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Abstract: Essential trace elements play crucial roles in the maintenance of health, since they are
involved in many metabolic pathways. A deficiency or an excess of some trace elements, including
zinc, selenium, iron, and copper, frequently causes these metabolic disorders such as impaired glucose
tolerance and dyslipidemia. The liver largely regulates most of the metabolism of trace elements,
and accordingly, an impairment of liver functions can result in numerous metabolic disorders.
The administration or depletion of these trace elements can improve such metabolic disorders and
liver dysfunction. Recent advances in molecular biological techniques have helped to elucidate
the putative mechanisms by which liver disorders evoke metabolic abnormalities that are due to
deficiencies or excesses of these trace elements. A genome-wide association study revealed that a
genetic polymorphism affected the metabolism of a specific trace element. Gut dysbiosis was also
responsible for impairment of the metabolism of a trace element. This review focuses on the current
trends of four trace elements in chronic liver diseases, including chronic hepatitis, liver cirrhosis,
nonalcoholic fatty liver disease, and autoimmune liver diseases. The novel mechanisms by which the
trace elements participated in the pathogenesis of the chronic liver diseases are also mentioned.

Keywords: zinc; selenium; copper; iron; chronic hepatitis; liver cirrhosis; nonalcoholic fatty liver
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1. Introduction

The liver plays indispensable roles in the maintenance of essential trace elements homeostasis [1,2].
Most of the trace elements are absorbed from the duodenum and/or jejunum and flow out in the portal
circulation by binding to the plasma proteins. These trace elements are distributed to the tissues or
organs that require them. It is primarily the liver that initiates the synthesis of the proteins bound
for several trace elements, including zinc (Zn), selenium (Se), iron (Fe), and copper (Cu) in order to
transport or distribute these trace elements. The liver is also involved in the excretion of trace elements
such as Cu and magnesium (Mg), since the liver acts as a producer of bile.

Most of the trace elements that have immunomodulatory and antimicrobial activities generally
serve as enzyme-cofactors, antioxidants, and/or anti-inflammatory agents [3]. Impairments of the liver
function result in disturbances of the metabolism of trace elements, leading to the initiation of oxidative
stress and the subsequent inflammatory and/or fibrotic changes in the liver. The impairment of the
homeostasis of trace elements leads to various inflammatory changes and/or metabolic abnormalities
such as those observed in inflammatory bowel disease [4], diabetes mellitus [5], dyslipidemia [6],
and sarcopenia [7] as well as chronic liver injuries.
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Recent advances in molecular biological techniques have enabled us to elucidate the novel
mechanisms by which the impairment of trace elements metabolism causes these metabolic
abnormalities. Genetic polymorphisms to regulate the metabolism of some trace elements have
been identified. The alteration of gut flora results in disorders of some trace elements metabolism,
exacerbating hepatic steatosis and/or fibrosis. Some microRNAs may participate in the metabolism of
a trace element.

This review highlights the current trends of four essential trace elements (Zn, Se, Fe, and Cu)
in chronic liver diseases (CLDs), including chronic hepatitis, liver cirrhosis, nonalcoholic fatty liver
disease (NAFLD), and autoimmune liver disease. We also discuss the novel mechanisms by which
impairment of the metabolism of trace elements may account for the pathogenesis of these CLDs.

2. The Roles of Trace Elements

2.1. Translation, Transcription, and Replication of Hepatitis Viruses

Some trace elements are required to evoke an effective immune response to viral infections,
whereas other trace elements are involved in the clearance of viruses. The inhibitory roles of these
essential trace elements are revealed in the translation, transcription, and replication of hepatitis viruses,
including hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis E virus (HEV). Se and Zn were
demonstrated to suppress the transcription and replication of hepatitis viruses [8,9]. Table 1 shows the
function of such trace elements in the translation, transcription, and replication of these viruses.

Table 1. Roles of trace elements in the translation, transcription, and replication of hepatitis viruses.

Hepatitis
Viruses

Trace
Elements Function of Trace Element References

HBV

Zn Zn deficiency caused poor response to HBV vaccination [10,11]

Se Sodium selenite suppressed HBV protein expression,
transcription, and genome replication [11]

HCV

Zn
negative regulator of HCV replication [12,13]
initiation of IFN-α [14]

Se
intracellular replication of HCV [15]
initiation of selenoprotein P by HCV infection [16]

Fe
promotion/inhibition of HCV replication (controversial) [17,18]
promotion of HCV translation [19,20]

Cu Cuprous oxide inhibited the entry of HCV pseudoparticle [21]

HEV Zn Zinc sulfate and zinc acetate inhibited the activity of viral
RNA-dependent RNA polymerase [22]

HBV: Hepatitis B virus; HCV: Hepatitis C virus; HEV: Hepatitis E virus; Zn: Zinc; Se: Selenium; Fe: Iron; Cu:
Copper; IFN: Interferon.

2.1.1. HBV

HBV is a member of the Hepadnaviridae family and has circular and partially double-stranded
DNA. A persistent HBV infection causes major public health problems throughout the world, especially
in East Asia and Africa [23]. Individuals who are infected with HBV can develop chronic liver disease,
including chronic hepatitis and liver cirrhosis, and subsequently hepatocellular carcinoma (HCC).

The Zn status determined the responsiveness to HBV vaccination. The responsiveness was
evaluated by the serum anti-HBs level. The serum anti-HBs level was markedly decreased in rats fed a
diet with lower Zn content [10]. The poor response to HBV vaccination in such rodents may be derived
from suppressed T-lymphocyte proliferation due to Zn deficiency. Zn deficiency affects both the innate
and adaptive immune systems, leading to the impaired activation and maturation of lymphocytes [24].
Likewise, gestational Zn deficiency in a murine model resulted in weaker responsiveness to HBV
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vaccination in offspring mice because of the decreased number of B cells and impaired HBV-specific
IgG production [11].

In contrast, Cheng et al. demonstrated that sodium selenite suppressed HBV protein expression,
transcription, and genome replication, using the human hepatoma cell lines [25]. Se is likely to activate
p53 by promoting its expression and phosphorylating multiple sites, and suppressing the activities of
HBV promoters and enhancers.

2.1.2. HCV

HCV is a positive-polarity, single-stranded RNA virus that belongs to the Flaviviridae family. HCV
infects hepatocytes and is usually transmitted through exposure to infected body fluids, including
blood transfusions and drug abuse. Chronic HCV infection is thought to cause the production of
reactive oxygen species (ROS) and subsequently inflammation and fibrosis in the liver, leading to
chronic hepatitis, liver cirrhosis, and ultimately to HCC [26]. A persistent HCV infection also results
in various metabolic abnormalities such as insulin resistance, hepatic steatosis, dyslipidemia, and Fe
overload [27].

A large amount of evidence obtained over the past decades indicates that Zn plays suppressive
roles in the replication of HCV. Yuasa et al. demonstrated that Zn salts acted as a negative regulator of
the virus replication in genome-length HCV RNA-replicating cells [12]. The authors speculated that Zn
might affect the NS2 or NS3 protein and consequently inhibit the replication of genome-length HCV
RNA. In later studies, the N2/3 auto-cleavage activity and NS3 protease activity were both confirmed
to be Zn-dependent [28], which seems to be plausible because NS3 protease is one of the Zn-containing
enzymes [29].

It is of interest that zinc sulfate can reduce the HCV replication in vitro [13]. However, this effect
of zinc sulfate was reduced when metallothionein (MT) genes were knocked out [13], suggesting that
MTs are either directly antiviral by sequestering Zn away from viral MTs such as NS5 [30], or indirectly
antiviral by acting as Zn chaperones and facilitating antiviral signaling [31]. It is reasonable that
serum Zn levels in patients with HCV-related CLD were increased by treatment with direct-acting
antiviral agents (DAAs) [32]. Read et al. recently elucidated that a single-nucleotide polymorphism
of interferon-lambda 3 (IFN-λ3), which is one of the antiviral and pro-inflammatory cytokines,
was correlated with increased hepatic MT expression through increased systemic Zn levels [14].

A decline in the systemic Se concentration may be attributable to an intracellular replication of
HCV. RNA viruses, including HCV and human immunodeficiency virus (HIV), encode a Se-dependent
glutathione peroxidase (GPx) module [15], which is one of the selenoproteins and protects against
damage induced by free radicals. It is plausible that serum Se levels were negatively correlated with
the loads of HCV RNA in patients with chronic hepatitis C [33], but our previous study did not confirm
this phenomenon in patients with HCV-related CLD [34]. The decrease in a circulating Se concentration
may also reflect a systemic inflammatory response [35]. Notably, Murai et al. demonstrated that
the hepatic selenoprotein P mRNA was upregulated by an HCV infection, and that its knockout in
hepatocytes caused an induction of IFN-stimulated genes and a subsequently inhibited the replication
of HCV [16].

It remains controversial whether Fe enhances the replication of HCV [17,18]. However, Fe proved
to facilitate the translation of HCV by stimulating the expression of eukaryotic initiation factor 3A
(elF3A) [19]. The expression of hepcidin, a negative regulator of Fe, was suppressed in HCV-infected
cells [36]. This suppressive effect may be regulated by histone acetylation. Foka et al. also documented
that the overexpression of hepcidin antimicrobial peptide (HAMP) promoted the translation of HCV
in vitro [20].

No evidence has been accumulated showing that Cu plays a crucial role in the translation or
replication of HCV. However, cuprous oxide, a variant form of Cu, is likely to inhibit the entry of HCV
pseudoparticles into hepatic cells without any effect on the replication of HCV [21]. Metallopeptide
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Cu-GGHYrFK, which targets stem loop IV (SLIV) of the HCV internal ribosome entry site (IRES) is
expected to become a distinct therapeutic agent for the treatment of an HCV infection [37].

2.1.3. HEV

HEV is a single-stranded RNA virus that belongs to the Hepeviridae family. Acute hepatitis caused
by an HEV infection is usually self-limiting in healthy subjects. However, a persistent HEV infection
can progress to chronic hepatitis or even to liver cirrhosis in immunocompromised individuals [38].

It was recently elucidated that Zn salts (zinc sulfate and zinc acetate) directly inhibited the
activity of viral RNA-dependent RNA polymerase, leading to the inhibition of an HEV replication [22].
In addition, a nonstructural HEV protein was currently identified as a putative Zn-binding protein [39].

2.2. The Roles of Trace Elements in Hepatic Inflammation

2.2.1. Zn

Zn is widely known to have cytoprotective properties against oxidative stress, apoptosis, and
inflammation [40–42]. Zn deficiency thus causes the production of ROS, and subsequently leads
to inflammation in the liver (Figure 1). Zn deficiency is often observed in patients with chronic
hepatitis [33,43–50] or in those with NAFLD [51] (Table 2), although a lower Zn concentration does not
necessarily correspond to the inflammation process [2]. The serum Zn levels of patients with chronic
hepatitis were inversely correlated with serum transaminase levels [47] and with their histological
activity scores [45].
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Zn supplementation has a favorable effect on hepatic inflammation in such patients. Our previous
study revealed that the additional administration of polaprezinc (225 mg/day for six months), a complex
of Zn and L-carnosine, improved serum transaminase levels in patients with HCV-related CLD,
including chronic hepatitis and liver cirrhosis, by attenuating hepatic Fe storage [67] (Table 3).
Matsumura et al. also confirmed the effect of polaprezinc (150 mg/day for three years) on hepatic
inflammation in patients with chronic hepatitis C [68]. Zn is also administered as an antioxidant
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adjuvant to IFN in patients with chronic hepatitis C. The combination treatment of IFN with antioxidants,
including Zn [69–71] and N-acetylcysteine, sodium selenite, and vitamin E [72] had promising results
in such patients, although a meta-analysis did not demonstrate the beneficial effects by administration
of Zn [73].

Table 2. Comparisons of the status of trace elements between HCV-related CLD and NAFLD/NASH.

Trace Elements HCV-Related CLD NAFLD/NASH

Zn
low low

[46–50] [51–53]

Se or GPx
low high

[33,34,54,55] [56,57]

Fe (ferritin) high high
[48,58,59] [60,61]

hepcidin low high
[62] [63]

Cu
high low

[33,46,64] [65]

ceruloplasmin unknown low
[66]

HCV: Hepatitis C virus; NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; Zn: Zinc;
Se: Selenium; Fe: Iron; Cu: Copper.

Table 3. Summary of the clinical trials on administration or depletion of the trace elements in patients
with CLDs.

Trace Elements Formulations
and Dosages

Assigned
Patients Effects by Trace Elements References

Zn

polaprezinc,
225 mg

chronic
hepatitis C

improvement of serum ALT level [67,68]

improvement of serum ferritin level [67]

polaprezinc,
150 mg liver

cirrhosis
attenuation of hepatic fibrosis [74]

zinc sulfate,
50 mg

prevention of present clinical status
deterioration [75]

IFN-based treatment
combined with Zn

polaprezinc,
150 mg

chronic
hepatitis C

higher CR rate than the treatment
with IFN alone [69]

lower ALT levels than the treatment
with IFN alone [70]

lower incident of gastrointestinal
adverse effects [71]

Se

selenite,
200 or 400 µg

liver
cirrhosis improvement of hepatic reserve [76]

200 µg
selenium PBC insignificant [77]

combined treatment of
ascorbic acid and

α-tocophenol with Se

200 µg
selenium

chronic
hepatitis C insignificant [78]

Fe depletion
(phlebotomy)

chronic
hepatitis C

improvement of serum ALT level [79,80]
improvement of serum ferritin level [79,80]
improvement of hepatic fibrosis [80]

NAFLD

improvement of serum ALT level [81,82]
improvement of serum ferritin level [81,82]
improvement of hepatic fibrosis [81]
improvement of hepatic steatosis [81,82]

Zn: Zinc; Se: Selenium; Fe: Iron; IFN: Interferon; PBC: Primary biliary cholangitis; NAFLD: Nonalcoholic fatty liver
disease; ALT: Alanine aminotransferase; CR: Complete response.
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2.2.2. Se

Se is a constituent of GPx which protects against the damage induced by ROS [9,83]. Reduced
serum Se levels are frequently observed in patients with chronic hepatitis [34,44,48,50,54,55,84–86].
Serum GPx levels were also lower in patients with chronic hepatitis C than those in cases of a normal
healthy control [17,78,87] (Table 2). However, we did not find an inverse correlation between the
serum Se and alanine aminotransferase (ALT) level in patients with HCV-related CLD [34]. It is of
interest that a Zn transporter, ZIP 8 was associated with Se homeostasis, and that a decrease in the ZIP
8 activity due to Se deficiency potentially evoked liver injury [86].

The effects of Se administration on hepatic inflammation were examined in diabetic rats fed a
Zn-deficient diet. The Se supplementation (sodium selenite 0.5 mg/kg body weight) ameliorated serum
ALT levels in those rats fed a Zn-deficiency diet [88]. Interestingly, the Se supplementation in that
study modulated the Zn level in the experimental model. The Se treatment may initiate an increase
in insulin activity, and may subsequently improve Zn deficiency in the experimental model. In fact,
we found a positive correlation between the serum Zn and Se levels in patients with HCV-related
CLD [34]. Another study revealed that the Se-enriched lactobacillus reversed CCl4-induced liver injury
by facilitating antioxidant enzyme activity and inhibiting lipid peroxidase activity [87]. Unfortunately,
beneficial effects of antioxidants, including Se, ascorbic acid, and α-tocopherol, on serum transaminase
levels and HCV RNA load were not apparent in a clinical trial [78].

2.2.3. Fe

It is well established that Fe deposition in the liver can initiate ROS and subsequently lead to
hepatic inflammation, lipid peroxidation, and insulin resistance [58]. The Fe overload is commonly
observed in patients with HCV-related CLD or those with NAFLD, which is characterized by excessive
hepatic fat accumulation and no history of alcohol abuse [60] (Table 2) as well as those with hereditary
hemochromatosis [89]. We confirmed that serum ferritin levels were closely associated with ALT levels
in patients with HCV-related CLD, indicating that the Fe deposit in the liver might evoke hepatic
inflammation [48]. In patients with chronic hepatitis C, attenuation of the Fe overload by phlebotomy,
which is usually performed as a treatment for hemochromatosis, eventually caused the decline of
serum transaminase levels [79,80] as well as those with NAFLD [81,82] (Table 3).

Iron regulatory factors, such as hepcidin, ferroportin, and transferrin receptor, also play crucial
roles in iron homeostasis. Thus, dysregulation of these factors can initiate Fe storage in the liver.
Hepcidin is a peptide hormone produced by the liver that binds to ferroportin and inhibits Fe absorption
from the small intestine [90]. The expression of hepcidin was suppressed by HCV-induced oxidative
stress in an in vitro study [62]. In contrast, serum hepcidin levels were elevated in patients with
NAFLD [63] (Table 2).

2.2.4. Cu

Cu is also another essential trace element that participates in many enzymatic and redox
reactions. The circulating Cu concentration was frequently elevated in patients with chronic hepatitis
C [33,44,46,50,64] (Table 2). Increased Cu levels may be derived from the facilitation of ceruloplasmin
synthesis by interleukin (IL)-1 in Cu deficient rats [91]. Ceruloplasmin, a transporter for Cu, is a
glycoprotein which is synthesized in the liver, and plays an essential role in the acute-phase
reaction [92]. Indeed, serum ceruloplasmin levels were significantly associated with ballooning
hepatocytes, inflammatory cells infiltration, and/or hepatic steatosis in pediatric NAFLD patients [66].

The elevated Cu and ceruloplasmin levels may contribute to the inflammatory change in the
liver of patients with chronic hepatitis. The Cu-induced MT also may account for the increase of
serum Cu level in patients with chronic hepatitis C. Excessive Cu is considered to be related to the
induction of MT. The Cu-induced MT probably initiates hydroxyl radicals and subsequently leads to
the inflammation in the liver [93].
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However, the co-administration of Cu and imatinib mesylate, a tyrosine kinase inhibitor, exhibited
the anti-inflammatory and anti-fibrotic effects in HCC-induced rats [94]. These effects may be derived
from an anti-inflammatory action of Cu by suppressing the activity of the protein complex, nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB).

2.3. The Roles of Trace Elements in Hepatic Fibrosis

2.3.1. Zn

Zn directly inhibits the fibrotic process in the liver via the actions of metalloproteinase (MMP) or
prolyl-hydroxylase [95,96] (Figure 1). Zn also inhibits fibrosis via its anti-inflammatory, anti-apoptotic,
and antioxidant properties, or by controlling the function of hepatic stellate cells (HSCs) [97].
Zn deficiency thus participates in hepatic fibrosis both directly and indirectly.

An interesting study documented the improvement of hepatic fibrosis by administration of
polaprezinc in vitro [98] and in vivo [99] studies. Polaprezinc supplementation (2.2 g/kg weight) led
to the improvement of hepatic fibrosis in an animal NASH model by promoting fibrolysis via the
inhibition of the tissue inhibitor of metalloproteinase (TIMP)-1 activity and by reducing the activity of
HSCs [99]. Kono et al. also confirmed the inhibitory effects of polaprezinc (200 mg/kg weight/day) on
hepatic fibrosis in a rat model of thioacetamide-induced hepatic fibrosis [100]. The effect of zinc oxide
nanoparticle (10 mg/kg weight/day) on hepatic fibrosis was also demonstrated in rats [101].

A clinical trial revealed that the administration of polaprezinc (150 mg/day for six months) reduced
the type IV collagen levels and the TIMP-1 activity in the sera of patients with liver cirrhosis [74]
(Table 3). Another study documented that a low dose of zinc sulfate (50 mg Zn/day) can prevent
the deterioration of clinical status and suppress excessive Cu accumulation in non-alcoholic cirrhotic
patients [75]. On the contrary, a larger amount of Zn administration results in severe Cu deficiency [102].

2.3.2. Se

A decline in the serum Se level is frequently observed in patients with liver cirrhosis [103,104],
because Se is transported into the blood by binding to Se-containing proteins such as albumin and
selenoprotein P [83]. However, the decrease in the serum Se level indicates hepatic dysfunction
rather than Se deficiency in such patients [103]. We demonstrated that serum Se levels were
reduced in proportion to the severity of hepatic fibrosis in patients with an HCV-related CLD [34].
In another study, the circulating and hepatic Se concentrations were markedly decreased in
N-nitrosodimethylamine-induced hepatic fibrosis [105]. In this animal model of hepatic fibrosis,
decreases in Se and GPx levels may participate in the impairment of an antioxidant defense, and may
trigger the process of hepatic fibrosis.

Ding et al. elucidated that the administration of sodium selenite (200 µg/kg weight body diet)
inhibited hepatic fibrosis in mice by suppressing the number of collagen producing HSCs and by
promoting collagen degradation [106]. In the clinical trial, the efficacy of selenite (200 or 400 µg/day)
was revealed in patients with liver cirrhosis [76]. Further investigations should be required to clarify
the inhibitory effect of Se supplementation against hepatic fibrosis in a clinical trial.

2.3.3. Fe

The Fe overload facilitates hepatic fibrosis in patients with HCV-related CLD, NASH, alcoholic
liver disease, or hemochromatosis [107]. Excessive Fe can initiate the Fenton reaction to generate a large
amount of free radicals, subsequently leading to tissue damage in the liver, and finally contributing
to hepatic fibrosis. In addition, excessive Fe can promote the signals for fibrosis in parenchymal and
non-parenchymal cells.

Several studies have demonstrated that the hepatic Fe accumulation was associated with the
severity of hepatic fibrosis in patients with HCV-related CLD [108,109]. Phlebotomy resulted in
the improvement of the hepatic fibrosis as well as hepatic inflammation in patients with chronic
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hepatitis C [80] (Table 3). Likewise, Fe deposits in the liver may reflect the degree of hepatic fibrosis
in patients with NAFLD. Indeed, an increase in the serum ferritin level is closely associated with
hepatic Fe deposition, suggesting that the serum ferritin level can be a surrogate marker for hepatic
Fe deposition [107]. Therefore, higher serum ferritin levels could be used to predict more advanced
fibrosis in such patients [61]. In contrast, Fe depletion by phlebotomy appeared to ameliorate hepatic
fibrosis in patients with NAFLD [82] (Table 3).

The serum ferritin level can predict even early mortality in patients with decompensated liver
cirrhosis [110]. Similarly, the serum ferritin levels of patients with liver cirrhosis were further increased
as the patients’ hepatic reserve deteriorated severely [111].

2.3.4. Cu

The circulating Cu concentration is also elevated in proportion to the severity of hepatic
fibrosis [112]. Cu acts as a cofactor against hepatic fibrosis in chronic liver disease, particularly
in the biosynthesis of collagen.

The Cu/Zn ratio was markedly elevated in patients with liver cirrhosis, compared to that of
patients with chronic hepatitis or normal healthy controls [113–115]. It is of interest that a higher Cu/Zn
ratio was associated with mortality in those patients [113].

In male HBV-related cirrhotic patients, serum ceruloplasmin levels were inversely correlated
with hepatic fibrosis, because ceruloplasmin is synthesized in the liver [116]. Likewise, HCV-related
cirrhotic patients with hepatic encephalopathy had lower ceruloplasmin concentrations in their sera
than those without hepatic encephalopathy and normal healthy subjects [117].

2.4. The Roles of Trace Elements in Hepatic Steatosis

2.4.1. Zn

Zn is involved in the activation of peroxisome proliferator-activated receptor-α (PPAR-α),
a regulator of lipid homeostasis [118]. Zn may participate in the DNA-binding activity of PPAR-α.
Therefore, Zn deficiency may result in a reduction of PPAR-α activity, and consequently the promotion
of lipid peroxidation, finally leading to the deterioration of hepatic steatosis (Figure 1).

Indeed, compared to normal control rats, the serum Zn levels and hepatic Zn contents were
significantly lower in an experimental animal model of fatty liver, which was induced by tetracyclin [119].
We verified the correlation between Zn deficiency and hepatic steatosis in patients with HCV-related
CLD, because hepatic steatosis is one of the common histological features in the liver of those
patients [120]. The serum Zn levels of patients gradually decreased as their hepatic steatosis developed
from a mild status to a severe status, based on the criteria for hepatic steatosis proposed by
Brunt et al. [121], for patients with HCV-related CLD [59]. Approximately equivalent results were
obtained from the study by Guo et al.: Serum Zn levels were significantly lower in patients with both
chronic hepatitis C and NAFLD compared to patients with chronic hepatitis C alone [50].

It is also well-known that insulin resistance contributes to the process of hepatic steatosis in
patients with HCV-related CLD [122]. Our previous study confirmed a close correlation between the
severity of hepatic steatosis and the value of a homeostasis model for assessment of insulin resistance
(HOMA-IR), an indicator of insulin resistance in such patients [59]. Moreover, our previous studies
revealed that serum Zn levels were inversely correlated with the values of HOMA-IR, suggesting that
Zn deficiency results in the development of insulin resistance in patients with HCV-related CLD [48,59].

Likewise, a recent report by Asprouli et al. documented that serum Zn levels were also decreased
in proportion to the grade of hepatic steatosis in NAFLD patients [52]. Serum Zn levels were inversely
correlated with HOMA-IR values in those patients [53]. A lower dietary intake of Zn may account
for Zn deficiency in NAFLD patients [123]. It is of interest that the administration of zinc sulfate
reversed ethanol-induced hepatic steatosis in mice by reactivating PPAR-α and hepatocyte nuclear
factor-4α [124].



Nutrients 2020, 12, 2084 9 of 22

2.4.2. Se

The serum Se levels of patients with both chronic hepatitis C and NAFLD were also lower than
those of patients with chronic hepatitis C alone [50]. However, the serum Se levels of NAFLD patients
gradually rose as their hepatic steatosis progressed to a severe status [56] (Table 2). Serum GPx levels
were also elevated in those patients [57]. The putative mechanism by which Se contributes to the
progression of hepatic steatosis in NAFLD has not been fully established. Insulin resistance via the
activation of a selenoprotein may account for these phenomena in NAFLD patients. In fact, the serum
Se levels were positively correlated with the values of HOMA-IR in patients with NAFLD patients [56].
Misu et al. elucidated the positive correlation between selenoprotein P mRNA levels and the severity
of insulin resistance in patients with type 2 diabetes mellitus [125]. Further analyses are necessary to
clarify the relationship between serum Se levels and hepatic steatosis in NAFLD patients.

2.4.3. Fe

When the transgenic mice expressing the HCV polyprotein were fed an excessive Fe diet,
the development of hepatic steatosis was observed through activation of the unfold protein [126].
Our previous study confirmed that serum ferritin levels were increased in proportion to the grade
of hepatic steatosis in patients with HCV-related CLD [59]. In the experimental animal model of
NAFLD, the hepatic Fe overload was induced prior to the development of hepatic steatosis and insulin
resistance [127]. The association of a hepatic Fe deposit with hepatic steatosis was also shown in
patients with NAFLD [61]. Indeed, phlebotomy turned out to attenuate hepatic steatosis in those
patients [80,81] (Table 3).

2.4.4. Cu

The serum Cu levels of individuals with NAFLD were often decreased [128] (Table 2). Inadequate
Cu availability is likely to increase lipid accumulation in the liver. Thus, lower Cu bioavailability
may affect lipid metabolism and it may be involved in the development of NAFLD [65]. Moreover,
Cu deficiency can initiate the alteration of mitochondrial morphology, leading to an impairment of
fatty acid β oxidation. These phenomena can affect hepatic lipid accumulation in patients with NAFLD
(Figure 2).

It is noteworthy that circulating ceruloplasmin levels were also reduced in NAFLD patients [66].
However, chronic hepatitis B patients with hepatic steatosis had higher ceruloplasmin levels in their
sera than those without steatosis. Moreover, serum ceruloplasmin levels were associated with the
severity of hepatic steatosis in patients with chronic hepatitis B [129].

Cu seems to play an important role in the Fe homeostasis and be associated with the Fe perturbation
observed in NAFLD [63]. Cu is required for the function of ceruloplasmin to export Fe from the liver
or the reticuloendothelial system, and for the expression of ferroportin. The membrane-bound type of
ceruloplasmin might be mandatory for the stability of ferroportin. Consequently, a lower hepatic Cu
content and a lower serum Cu concentration eventually cause the Fe overload in patients with NAFLD.

A high fructose diet and Cu restriction may trigger hepatic steatosis and inflammation in mice [130],
because dietary fructose inhibits the duodenal Cu absorption by suppressing duodenal expression
of copper transporter-1 (ctr-1) [131], which may be the primary protein responsible for the import of
dietary Cu.

Hepatic steatosis is frequently observed in patients with Wilson’s disease [132], which is the
autosomal recessive hereditary disease, and is caused by the gene mutation of ATP7B essential in the
Cu metabolism [133]. This mutation results in an impaired hepatic Cu excretion and subsequently Cu
accumulation in the liver. Liggi et al. elucidated the close correlation between the serum Cu level and
grading of hepatic steatosis in those patients, indicating that hepatic steatosis in Wilson’s disease may
not be derived from metabolic comorbidities but from Cu accumulation in the liver [134].
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2.5. Roles of Trace Elements in Autoimmune Liver Diseases

2.5.1. AIH

Several research groups explored the serum ferritin levels in patients with autoimmune
hepatitis (AIH). AIH is largely a chronic necroinflammatory disease of the liver, characterized
by hypergammaglobulinemia and circulating autoantibodies [135]. According to a recent study,
hyperferritinemia was commonly observed in AIH patients at baseline [136]. Ferritin is an acute-phase
reactant, and an increase in the serum ferritin level may reflect the promotion of pro-inflammatory
cytokines such as IL-6 in such patients [137]. The serum ferritin levels were thus significantly correlated
with serum ALT levels in those patients. The study’s authors also revealed that higher levels of
serum ferritin and lower levels of serum IgG at baseline could predict more favorable responses to
immunosuppressive treatments [136]. Notably, hyperferritinemia in AIH patients with a biochemical
response seemed to be independent of the serum hepcidin level. In addition, the severity of Fe deposit
in the liver did not affect a response to the treatment at all [136].

Another study revealed that serum ferritin levels were lower in patients with AIH than in patients
with chronic hepatitis B, and that the serum hepcidin levels were far lower in patients with AIH
than in patients with chronic hepatitis B [138]. Hepcidin is recognized as a chemotactic factor for
T-lymphocytes, dendritic cells, monocytes, and mast cells. A decrease in the synthesis of hepcidin may
cause an imperfect interplay between the innate and adaptive immune systems in patients with AIH.

Declines in the serum Zn [139] and Se [140] levels of patients with AIH have been reported. Indeed,
lower serum Zn and Se levels were one of the common features in autoimmune diseases [141,142].
However, lower serum Zn and Se levels in AIH patients may reflect a consequence of chronic liver
damage rather than an autoimmune phenomenon.
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2.5.2. PBC

Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease characterized by
nonsuppurative inflammatory destruction of the interlobular bile ducts [143]. It is well established
that cholestasis causes Cu accumulation in the liver. Orcein stain, which indicates the existence of
copper-associated protein, was frequently useful for the diagnosis of PBC [144]. PBC patients positive
for the orcein stain in the liver specimens had higher total bilirubin and alkaline phosphatase levels
than those negative for the orcein stain [145]. In addition, the serum Zn level of PBC patients gradually
decreased as the clinical stage became more severe [146].

The serum Se level was also decreased in patients with PBC [147]. The decline in the serum Se
level in PBC patients may be the consequence of chronic liver damage rather than Se deficiency [103].
Indeed, Se supplementation did not affect the liver function of PBC patients [77] (Table 3).

2.6. The Role of Genetic Polymorphism in the Trace Elements

A genome-wide association (GWA) study identified a single nucleotide polymorphism (SNP) in
rs738409 in the patatin-like phospholipase domain containing 3 (PNPLA3) gene, which is recognized
as an adiponutrin gene, and the SNP was strongly associated with the grade of hepatic fat content [148].
The PNPLA3 risk allele homozygosity was associated with an increased risk for NASH [149].
Moreover, rs738409 also showed a strong association with hepatic iron deposition in Japanese
NAFLD patients [150].

The PNPLA3 G allele also affects the development of hepatic steatosis in Wilson’s disease.
However, the PNPLA3 G allele was not associated with the hepatic Cu content in such patients [151].

The IL-6-174 G/C promotor polymorphism affected the hepatic Zn content in autopsy cases [152].
Since Zn supplementation (9.08 mg/100 g weight of zinc sulfate) ameliorates the synthesis of IL-6 in
salmonella-induced hepatic damage in a murine model [153], an IL-6 SNP may be involved in the
pathogenesis of Zn deficiency in patients with CLDs.

2.7. The Roles of Microbiota in Trace Elements

Sequencing the 16S gene ribosomal RNA (rRNA) has become a popular method for identifying
bacterial communities [154]. Next-generation sequencing enabled us to investigate the relationship
between the composition of microbiomes and dysbiosis [155].

Gut dysbiosis frequently causes a variety of critical complications, including endotoxemia and
hepatic encephalopathy, in patients with liver cirrhosis. These severe complications are likely to
be derived from small intestinal bacterial overgrowth and/or an increase in intestinal permeability,
termed “leaky gut” [156]. Notably, bacterial translocation is ordinarily observed in the portal vein as
well as hepatic and peripheral blood of patients with decompensated liver cirrhosis [157]. Bacterial
translocation of gut flora was dominated primarily by the Proteobacteria phylum in such patients [158].
These species are commonly present in both the peripheral and portal blood of patients with liver
cirrhosis, and were considered to be strong producers of iron chelates (siderophores). Indeed, both the
peripheral blood and portal blood of cirrhotic patients were enriched in bacterial Kegg Orthologous
genes linked to active Fe transport [159]. These results may suggest that Proteobacteria phylum is
functionally linked to Fe metabolism.

It is well recognized that the microbiota also plays a crucial role in the pathogenesis of NAFLD [160].
Song et al. documented that (1) a dietary Cu-fructose interaction regulated gut microbiota and that
(2) the alteration of gut flora via the gut barrier dysfunction might result in the development of
steatosis in the liver. The gut barrier dysfunction was derived from markedly downregulated intestinal
tight junction proteins and increased gut permeability [161]. Indeed, the alterations of microbiome
indicated an increase in Firmicutes and a depletion of Akkermansia, which is considered to be crucial
for maintaining the gut burrier function.



Nutrients 2020, 12, 2084 12 of 22

2.8. The Roles of Sarcopenia in Trace Elements

Sarcopenia, characterized by a loss of skeletal muscle mass and low muscle strength [162], is one
of the common features in patients with CLD, which is observed even in NAFLD patients [163] as well
as cirrhosis patients [164]. It is well documented that several types of minerals, including Mg, calcium
(Ca), and Se, play pivotal roles in muscle metabolism [7,165]. It remains controversial whether an
excessive Fe status contributes to sarcopenia [166,167]. Nishikawa et al. contended that Zn deficiency
might account for sarcopenia in patients with CLD [168], although a putative mechanism by which Zn
deficiency causes sarcopenia in such patients remains unclear. The combination treatment of Zn with a
branched chain amino acid may be effective in liver cirrhosis patients with sarcopenia [169].

Several studies revealed that in elderly people, lower serum Se levels are associated with a lower
muscle mass [170]. It is plausible that treatment with fish oil and Se attenuated skeletal muscle atrophy
by preventing a rise in myostatin [171], which is a negative regulator of muscle mass [172].

2.9. The Role of MicroRNA in Trace Elements

MicroRNAs (miRNAs), which are small, single stranded non-coding RNAs of 19–25 nucleotide in
length, negatively regulate gene expression via translational inhibition or messenger RNA (mRNA)
degradation [173]. Many miRNAs play essential roles in diverse biological processes, including cell
differentiation, proliferation, migration, and survival [174].

Some kinds of miRNAs are also involved in the pathogenesis of NAFLD [175]. Especially, increases
in the expressions of miR-200a and miR-223 were negatively correlated with iron regulatory protein 1
(IRP1) in a mouse model of NAFLD, implying that miRNAs might contribute to Fe homeostasis in
patients with NAFLD [176].

3. Conclusions

Much novel evidence has accumulated regarding the roles of essential trace elements in CLDs
by recent advances in various types of molecular biological technologies. Some of the trace elements
were extremely useful for the prediction of the prognosis in patients with CLDs. The beneficial
therapeutic effects of some trace elements supplementations have been confirmed in experimental
animal models and/or clinical trials. However, the evidence levels remain relatively low. Further
prospective multicenter cohort studies should be conducted to investigate the usefulness of the essential
trace elements in CLDs.
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AIH autoimmune hepatitis
ALT alanine aminotransferase
CLD chronic liver disease
Cu copper
Fe iron
GPx glutathione peroxidase
HCC hepatocellular carcinoma
HBV hepatitis B virus
HCV hepatitis C virus
HEV hepatitis E virus
HOMA-IR homeostasis model for assessment of insulin resistance
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HSC hepatic stellate cell
HSC hepatic stellate cell
IFN interferon
IL-6 interleukin-6
Mg magnesium
miRNA microRNA
MT metallothionein
NAFLD nonalcoholic fatty liver disease
NASH nonalcoholic steatohepatitis
PBC primary biliary cholangitis
ROS reactive oxygen species
Se selenium
SNP single nucleotide polymorphism
Zn zinc
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