HREC) of Stellenbosch University (IRB0005239), reference number N11/02/054. The use of sequences from 
the Centre for the AIDS programme of Research in South Africa (CAPRISA) and the Africa Health Research 
Institute (AHRI) are governed by the biomedical Research Ethics Committee of the University of KwaZulu-
Natal (UKZN) and are registered under the following numbers: BREC ref number BF269/13, BREC ref number 
BF001/16, BREC ref number BFC189/16, HREC ref number N11/02/054. HREC and BREC comply with the 
South African National Health Act No 612003 and the United States code of Federal Regulations title 45 Part 
46. The committees also abide by the ethical norms and principles for research as established by the Declaration 
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of Helsinki, the South African Medical Research Council (SAMRC) Guidelines as well as the South African 
Department of Health (SA-NDoH) Guidelines.

Sampling.  HIV sampling was drawn from various sources, including regional surveillance sites, national 
drug resistance cohorts, and public domain sequences contained in databases. We chose the HIV polymerase (pol) 
gene for our phylogenetic reconstruction due to its relative abundance and its wide use for clinical management 
and surveillance of drug resistance. Sampling was drawn from four major sources including: a large national HIV 
drug resistance cohort managed by the Division of Medical Virology at Stellenbosch University, community sur-
veillance platforms of CAPRISA and AHRI, and all public HIV pol sequences from southern African countries 
with known dates of isolation (position 2250–3300 relative to HXB2). All sequences were aggregated into one 
single data frame and curated with dates of isolation, sampling/GPS locations, gender, age and any other covari-
ates that could be linked to genotypes.

Our dataset combined from our four different sources contained in total 15,332 sequences. The national HIV 
drug resistance dataset comprised the bulk of sequence (n = 5,926) followed by publicly available sequences from 
the Los Alamos National Laboratory HIV specific sequence database (n = 4,371; date of access 19th May 2017). 
CAPRISA and AHRI each contributed 1,661 and 3,374 respectively to the dataset.

Phylogenetic reconstruction and clade identification.  First, all sequences were subtyped with the 
REGA v 3.0 subtyping tool17 and the stand-alone version of the jumping profile Hidden Markov Model (jpHMM) 
subtyping tool (http://jphmm.gobics.de)18. All non-subtype C isolates were removed from the dataset prior to phy-
logenetic reconstruction. As viral recombination can seriously affect phylogenetic and phylodynamic inference 
we analysed all sequences for the presence of recombination signal in RPD419. RDP4 utilizes a combination of 
non-parametric recombination detection methods, such as RDP20, Bootscan21, Chimaera22, SiScan23, and 3Seq24.

Next, HIV-1 subtype C polymerase (pol) sequences were aligned against one another along with a homolo-
gous section of the HXB2 reference strain25 in Muscle v 3.526. The resulting alignment was manually edited in 
Geneious v 8.1.8 until a perfect codon alignment was achieved and codon positions associated with major HIV 
drug resistance mutations were removed (https://github.com/olli0601/big.phylo). The resulting alignment was 
used to infer a maximum likelihood (ML) genealogy with IQ-TREE27. Prior to tree inference the ModelFinder 
package28 in IQ-TREE was used to identify the best fitting model of nucleotide substitution. Simultaneously, we 
screened for possible duplicate sequences in our sequence alignment with the help of IQ-TREE, which has a build 
in functionality to detect identical sequences quickly and easily. Subsequently the ML-tree topology was inferred 
with the general time reversible (GTR) model of nucleotide substitution29 and a gamma correction for among 
site rate variation30. The ultrafast bootstrap method was utilized to infer support for branching in the tree topol-
ogy (1000 replicates). Clades representing putative independent introductions of HIV-1 subtype C into South 
were identified in the resulting ML-tree with PhyloType31 using the following basic search parameters: size ≥ 25 
of South African sequences; difference ≤2 (which allows two or less non-South African sequences in each per 
clade); local branch or bootstrap support ≥95%, and an intra-cluster genetic cut-off threshold. We varied the 
intra-cluster genetic distance cut-off between 2% and 10% at 0.5% intervals to identify the optimal threshold for 
our data. We restricted the minimum size to ≥25 sequences in order to insure that a large enough sample was 
obtained that would allow for molecular clock analyses. We allowed a difference of <2 sequences (i.e. non-South 
African sequences) per clade as its clear that there are a large degree of viral flow between different southern 
African countries. With regards to branch support we purposefully set strict cut-offs to reduce the possibility 
of identifying a false clade. Finally, we choose to identify clades using PhyloType over other methods such as 
ClusterPicker32 or HIV-TRACE33, as this method allows us to search for phylotypes or clades that match a specific 
characteristic or geographic sampling location.

Phylodynamic modelling of clades.  Prior to phylodynamic and phylogeographic reconstruction, each 
clade was evaluated in TempEst (http://beast.community/tempest) to quantify temporal signal. All clades that had 
a positive correlation between genetic diversity and time were analysed to infer their estimated date of origin, as 
well as their temporal growth and geographic dispersal through time.

Clades were analysed in BEAST v 1.8.4 (http://beast.community/beast) under a relaxed lognormal molecular 
clock, an estimated mutation rate and different coalescent tree priors to infer the tMRCA and viral Ne dynamic 
through time. For each clade five different tree priors were tested: constant and exponential growth34, as well as 
non-parametric Bayesian-Skyline35, Bayesian-SkyRide36, and Bayesian-SkyGrid37 tree priors. Each demographic 
coalescent model was run in duplicate for 1 billion Markov Chain Monte Carlo (MCMC) generations, with sam-
ples being drawn from the posterior every 100,000 generations. Good mixing and convergence in the chains 
were assessed in Tracer (http://beast.community/tracer) based on high Effective Sample Sizes of each estimated 
parameter (ESS > 200) after the first 10% of the samples were discarded as burn-in. Bayes Factor comparison 
between different coalescent tree priors were performed to determine which coalescent model fitted the data best.

To assess the epidemic growth potential in clades, each one was also analysed under an uncorrelated 
log-normal relaxed molecular clock model and a Birth-Death Skyline Serial coalescent tree prior11. The mutation 
rate for the birth-death coalescent model was fixed at 1.8 × 10−3 mutations/site/year, based on previous estimates 
for HIV subtype C pol6,8. Additionally, we used the GTR substitution model with a gamma distributed rate var-
iation across sites in BEAST v 2.4.6 (www.beast2.org). A two-dimensional sampling proportion was enforced 
with the sampling fixed to zero prior to the first sample date in each clade followed by an estimated sampling 
proportion. The MCMC was run for 1 billion generations and samples drawn from the posterior every 100,000 
generations. Again, proper mixing was assessed in Tracer based on high ESS values after discarding the first 10% 
of posterior values as burn-in. R0 estimates, the becoming un-infectious rate, and the sampling proportion were 
plotted over time using the ggplot2 package in R38.
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Spatiotemporal reconstruction of South African clades.  The origin and spatiotemporal dynam-
ics of subtype C clades were investigated using a Bayesian phylogeographic approach implemented in BEAST 
v 1.8.439. Analysis were performed under a relaxed uncorrelated lognormal molecular clock model40 with the 
GTR + G + I nucleotide substitution model. The substitution rate was modelled by a uniform distribution with 
mean 1.8 × 10−3 substitutions/site/year6,8 and the non-parametric Bayesian SkyRide model was used as coales-
cent tree prior36. Bayesian stochastic search variable selection (BSSVS) was employed to estimate viral migrations 
between locations41. MCMC chains were run for up to 300 million generations and proper mixing was evaluated 
individually in TRACER v 1.6 excluding an initial 10% for burn-in. Maximum clade credibility (MCC) trees were 
computed in TreeAnnotator v1.8.4, and visualized in FigTree v1.4.3. Migratory events were summarized using 
the SPREAD platform42.

Sequence Information and Data Availability
All genotypes that were used for epidemic dynamic reconstruction in this article have been submitted to public 
sequence databases. The HIV drug resistance cohort (n = 5,926) can be accesed under the following Genbank 
accession numbers: KX539549-KX544796. A small representative sample of AHRI sequences can be accessed 
from Genbank under the following accession numbers: MH920641 - MH920852. The complete AHRI dataset 
can be accessed from their data repository (https://www.ahri.org/ahri-publishes-updated-longitudinal-datasets/) 
under the following https://doi.org/10.23664/AC_HIVpol_full1068. Sequences from CAPRISA can be obtained 
through a data request from the CAPIRSA data repository (http://www.caprisa.org/Pages/CAPRISA%20Studies). 
All sequences that were retrieved from LANL (n = 4,371) are all in the public domain. Final alignments and the 
geographic co-ordinates can be obtained through personal communication with the corresponding author and is 
subject to the Insitutional Review Board (IRB) guidelines that govern their use.

References
	 1.	 Barron, P. et al. Eliminating mother-to-child HIV transmission in South Africa. Bulletin of the World Health Organization. 91, 70–74 

(2013).
	 2.	 UNAIDS, http://www.unaids.org/en/resources/909090 (2016a).
	 3.	 Novitsky, V. et al. Phylodynamic analysis of HIV sub-epidemics in Mochudi, Botswana. Epidemics. 13, 44–55 (2015).
	 4.	 Hue, S., Gifford, R. J., Dunn, D., Fernhill, E. & Pillay, E., on Behalf of the UK Collaborative Group on HIV Drug Resistance. 

Demonstration of Sustained Drug-Resistant Human Immunodeficiency Virus Type 1 Lineages Circulating among Treatment-Naïve 
Individuals. Journal of Virology 83(6), 2645–2654 (2009).

	 5.	 Ratmann, O. et al. Sources of HIV infection among men having sex with men and implications for prevention. Science Translational 
Medicine. 320, 8, https://doi.org/10.1126/scitranslmed.aad1863 (2016).

	 6.	 Wilkinson, E., Engelbrecht, S. & de Oliveira, T. History and origin of the HIV-1 subtype C epidemic in South Africa and the greater 
southern African region. Scientific Reports. 5, 16897, https://doi.org/10.1038/srep16897 (2015).

	 7.	 UNAIDS, Global AIDS Update 2016. http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdf 
(2016b).

	 8.	 Wilkinson, E. et al. Origin, imports and exports of HIV-1 subtype C in South Africa: A historical perspective. Infection, Genetics and 
Evolution. 46, 200–208 (2016).

	 9.	 de Oliveira, T. et al. Transmission networks and risk of HIV infection in KwaZulu-Natal, South Africa: a community-wide 
phylogenetic study. Lancet HIV. 3018(16), S2352 (2017).

	10.	 Lemoine, F. et al. Renewing Felsenstein’s Phylogenetic Bootstrap in the Era of Big Data. Nature. 556, 452–456 (2018).
	11.	 Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth-death skyline plot reveals temporal changes of epidemic spread in 

HIV and hepatitis C virus (HCV). PNAS. 110(1), 228–233 (2013).
	12.	 Johnson, L. F., Dorrington, R. E. & Moolla, H. Progress towards the 2020 targets for HIV diagnosis and antiretroviral treatment in 

South Africa. South African Journal of HIV Medicine 18(1), a694 (2017).
	13.	 Statistics South Africa. Statistical release P0302. Mid-year population estimates. http://www.statssa.gov.za/publications/P0302/

P03022017.pdf (2017).
	14.	 Takuva, S., Brown, A. E., Pillay, Y., Delpech, V. & Puren, A. J. The continuum of HIV care in South Africa: Implications for achieving 

the second and third UNAIDS 90-90-90 targets. AIDS. 31(4), 545–552 (2017).
	15.	 Vandormael, A., de Oliveira, T., Tanser, T., Bärnighausen, T. & Herbeck, J. T. High percentage of undiagnosed HIV cases within a 

hyperendemic South African community: a population-based study. Journal of Epidemiology and Community Health. 72, 168–172 
(2018).

	16.	 Hue, S., Clewley, J. P., Cane, P. A. & Pillay, D. HIV-1 Pol Gene Variation Is Sufficient for Reconstruction of Transmissions in the Era 
of Antiretroviral Therapy. AIDS. 18(5), 719–728 (2004).

	17.	 Peña, A. C. P. et al. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation 
of the new REGA version 3 and seven other tools. Infectious Genetics and Evolution. https://doi.org/10.1016/j.meegid.2013.04.032. 
(2013).

	18.	 Schultz, A.-K. et al. jpHMM: recombination analysis in viruses with circular genomes such as the hepatitis B virus. Nucleic Acid 
Research. 40, W193–W198 (2012).

	19.	 Martin, D. P. et al. Detection and analysis of recombination patterns in viral genomes. Virus Evolution 1(1), vev003 (2015).
	20.	 Martin, D. & Rybicki, E. RDP: Detection of Recombination Amongst Aligned Sequences. Bioinformatics. 16, 562–3 (2000).
	21.	 Salminen, M. O., Carr, J. K., Burke, D. S. & McCutchan, F. E. Identification of Breakpoints in Intergenotypic Recombinants of HIV 

Type 1 by BOOTSCANning. AIDS Research and Human Retroviruses. 11, 1423–5 (1995).
	22.	 Posada, D. & Crandall, K. A. Evaluation of Methods for Detecting Recombination from DNA Sequences: Computer Simulations. 

Proceedings of the National Academy of Sciences of the United States of America. 98, 13757–62 (2001).
	23.	 Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. Sister-Scanning: A Monte Carlo Procedure for Assessing Signals in Recombinant 

Sequences. Bioinformatics. 16, 573–82 (2000).
	24.	 Boni, M. F., Posada, D. & Feldman, M. W. An Exact Nonparametric Method for Inferring Mosaic Structure in Sequence Triplets. 

Genetics. 176, 1035–47 (2007).
	25.	 Wong-Staal, F. et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 313(6000), 277–84 (1985).
	26.	 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Research. 32(5), 

1792–1797 (2004).
	27.	 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating 

maximum likelihood phylogenies. Molecular Biology and Evolution. 32, 268–274 (2015).

https://doi.org/10.1038/s41598-018-37749-3
https://www.ahri.org/ahri-publishes-updated-longitudinal-datasets/
https://doi.org/10.23664/AC_HIVpol_full1068
http://www.caprisa.org/Pages/CAPRISA%20Studies
http://www.unaids.org/en/resources/909090
https://doi.org/10.1126/scitranslmed.aad1863
https://doi.org/10.1038/srep16897
http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdf
http://www.statssa.gov.za/publications/P0302/P03022017.pdf
http://www.statssa.gov.za/publications/P0302/P03022017.pdf
https://doi.org/10.1016/j.meegid.2013.04.032.


1 2Scientific Reports |          (2019) 9:2640  | https://doi.org/10.1038/s41598-018-37749-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	28.	 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate 
phylogenetic estimates. Nat. Methods. 14, 587–589 (2017).

	29.	 Tavaré, S. Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lectures on Mathematics in the Life 
Sciences. 17, 57–86 (1986).

	30.	 Yang, Z. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular 
Biology and Evolution. 10, 1396–1401 (1993).

	31.	 Chevenet, F., Jung, M., Peeters, M., de Oliveira, T. & Gascuel, O. Searching for Virus Phylotypes. Bioinformatics. 29(5), 561–570 
(2013).

	32.	 Pond, S. L. K., Weaver, S., Leigh Brown, A. J. & Wertheim, J. O. HIV-TRACE (TRAnsmission Cluster Engine): a Tool for Large Scale 
Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens. Molecular Biology and Evolution. 35(7), 1812–1819 
(2018).

	33.	 Ragonnet-Cronin, M. et al. Automated analysis of phylogenetic clusters. BMC Bioinformatics. 14, 317, https://doi.org/10.1186/1471-
2105-14-317 (2013).

	34.	 Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. Estimating mutation parameters, population history and genealogy 
simultaneously from temporally spaced sequence data. Genetics. 161, 1307–1320 (2002).

	35.	 Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian Coalescent Inference of Past Population Dynamics from 
Molecular Sequences. Molecular Biology and Evolution. 22(5), 1185–1192 (2005).

	36.	 Minin, V. N., Bloomquist, E. W. & Suchard, M. A. Smooth Skyride through a rough Skyline: Bayesian Coalescent-Based Inference of 
Population Dynamics. Molecular Biology and Evolution. 25(7), 1459–1471 (2008).

	37.	 Gill, M. S. et al. Improving Bayesian Population Dynamics Inference: A Coalescent-Based Model for Multiple Loci. Molecular 
Biology and Evolution. 30(3), 713–724 (2012).

	38.	 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlang, New York. (http://ggplot2.org) (2009).
	39.	 Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology 

and Evolution. 29(8), 1969–73 (2012).
	40.	 Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biology 4(5), 

e88 (2006).
	41.	 Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. Bayesian phylogeography finds its roots. PLoS Computational Biology. 5(9), 

e1000520 (2009).
	42.	 Bielejec, F., Rambaut, A., Suchard, M. A. & Lemey, P. SPREAD: Spatial phylogenetic reconstruction of evolutionary dynamics. 

Bioinformatics. 27(20), 2910–2912 (2011).

Acknowledgements
We wish to acknowledge all HIV positive individuals who continue to participate in research studies to help us 
gain a better understanding of the epidemic. We also acknowledge the countless contributions of surveillance 
staff, scientists, laboratory technicians and health care workers who continue to generate knowledge and data 
on which studies such as ours are build on. Finally, we wish to thanks Professor Mattia Prosperi for reviewing 
the manuscript and for his constructive comments and suggestions. The research of E.W. and M.S. is funded 
through a National Institute of Health grant (NIH NIAID 1R21AI138815-01). In addition, E.W., D.M.J. and 
T.d.O. are funded through a Medical Research Foundation grant from the Republic of South Africa (MRC-RFA-
UFSP-01-2013/UKZN HIVEPI) and T.d.O. is also funded by a Royal Society Newton Advanced Fellowship. This 
work was supported by NIH grant R21-AI138815.

Author Contributions
E.W., T.d.O., and M.S. designed the study and E.W., and D.M.J. performed the inferential analysis. S.E., G.v.Z. 
provided the sequences from the drug resistance cohort, which was used in the inference. E.W. and D.M.J. wrote 
the manuscript and produced all the figures. R.L., G.v.Z., and T.d.O. provided guidance and expertise on the 
role-out of antiretroviral therapy in South Africa. All the authors critically reviewed the manuscript prior to 
submission.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-37749-3.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-018-37749-3
https://doi.org/10.1186/1471-2105-14-317
https://doi.org/10.1186/1471-2105-14-317
http://ggplot2.org
https://doi.org/10.1038/s41598-018-37749-3
http://creativecommons.org/licenses/by/4.0/

	The effect of interventions on the transmission and spread of HIV in South Africa: a phylodynamic analysis

	Results

	Dataset and clade identification. 
	Phylodynamic characterization of clades. 
	Birth-Death coalescent reconstruction of epidemiological parameters. 
	Phylogeographic reconstruction of South African clades. 

	Discussion

	Methods

	Ethical considerations. 
	Sampling. 
	Phylogenetic reconstruction and clade identification. 
	Phylodynamic modelling of clades. 
	Spatiotemporal reconstruction of South African clades. 

	Acknowledgements

	Figure 1 Large-scale phylogenetic reconstruction of the HIV-1 subtype C epidemic in the southern African region.
	Figure 2 The inferred phylodynamic trends of 14 South African clades.
	Figure 3 The inferred temporal changes in the estimated basic reproductive number and becoming uninfectious rate for seven South African clades for whom decreases in Ne was observed.
	Figure 4 Temporal dynamics of HIV-1 subtype C spatial diffusion in seven South African clades.
	Table 1 Summary of the 18 clades that were identified in the PhyloType analysis of the ML-tree.
	Table 2 Number of HIV positive individuals on combination antiretroviral therapy (cART) since the start of the national treatment campaign in 2004.




