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Abstract: Inflammation is a complex, multi-scale biologic
response to stress that is also required for repair and
regeneration after injury. Despite the repository of
detailed data about the cellular and molecular processes
involved in inflammation, including some understanding
of its pathophysiology, little progress has been made in
treating the severe inflammatory syndrome of sepsis. To
address the gap between basic science knowledge and
therapy for sepsis, a community of biologists and
physicians is using systems biology approaches in hopes
of yielding basic insights into the biology of inflammation.
‘‘Systems biology’’ is a discipline that combines experi-
mental discovery with mathematical modeling to aid in
the understanding of the dynamic global organization
and function of a biologic system (cell to organ to
organism). We propose the term translational systems
biology for the application of similar tools and engineering
principles to biologic systems with the primary goal of
optimizing clinical practice. We describe the efforts to use
translational systems biology to develop an integrated
framework to gain insight into the problem of acute
inflammation. Progress in understanding inflammation
using translational systems biology tools highlights the
promise of this multidisciplinary field. Future advances in
understanding complex medical problems are highly
dependent on methodological advances and integration
of the computational systems biology community with
biologists and clinicians.

Introduction: Inflammation Is a Complex System

Inflammation is a finely tuned, dynamic process, and its

dysregulation underlies many complex diseases (e.g., sepsis,

infectious disease, trauma, asthma, allergy, autoimmune disorders,

transplant rejection, cancer, neurodegenerative diseases, obesity,

and atherosclerosis). However, inflammation is not inherently

detrimental. Inflammatory processes are required for immune

surveillance, optimal repair, and regeneration after injury [1–3].

Inflammation is itself also a complex process, and like other

complex systems, it has defied reductionist, linear definition [4–7].

Unfortunately, because a global definition or understanding of

inflammation has not emerged from enormous data generated in

basic biology, this deep dataset has not translated into mechanistic

understanding sufficient to predict system behavior, and little in

the way of effective therapies has emerged.

The discrepancy between biologic data and therapy has

hampered the search for adequate clinical approaches in the

settings of various inflammation-related disorders. More specifi-

cally and recognizing this discrepancy, the NIH Roadmap recently

underscored the need to apply systems biology methods to the

study of inflammation [8]. These methods include computational,

mathematical, and engineering approaches (in silico methods) to

facilitate translation of biomedical research.

Systems biology has been defined in many ways [9–11], but

generally is considered a global analytic approach to biologic data

at the multiple scales of organization that characterize biologic

systems, with the goal of identifying specific genetic and molecular

signatures for improved diagnosis of disease [12–21]. Despite the

richness of these approaches, there is still a relative paucity of

techniques that transcend and describe the multiple scales and

hierarchies of organization in a way that leads to effective

therapeutic strategies. For instance, high throughput analyses

(genomics, proteomics) have identified myriad factors and

pathways involved in inflammation. However, the plethora of

reductionist studies that these approaches were expected to replace

have generated enormous amounts of data, but little in the way of

translational insights necessary to use the data clinically. These

high-throughput analyses rely on statistical methods for data

interpretation and pattern analysis. We suggest that statistical

methods must be augmented with dynamic modeling and

simulation, along with mathematical tools from engineering, in

order to address organization and behavior of dynamic complex

disease processes. The goal of integrating these tools is to generate

disease models that can be used for rapid translation, in areas as

diverse as in silico clinical trials, diagnostics, and rational drug

design. In addition, systems biology approaches can also yield

fundamental insights into the mechanistic determinants of

complex biologic processes. Further, we suggest the need to

modify the way computational simulation is currently implement-
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ed to best address issues of direct clinical relevance, since to date

computational and simulation technologies have been mostly

utilized in the context of examining subcellular and cellular

processes (Table 1, Figure 1) [9,22,23]. In order to translate the

varied data streams from basic science into organism-level insights,

the data must be organized into mechanistic, dynamical models to

simulate higher-level (total organism) behavior and response to

interventions. Translational systems biology requires that mathe-

matical and modeling expertise be combined with expertise in

various biological specialties and medical specialties.

Below, we detail the approaches used and salient findings

observed thus far in the translational systems biology of

inflammation. These studies have been applied to acute inflam-

matory responses including sepsis, trauma, hemorrhagic shock,

and wound healing [7,24–34], largely carried out under the aegis

of the Society of Complexity in Acute Illness (SCAI, http://www.

scai-med.org). Similar approaches are at the heart of many efforts,

especially in industry, where there is an acute need for rational

drug candidate discovery and improved efficiency in the transition

from candidate compound to clinical trial [35]. However, the

inflammation field is the first in which the translational systems

biology framework has been a guiding principle applied in a

systematic fashion. The primary methods of dynamic mathemat-

ical modeling utilized in these studies are agent-based modeling

(ABM) [24,25,36] and equation-based modeling (EBM), the latter

encompassing primarily ordinary differential equations (ODE) and

partial differential equations (PDE) [26–31,37–40]. The two forms

of dynamic mathematical modeling have their respective strengths

and weaknesses [7], but the utilization of both methods in the work

described below demonstrates a pragmatic, goal-directed ap-

proach not tied to a particular modeling platform [7].

Applications of Translational Systems Biology in
Acute Inflammation: From Man to Mouse to Man

Translational systems biology has developed largely in response

to the clinical challenge of sepsis. Sepsis is a syndrome resulting

from massive, acute activation of the inflammatory response,

traditionally in the setting of severe infection. Sepsis syndromes

can often complicate trauma and/or hemorrhagic shock. In its

most severe form, sepsis results in low blood pressure with

insufficient perfusion of organs, and leads to multiple organ failure

and death. Initial modeling studies were therefore focused on the

pathophysiology of the acute inflammatory response to stress, and

these studies pointed to common underlying processes generated

in response to infection, injury, and shock. Later, as the modeling

efforts matured to include the recovery phase of injury, the major

insight gained was the link between the initial inflammatory

Table 1. Comparison of Classical and Translational Systems Biology.

Classical Systems Biology Translational Systems Biology

Basic insights are primary focus, i.e., ‘‘drilling down’’ Translational insights are primary focus, i.e., ‘‘building up’’

Models structured for greatest basic insights (cellular/molecular interactions,
signal transduction pathways)

Models structured for clinical translational utility (in silico clinical trials, diagnostics,
rational drug/device design)

Simulations designed for laboratory validation Simulations designed for eventual clinical validation

‘‘omics’’ studies applied to clinically relevant situations, and subsequently
subjected to statistical analysis

Mechanistic simulations of whole-organism response guide ‘‘-omics’’ studies

doi:10.1371/journal.pcbi.1000014.t001

Figure 1. Overview of Translational Systems Biology. Pre-existing knowledge from the literature and newly generated information from wet
lab experiments lead to the development of dynamic mathematical models. These computational simulations can then lead to both knowledge
discovery, in the form of basic insights, and translational usage, such as in silico experiments and other engineering processes.
doi:10.1371/journal.pcbi.1000014.g001
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response and subsequent recovery (healing). Here we present a

history of how this field evolved around the seemingly intractable

problem of sepsis, focusing on the rationale for the studies and

insights derived from them.

Sepsis was the motivating clinical problem that led to

mathematical modeling of inflammation. Intensive care physicians

recognize that sepsis therapy has not changed substantially for

decades despite an enormous amount of data generated from in

vitro and animal studies, as well as from clinical studies [41–44].

The first approaches were designed to answer the question, ‘‘What

are the dynamics of sepsis, and does our lack of therapies imply

some yet undiscovered mediator of the syndrome?’’ In mainstream

biology and biotechnology, this question motivates the ongoing

search for a ‘‘magic bullet’’ to treat sepsis. The translational

systems biology formulation of the question, though, was reworded

to reflect a different philosophical approach to research, i.e., ‘‘Is

the current state of knowledge insufficient to explain observed

clinical behaviors?’’ Thus, the missing knowledge was assumed not

to be a missing molecule or pathway, rather the missing knowledge

was assumed to be an understanding of how all the various

components involved in the sepsis response are organized and how

they interact to generate a behavior. This question led to the use of

ABM as a knowledge representation tool, constructed by reviewing

the literature describing the molecular and cellular components of

the acute inflammatory response. This model conceptualized

inflammation as the interaction between endothelium (the single

layer of cells that line blood vessels and delineate the vessel’s

lumen) and blood-borne inflammatory cells [24,36], treating the

whole organism as a gigantic endothelial cell surface over which

inflammatory cells moved and interacted. Despite its abstraction,

this model was able to qualitatively reproduce patterns of diverse

clinical outcomes in sepsis [24]. In so doing, this model addressed

certain controversial questions with respect to the dynamics of

sepsis. The first of these was whether the anti-inflammatory

response represented a subsequent and compensatory response to

the initial pro-inflammatory response, or whether the pro- and

anti-inflammatory responses were initiated concurrently. In the

construction of ABM, no mechanistic evidence could be found to

justify a defined ‘‘lag’’ in the anti-inflammatory response;

published evidence at the time suggested that both pro- and

anti-inflammatory cellular responses were triggered by the same

stimuli. Instantiating those rules dynamically demonstrated that

the anti-inflammatory response [represented by interleukin-10 (IL-

10) levels] was indeed concurrent with the acute pro-inflammatory

response [represented by interleukin-1 (IL-1) and tumor necrosis

factor-a (TNF-a) levels]. The second interesting behavior

uncovered by the model (now generally recognized) was that

patients who suffered from the immune-suppressed phenotype of

late-stage multiple organ failure and were susceptible to usually

trivial nosocomial infections demonstrated sustained elevated

markers of tissue damage and inflammation through two weeks

of simulated time [29–30]. While this pattern seems obvious now,

anti-cytokine drug trials had treatment protocols spanning only a

single dose or a single day. Thus, this phenomenon (even if

recognized) was not incorporated into the trial design, perhaps

contributing to the failure of these candidate therapies.

The other initial modeling approach to sepsis took concepts used

in ABM (restoring connections, representing concurrent processes

and feedback loops) into qualitative EBM that described major

phenomena in sepsis such as the role of anti-inflammatory responses

and the paradoxical effects of pre-conditioning (in which two

nominally pro-inflammatory stimuli can result in synergy or

suppression relative to each stimulus alone) [37–39]. This work led

to the creation of larger EBM calibrated with data obtained in the

animal laboratory [27], with the premise that mathematical models

require experimental validation and feedback between the models

and experiments. The mouse studies were carried out for the express

purpose of calibrating global EBM of acute inflammation, and

confirmed the nearly simultaneous elaboration of the cytokines

TNF-a and IL-10 after endotoxin (bacterial product) or trauma/

hemorrhage. The base EBM was adjusted to match the initial

conditions for both endotoxin challenge and trauma/hemorrhage.

In each case, the subsequently generated, simulated cytokine profiles

matched the wet lab patterns for each experimental preparation

[27]. The model was sufficient to extrapolate in silico simulated data

to prospective prediction of the threshold dose at which endotoxin

would be lethal in mice, showing that information could be gleaned

from the model beyond its calibration dataset [27].

Furthermore, in the process of calibrating this model to trauma/

hemorrhage, we observed that the simulation of shock and global

tissue ischemia/reperfusion was not reproducing the intensity or

lethality of the inflammatory response in mice. The reason for the

insufficiency of the model was that it did not reflect the practical

issues in the animal model: it is impossible to have hemorrhage in the

animal without some tissue injury. When a relatively trivial trauma

(for extracting blood) was introduced into the simulation, the

inflammatory mediator and lethality profiles seen in the mouse

experiments were reproduced [30]. These findings along with

parallel high throughput analysis of gene expression patterns (below)

were incorporated into the in silico models, and ultimately led to the

important conclusion that hemorrhage was not the driving response

in acute inflammation after trauma/hemorrhage. Rather, the

surgical trauma was the major signal initiating inflammation, leading

to organ damage. These results show that the model development

process alone can lead to interesting mechanistic insights into systems

behavior. At the time, most specialists in the field thought that global

ischemia/reperfusion was the predominant factor driving the

inflammatory response to hemorrhagic shock.

We developed increasingly complex models of inflammation for

quantitative prediction of circulating cytokine levels in rats, swine,

and humans [28]. Other investigators, recognizing the clinical

importance of these models, used EBM to describe the dynamics

of bacterial growth in experimental pneumonia [31], and simulate

the inflammatory response of influenza [34]. Different EBM was

used to examine the nonlinear interactions between antibiotics and

vaccination in the setting of anthrax infection [32]. EBM has also

been used to study various facets of the inflammatory response to

burn trauma, including the effects of resuscitation and cell-based

therapy [45–52].

The Golden Fleece: In Silico Clinical Trials for
Sepsis

An important application of translational systems biology is use of

simulations similar to those described above in the design and

structuring of clinical trials. If successful, these tools have the potential

to fundamentally transform the way clinical trials are conducted for

acute inflammatory states such as sepsis and trauma. Simulations of

clinical trial outcomes yield analysis of the patient subpopulations

helped, harmed, or unaffected by a clinical intervention [26]. This

type of sub-stratification of patients who deserve certain therapies is

just now recognized as an important factor in clinical care. By

incorporating genomic data, the simulations can be used to

prospectively classify patients as appropriate recipients of a particular

intervention (‘‘personalized medicine’’).

Translational systems biology has prompted development of

methods to link extensive data on gene regulation and control to

clinically relevant conditions. For example, EBM has been used to
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distinguish between the scale of gene expression (how much of

each gene is expressed) and the scope of gene expression (number

of pathways recruited) based on the severity of the insult [30]. The

next step in modeling behavior of the inflammatory response,

then, is likely to be incorporation of whole-genome expression

levels coupled to network/pathway analysis in the model [13,53],

with in vivo validation in appropriate mouse models (such as mice

with specific genes deleted [53]). In turn, the modified mathemat-

ical models that help define the role of a given gene product [29]

could be further validated with in silico clinical trials [25,26,32] to

determine whether the gene product is a valid therapeutic target.

Modeling has been integrated into actual trial design by utilizing

the iterative process common to engineering projects, consisting of

a knowledge/development loop between the real-world data and

the simulation as the information from one source feeds into the

next [28]. Models thus refined have already been used to assist in

the analysis of ongoing clinical trials. In one case, the models

produced a ‘‘virtual’’ placebo arm for an open-label Phase IV drug

trial, providing an additional comparison for the actual Phase IV

results and the preceding Phase III trial [54]. These examples used

models to focus on efficacy of a single therapeutic intervention,

and therefore were limited in scope, but the predictive value of the

models is nonetheless evidence that translational systems biology

approaches can have significant impact on the design and

implementation of actual clinical therapies.

After the Injury: The Link between Inflammation
and Healing

We next turned our attention to the recovery phase, healing

after acute inflammation. Wound healing (obviously part of

trauma, but also often associated with sepsis) involves interaction

of inflammatory mediators with mediators of the tissue remodeling

and regenerative responses [1,2,55–60]. The early models of

wound healing were built around epithelial proliferation and

migration [61–70], followed by construction of a series of ABM

incorporating interactions between regulators of inflammation and

remodeling. These models were used to study necrotizing

enterocolitis (NEC), a severe inflammatory intestinal disease of

newborns [71,72]. The regenerative process necessary both for

reversal of the inflammatory response and for recovery from NEC

involves migration of healthy enterocytes to sites of mucosal

disruption [71]. PDE models of this process incorporated spatial

effects such as diffusion of inflammatory agents, chemotaxis of

both bacteria and inflammatory cells, and enterocyte migration

[72]. The main insight gained by incorporation of these features

into the model was that inflammation induced by an initial

hypoxic/traumatic insult could be propagated by bacterial efflux

through damaged epithelium.

To this point we have discussed models of acute inflammation,

but chronic inflammation is also a major factor in impaired would

healing, as in diabetes [2,59,73]. We modeled the relationship

between inflammation and healing using ABM of diabetic foot

ulcers [33]. Skin inflammation and healing in these wound models

was calibrated to literature parameters. Single hypothesized,

diabetes-related derangements in inflammatory mediators or

factors involved in wound healing (namely, elevation of TNF-a
and/or reduction of bioactive transforming growth factor-b1) were

used in the model to predict delayed healing. The model

recapitulated the beneficial effects of well-known therapies for

diabetic foot ulcers—debridement and platelet-derived growth

factor—and suggested novel therapies [33]. This particular

example of computational simulation of a disease process

highlights the potential to investigate results of both routine non-

pharmacologic and pharmacologic interventions.

Conclusions and Future Prospects

The literature on inflammation has yielded an enormous parts

list of mediators and important information on how these

mediators are linked to each other, but the entire range of

inflammatory conditions has not been organized in a way that

allows interpretation of data for design of clinical studies, or virtual

manipulation of the system. This gap between experimentally

derived details and application of knowledge to the bedside is

being addressed by the translational systems biology community.

This new field is developing binding methods, such as a syntactical

modeling grammar that expresses hypotheses in formal logical

syntax [74] to facilitate model construction and to improve the

predictive clinical accuracy of models of inflammation.

Successful translation of models into practice requires further

studies in several areas. For example, models are currently built

and modified through a painstaking and time-consuming manual

curation of the scientific literature. Certainly translational systems

biology will benefit from automation of this process for mining

data in a form that supports continuous updating of models.

Similarly, non-mathematically trained clinicians often struggle

with converting their intuitive biologic models into mathematic

models using software developed for mathematicians. Transla-

tional systems biology needs improved software for facilitating

translation of clinical knowledge into mathematical models.

If successful, these and other efforts will lead to model-driven

design and testing of new therapies, clinical trials that are preceded

by dry runs in silico, mathematical models to support diagnosis

and therapy of critically ill patients, and outpatient plans

developed using model-driven decisions along a continuum of

care. Within a systems framework, these fragmented procedures

can be treated as an integrated whole, in which biology-motivated

mathematical models are used at every stage. The therapeutic

utility of such approaches is treated with some skepticism now

[75], but progress in understanding the complexity of inflamma-

tion should afford some optimism that, with input from the

computational/systems biology community, translational systems

biology efforts can lead to fundamental insights into optimal

therapies.
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