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Abstract

Background: Non-Cartesian trajectories are used in a variety of fast imaging applications, due to the incoherent image
domain artifacts they create when undersampled. While the gridding technique is commonly utilized for reconstruction, the
incoherent artifacts may be further removed using compressed sensing (CS). CS reconstruction is typically done using
conjugate-gradient (CG) type algorithms, which require gridding and regridding to be performed at every iteration. This
leads to a large computational overhead that hinders its applicability.

Methods: We sought to develop an alternative method for CS reconstruction that only requires two gridding and one
regridding operation in total, irrespective of the number of iterations. This proposed technique is evaluated on phantom
images and whole-heart coronary MRI acquired using 3D radial trajectories, and compared to conventional CS
reconstruction using CG algorithms in terms of quantitative vessel sharpness, vessel length, computation time, and
convergence rate.

Results: Both CS reconstructions result in similar vessel length (P = 0.30) and vessel sharpness (P = 0.62). The per-iteration
complexity of the proposed technique is approximately 3-fold lower than the conventional CS reconstruction (17.55 vs.
52.48 seconds in C++). Furthermore, for in-vivo datasets, the convergence rate of the proposed technique is faster (60613
vs. 4556320 iterations) leading to a ,23-fold reduction in reconstruction time.

Conclusions: The proposed reconstruction provides images of similar quality to the conventional CS technique in terms of
removing artifacts, but at a much lower computational complexity.
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Introduction

Non-Cartesian sampling trajectories in MRI such as radial [1]

and spiral [2] imaging have a number of favorable properties

compared to Cartesian sampling trajectory [3], which has lead to

their use in a number of applications. For instance radial

trajectories have been used for accelerated time-resolved MRI

with constrained back projection reconstruction [4,5], stack-of-

radial and stack-of-spiral acquisitions have been utilized for 3D

cardiac MR (CMR) [6,7], and 3D radial acquisition with isotropic

spatial resolution have been employed for scanning whole-heart

CMR [8,9,10]. One of the main advantages of non-Cartesian

trajectories is the incoherent artifacts generated as a result of

undersampling [11,12,13]. Furthermore, the oversampling of the

k-space center in radial and spiral trajectories provides superior

performance with respect to motion of the object when compared

to Cartesian sampling [14,15]. The oversampling of the k-space

center also provides a fully-sampled low resolution image, which

can be utilized with parallel imaging techniques for accelerated

acquisition [16,17].

However, non-Cartesian trajectories require a more complicat-

ed reconstruction process compared to Cartesian trajectories. The

gridding algorithm [18] is commonly used to reconstruct non-

Cartesian data. While the reconstruction of Cartesian data

requires inverse Fourier transform on the uniformly distributed

samples in the rectilinear grid for each k-space dimension,

gridding reconstruction performs convolution interpolation of

the non-uniformly sampled data and re-samples them onto the
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rectilinear Cartesian grid in order to utilize the computationally

efficient inverse Fourier transform. The density compensation of

the non-uniformly distributed samples is also essential before the

interpolation is performed [19,20]. Although the gridding

algorithm can efficiently reconstruct the data acquired with non-

Cartesian trajectories, its performance deteriorates significantly for

highly undersampled data [12].

There have been recent studies to apply compressed sensing

(CS) technique to reconstruct undersampled MR data [12,21], and

it has been shown that CS efficiently removes incoherent

undersampling artifacts. CS reconstructions for non-Cartesian

trajectories have also been demonstrated with notable improve-

ment over the conventional gridding reconstruction [11,13,

22,23,24]. The CS reconstruction is typically performed using

conjugate-gradient (CG) type iterative algorithms, for which the

gridding and regridding operations are repeatedly performed

during the iterative process [12]. However, the computational

overhead of the iterative CS reconstruction for non-Cartesian

trajectories results in prolonged reconstruction time. Parallel

computing techniques using graphics processing units (GPUs)

have recently gathered great interest in improving MRI recon-

struction time [25,26,27]. GPU-accelerated implementations of

CS reconstructions for non-Cartesian trajectories have been

shown to substantially accelerate the reconstruction time by

parallelized execution of the reconstruction process [28,29]. For

large MR data sets such as high resolution 3D whole-heart

imaging, however, the amount of computation is still demanding

to be clinically feasible even with the parallelized implementation

[30], and therefore reducing the amount of computation in the

reconstruction, especially in gridding and regridding operations, is

highly desirable.

In this work, we sought to develop an alternative method for

solving the CS reconstruction for non-Cartesian trajectories, which

eliminates the need for gridding and regridding at every iteration,

thereby reducing the computational complexity and the execution

time of the CS reconstruction for non-Cartesian trajectories.

Phantom and in vivo cardiac MRI examples are shown to

demonstrate the feasibility of the proposed approach.

Theory

Non-Cartesian data is typically reconstructed using a gridding

algorithm [18], where first a trajectory-dependent density com-

pensation function (DCF) is applied to each data point to

compensate for the non-uniform sampling density [19,20,31].

Then the data points are convolved with a gridding kernel and re-

sampled onto a Cartesian grid, which is inverse Fourier

transformed to obtain an image. Finally, de-apodization is

performed on this image via division by the apodization function,

given by the Fourier transform of the gridding kernel function

[18]. This procedure can be summarized as

mgrid ~DF�G�Ps, ð1Þ

where mgrid is the reconstructed image, s is the measured non-

Cartesian k-space data, P is a diagonal matrix representing the

DCF, G* is the gridding operator, F* is the inverse fast Fourier

transform (IFFT), and D is a the diagonal de-apodization

operator.

The acquired non-Cartesian data can also be expressed in terms

of an encoding matrix as

s~GFDm, ð2Þ

where m is the image to be reconstructed, G is the regridding

operator, F is the fast Fourier transform (FFT), and D is a the

diagonal de-apodization operator as above. Unlike the conven-

tional gridding algorithm, the density compensation is not

required before the regridding because the density of the Cartesian

grid is uniform [12,32]. Without loss of generality, we ignore the

de-apodization function, since it can be corrected for the final

image estimate [3]. Iterative CS reconstruction solves a con-

strained minimization problem of the form

arg min
m

1

2
s{GFmk k2

2ztW mð Þ, ð3Þ

where W :ð Þ is a sparsity inducing constraint, typicallyW mð Þ
~ Y�mk k1, where Y is a sparsifying transform (e.g. image or

wavelet domain) in which the image of interest is sparse, or

W mð Þ~TV mð Þ, the total variation (TV) of the image. This is

typically solved using conjugate-gradient type techniques [12].

Proposed Algorithm
We take an alternative approach involving three steps: 1) We

pose the problem in [3] as a constrained optimization problem

using an auxiliary variable and minimize its augmented Lagrang-

ian (AL) [33], 2) Rather than solving the AL directly, we use the

less computationally expensive alternating directions method

(ADM) [34,35], 3) In the solution of one of the sub-problems of

the ADM, we approximate the matrix G*G by a diagonal matrix.

We first introduce an auxiliary variable u, and equivalently

write [3] as

arg min
m,z

1

2
s{GFmk k2

2ztW uð Þ subject to u~m: ð4Þ

The AL of [4] is given by

LA m,u,lð Þ~ 1

2
s{GFmk k2

2ztW uð Þz b

2
u{mk k2

2

{Re l� u{mð Þf g ,

ð5Þ

where l* is the conjugate transpose of the multiplier l. At iteration

t, the AL method performs the following updates

m(t),u(t)
� �

~ arg min
m,u
LA m,u,l tð Þ
� �

,

l tz1ð Þ~l tð Þ{b u(t){m(t)
� �

:

ð6Þ

The minimization in [6] is computationally challenging to perform

jointly for m and u. However, it has been shown that in various

CS applications, this could be performed with high accuracy using

the more computationally efficient ADM [34,35,36,37]. In this

case, the ADM first fixes m and updates u (which corresponds to

denoising with respect to the sparsity inducing constraint W :ð Þ),
and then fixes u and updates m (which corresponds to data

consistency). Thus the first step in iteration t of the proposed

method becomes:

u(t)~ arg min
u

tW uð Þz b

2
u{m(t{1)
�� ��2

2
{ l(t)
� ��

u{m(t{1)
� �

~ arg min
u

1

2
u{ m(t{1)z

l(t)

b

 !�����
�����

2

2

z
t

b
W uð Þ

ð7Þ
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for denoising. Note for W uð Þ~ Y�uk k1 with a unitary transfor-

mation Y (e.g. image or wavelet domain), this step corresponds to

l1 soft thresholding Y� m(t)zl(t)
�

b
� �

by t/b, and transforming

back to image domain by applying Y. This step can also be

implemented for other regularizers such as TV [38] or more

complicated techniques without closed-form expressions [39,40].

The data consistency step is given by

m(t)~ arg min
m

1

2
s{GFmk k2

2z
b

2
u(t){m
�� ��2

2
{ l(t)
� ��

u(t){m
� �

~ arg min
m

1

2
s{GFmk k2

2z
b

2
m{ u(t){

l(t)

b

 !�����
�����

2

2

~
1

b
F�G�GFz I

� 	{1
1

b
F�G�sz u(t){

l(t)

b

 ! !
,

ð8Þ

which leads to a closed form expression, noting I is the identity

matrix. As in [6], l tz1ð Þ~l tð Þ{b u(t){m(t)
� �

is the last step of the

iteration.

The final innovation in the proposed technique is to evaluate [8]

in a less computationally intensive way, by avoiding gridding and

regridding operations, G* and G respectively. First we note, the

FFT of m(t) is easier to calculate and given by

Fm(t)~
1

b
G�Gz I

� 	{1
1

b
G�szF u(t){

l(t)

b

 ! !
: ð9Þ

The main savings of the proposed method in gridding and

regridding operations come from avoiding the inversion of the first

term. To do so, G*G is approximated by a diagonal operator.

Noting that both gridding and regridding operators act locally, we

hypothesize the contributions from off-diagonal elements will only

be limited to a small number of data points. As such, we treat G*G
as a diagonal matrix itself, and approximate

Kest~diag G�Gð Þ 1ð Þ, ð10Þ

where diag(?) assigns the elements of the vector in its argument to

the diagonals of a diagonal matrix, and 1 is the all-ones vector.

Estimation of G*G by Kest allows us to avoid gridding and

regridding at every iteration, and since gridding, G* and

regridding, G involve approximations themselves, the artifacts

due to this diagonal estimation may not be very noticeable in the

final reconstructed images. We note similar approximations have

been used in the context of parallel imaging as well [41].

The overall iterative reconstruction procedure is depicted in

Figure 1. We note that the calculation of Kest requires one

gridding and one regridding operation. Similarly, G*s needs to be

calculated only once prior to the iterative process, also requiring

one gridding operation. Hence a total of 3 gridding and regridding

operations are used in the proposed method irrespective of the

number of iterations.

Materials and Methods

All phantom and volunteer data were acquired on a 1.5-T

Philips Achieva (Philips Healthcare, Best, The Netherlands) system

with a 5-channel cardiac phased-array receiver coil. All in vivo

studies were approved by our institutional review board and all

subjects provided consent prior to participation in the study.

Ethics Statement
The study was performed at the Beth Israel Deaconess Medical

Center (BIDMC), Boston, MA, USA and was approved by the

Committee on Clinical Investigations of BIDMC (Protocol

No. 2013P-000231). This study was conducted with a waiver of

patient consent approved by the Committee on Clinical Investi-

gations of BIDMC.

Reconstruction Algorithm: Implementation Details
The proposed method was implemented in MATLAB (Math-

Works, Natick, MA), as well as in C++, for off-line reconstruction

on a workstation with Intel (Santa Clara, CA) Core2 Quad Q9400

CPU (2.66 GHz) and 8.0 GB memory. For all reconstructions, t
was chosen to be 1027 times the maximum (in absolute value) of

Kest. In the reconstruction, an image mask was first applied with

weights inversely proportional to the de-apodization function to

suppress signal from outside the region-of-interest, with b = 10.

This served as the starting image for the iterative procedure using

the Daubechies4 wavelets as the sparsifying transform. In this case,

l1 soft-thresholding in wavelet-domain was used with b = 100. The

values for b and t were determined empirically, and were utilized

in the same way for all reconstructions.

For a comparison of computational requirements, all images

were also reconstructed using conventional iterative CS recon-

struction method that uses gridding and regridding at every

iteration with Daubechies4-wavelet-domain regularization imple-

mented on a GPU, and in C++ [30]. The Kaiser-Bessel function

with window size 4.0 was used for the convolution kernel for

gridding [42]. Due to the dimensionality of the 3D radial datasets,

no oversampling is used prior to gridding [30]. Both algorithms

were run until a convergence criteria was met, which was defined

by the relative change, m tz1ð Þ{m tð Þ�� ��2

2
= m tð Þ�� ��2

2
v 10{6. The

number of iterations required to converge, as well as the time for

each operation per iteration in C++ was recorded.

Phantom Imaging
A high resolution phantom was scanned with a steady-state free

precession (SSFP) sequence using a 3D radial trajectory, with 10

interleaves and 344 sample points per projection with different

sampling densities of 10, 20, 30, 40 and 100%, corresponding to 289,

576, 896, 1184 and 2954 projections per interleaf respectively. The

scan parameters were TR/TE/a= 3.9/1.9/60u, FOV = 2406240

6240 mm3, and spatial resolution = 1.461.461.4 mm3. The

acquired 3D radial data were reconstructed using the proposed

method, and the conventional iterative CS reconstruction method

with gridding and regridding at every iteration. The normalized

mean-squared error (MSE) with respect to the reference image with

100% sampling density, mref, was calculated as MSE~ mref{k
mestk2

2= mrefk k2
2 , where mest is the reconstructed image.

In Vivo Imaging
Whole-heart MR images were acquired on 5 healthy adult

subjects (32.6616.3 years, range: 21 – 55 years, 4 women). 3D

free-breathing ECG-triggered SSFP sequences were used for

imaging the heart with 3D radial trajectories. A respiratory

navigator with 7 mm gating window was used for gating and

tracking the respiratory motion [43], where the k-space data

acquired within the gating window were accepted, and the k-space

data acquired outside the gating window were rejected and re-

acquired until acquired within the gating window. Within the

7 mm gating window, the position of the imaging volume was

adaptively adjusted using a tracking factor of 0.6. The data sets

were acquired with 10 interleaves, 768 projections per interleaf

Compressed Sensing Recon for Non-Cartesian MRI without Gridding
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and 392 sample points per projection for a sampling density of

20%. The scan parameters were as follows: TR/TE/a= 3.9/1.9/

60u, FOV = 25662566256 mm3, and spatial resolution = 1.361.3

61.3 mm3. The acquired 3D radial data were reconstructed using

the proposed CS method, and the conventional iterative CS

reconstruction method with gridding and regridding at every

iteration.

The normalized vessel sharpness and the vessel length of the

right coronary artery (RCA) were measured using a Soap-Bubble

tool [44] for quantitative assessment of the quality of the CS

reconstruction method. Vessel sharpness scores were calculated for

both sides of the vessel using Deriche algorithm [45]. Final

normalized sharpness was defined as the average score of both

sides divided by the center of vessel intensity. The sharpness and

the length of the vessels from the two CS reconstruction

techniques were compared using a paired t-test. A value of P,

0.05 was considered to be statistically significant.

Results

Computational Requirements
Table 1 summarizes the per iteration cost of both the

conventional and the proposed CS algorithms for the reconstruc-

tion of a phantom data set with 10 interleaves, 289 projections per

interleaf and 344 sample points per projection with standard C++
implementation. Due to the necessity of performing gridding and

regridding at every iteration, the conventional CS algorithm has

approximately 3 times the computational requirement of the

proposed CS algorithm per iteration (52.48 seconds vs. 17.55

seconds). For the in-vivo datasets, the average numbers of

iterations required for convergence by the different methods were

4556320 for the conventional CS technique, and 60613 for the

proposed CS technique. Thus, for in-vivo datasets, this leads to a

,23-fold saving in the total reconstruction time on average for the

proposed technique over the conventional one.

Phantom Imaging
Figure 2 depicts an example slice from the reconstruction

results for the phantom imaging experiment with 40, 30, 20 and

10% sampling densities, using conventional iterative CS that

utilizes gridding and regridding at every iteration, and the

proposed CS method. The details are preserved in a comparable

manner between the two techniques. The normalized MSE for

these reconstructions were 0.006, 0.007, 0.012 and 0.017 for the

conventional CS method; and 0.007, 0.008, 0.012 and 0.025 for

the proposed CS method for sampling densities of 40, 30, 20 and

10% respectively. The proposed method exhibits more residual

streaks compared to the conventional CS, apparent in the

background signal in the zoomed area. However, the proposed

technique has a clear advantage in terms of reconstruction time.

The average numbers of iterations required for convergence were

4562, 4062, 4061 and 4061 for sampling densities of 10, 20, 30

and 40% respectively, indicating that the convergence behavior

does not change significantly with the undersampling density.

In Vivo Imaging
Figure 3 shows an example axial slice from a 3D whole-heart

radial acquisition with 20% sampling density, reconstructed using

the conventional and proposed CS techniques with wavelet-

domain sparsity regularization. A cross-section of the RCA is

Figure 1. Flowchart for the proposed reconstruction algorithm for non-Cartesian acquisitions. At every iteration, the current image
estimate (shifted by the multiplier) is first transformed de-aliased with respect to the sparsity constraint W(?) (e.g. soft-thresholding in the wavelet
domain) to generate u(t). Then, data consistency is enforced by a weighted average of the k-space of the thresholded signal (shifted by the multiplier)
and the acquired gridded k-space (G*s), with weights determined by b and Kest, generating the new estimate m(t). The multiplier is also updated
using u(t) and m(t). The final image is generated via de-apodization of the estimate obtained at the end of the iterative process (k-space images depict
one representative slice from the volume).
doi:10.1371/journal.pone.0107107.g001
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clearly visualized with both CS techniques, which offer similar

image quality and suppression of streaking artifacts that are

typically associated with undersampling of radial acquisitions. We

note that differences in SNR are observed in the distal RCA, likely

due to residual reconstruction artifacts with the proposed method.

Figure 4 depicts reformatted axial images of the RCA from the

same acquisition, reconstructed using the two CS techniques. The

proximal, mid and distal portions of the RCA are visualized using

both techniques even though the acquisition was with 20%

sampling density. Table 2 depicts the quantitative vessel

measurements of the 3D radial whole-heart images for the five

subjects. There are no significant differences between the

conventional and proposed CS techniques in terms of the

visualized vessel length or normalized vessel sharpness of the

RCA; but the proposed technique offers a ,23-fold saving in

computational complexity.

Discussion

In this study, we have proposed an iterative CS reconstruction

method for non-Cartesian trajectories, which does not require a

gridding and regridding operation to be applied at every iteration.

A total of three gridding/regridding operations are required,

which enables the implementation of the technique with a

standard MATLAB script, even for highly memory-intensive 3D

radial trajectories. Phantom and in vivo cardiac MRI datasets

were used to demonstrate the efficacy of the proposed technique in

removing streaking artifacts, with results similar to a conventional

CS implementation that has a much higher computational

burden.

The main source of the computational time reduction in our

proposed method is to the use of the diagonal approximation used

for G*G. The accuracy of this approximation is important for the

utility of the proposed method. One possible way to characterize

the approximation accuracy is to find the closest diagonal matrix

to G*G with respect to some distance metric (e.g. Frobenius

norm). However, it is not clear how the error with respect to the

specific metric propagates in the non-linear reconstruction, and

what kind of artifacts and distortion it causes in the final

reconstruction. Hence, we have verified our approximation by

the final results of the algorithm, utilizing objective quantitative

measures such as vessel sharpness and length, and the images

themselves to depict the artifacts. Furthermore, since the

propagation of the error is not characterized in a closed-form

manner, the applicability of the technique for different configu-

rations of trajectories warrants further study, specific to the

application.

Our proposed approximation, Kest also has an intuitive

explanation: It is the result of regridding an all-ones k-space onto

the spokes acquired and gridding these spokes back to a Cartesian

k-space. In essence, Kest specifies the weights associated with a

particular k-space location in the gridded data G*s with points

closer to the spokes or to the center getting a bigger weight, and it

has to be calculated only once before reconstruction. Hence, the

data-consistency step provides a weighted average value of the

acquired gridded k-space and the k-space corresponding to the

thresholded estimate (shifted by the Lagrange multiplier), normal-

ized by the sum of weights. In contrast, for the Cartesian case, the

data consistency is typically done by replacing the acquired

locations in the k-space of the thresholded estimate with the

acquired lines [21,39], which is not possible in the non-Cartesian

setting.

Other techniques have been proposed to approximate the

gridding and regridding operations before. In the context of
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parallel imaging, approximations have been used both for SENSE

[41] and GRAPPA [17,46] reconstructions. These methods all rely

on linear reconstructions, unlike the proposed non-linear recon-

struction method. For linear methods, the effects of the

approximations are easier to characterize and it is not clear

whether the same conclusions extend to non-linear reconstruc-

tions. In the context of CS reconstruction for non-Cartesian MRI,

other approximations have been performed [47], where the

algorithm alternates between thresholding and application of the

non-Cartesian GRAPPA operator. Thus data-consistency is not

directly enforced, but only incorporated through the multiple-coil

setup. Our method, on the other hand, enforces data-consistency

using the measured values directly, corresponding to a weighted

averaging scheme.

By avoiding gridding/regridding operations at every iteration,

the proposed method achieves a 3-fold reduction in computational

requirements, since gridding/regridding operations are the most

computationally intensive part of every iteration. Furthermore,

compared to an implementation of the conventional iterative CS

algorithm, the proposed algorithm converges faster, in approxi-

mately 7.5-fold fewer iterations, which is due to the convergence

properties of AL methods [36]. Thus, overall a ,23-fold

improvement in computational requirements is possible. All our

comparisons are based on C++ implementations, where operations

are performed sequentially. We note that it is possible to

parallelize the gridding/regridding operations for the conventional

CS technique on a GPU, as reported in [30], and implementations

on different systems may lead to different reduction factors in

computational requirements.

The images reconstructed with the proposed CS technique have

comparable quality with those reconstructed by the conventional

CS technique. Both of these techniques are effective in suppressing

streaking artifacts associated with high undersampling rates for

radial acquisitions. The characteristics of the artifacts for the two

reconstructions are different, even though the same objective

function is considered. Apart from the effects of the diagonal

approximation, the changes in artifacts or reconstruction quality

based on the specifics of the algorithm utilized to solve the

objective function is documented both in signal processing [48,49]

and in imaging [50]. Thus, there are also variations in the

Figure 2. Reconstructions from 3D radial phantom imaging at 40, 30, 20 and 10% sampling densities: conventional CS
reconstruction with gridding and regridding at every iteration and wavelet domain regularization (top); proposed method without
gridding and regridding at every iteration and wavelet domain regularization (bottom). The details are preserved in a comparable
manner between the two techniques. The proposed method exhibits more residual streaks compared to the conventional CS, apparent in the
background signal in the zoomed area.
doi:10.1371/journal.pone.0107107.g002

Figure 3. An example axial slice from a 3D radial whole heart
MRI dataset at 20% sampling density, reconstructed with
conventional CS reconstruction (left), and the proposed CS
reconstruction (right), both with wavelet domain regulariza-
tion. A cross section of the right coronary artery (RCA) is visualized
clearly with both techniques.
doi:10.1371/journal.pone.0107107.g003

Figure 4. Reformatted axial images of the RCA with isotropic
resolution of 1.3 mm3 from the whole-heart 3D radial acqui-
sition of Figure 3 with 20% sampling density. Images are
reconstructed both with the conventional CS reconstruction utilizing
gridding and regridding at every iteration (left) and the proposed CS
technique without gridding and regridding at every iteration (right).
Both CS reconstructions employ wavelet domain regularization.
Proximal, mid and distal regions of the RCA are visualized in both
techniques.
doi:10.1371/journal.pone.0107107.g004
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quantitative measurements for the two algorithms.

The diagonal approximation in Equation [10] relies on the local

nature of the gridding and regridding operators. While this is

satisfied for the sampling densities considered in the kooshball

acquisitions, it may not be a sufficient approximation for higher

sampling densities or for smaller k-space dimensions. This was

observed in our study with 100% sampled kooshball phantom

datasets (data not shown). Thus, the wellness of this approximation

should be validated first (e.g. by running one iteration of the

algorithm) before using this algorithm for iterative reconstruction.

A limitation of our paper is that we have only used this algorithm

for kooshball datasets, but have not tried it for other trajectory

designs, such as spiral acquisitions. Another requirement for the

locality assumptions in the diagonal approximation is that the

gridding kernel should have a small window size. The Kaiser-

Bessel function with window of size 4 satisfies this requirement

without sacrificing accuracy and without significant computational

cost. However, smaller window sizes may lead to less accurate

gridding, which may also cause artifacts. This was not explored in

our study.

For all the images, the same reconstructions parameters were

used to automate the process. Fine-tuning these values for each

examination may allow further improvements in the quality of

final images at the expense of a non-automated reconstruction

process. We also note that wavelet domain was used for both CS

reconstruction techniques. Even though we concentrated on

wavelet domain reconstruction, the proposed technique allows

for other regularizers such as TV regularization.

Conclusions

We have developed an iterative reconstruction technique for

non-Cartesian k-space trajectories that requires only two gridding

and one regridding operations irrespective of the number of

iterations, and has a fast empirical convergence rate, leading to

substantial reduction in reconstruction time while providing

images of similar quality compared to the conventional CS

technique.
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