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Aging-related neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS), are gradually becoming the primary burden of society and cause significant
health-care concerns. Aging is a critical independent risk factor for neurodegenerative
diseases. The pathological alterations of neurodegenerative diseases are tightly
associated with mitochondrial dysfunction, inflammation, and oxidative stress, which
in turn stimulates the further progression of neurodegenerative diseases. Given the
potential research value, lncRNAs have attracted considerable attention. LncRNAs play
complex and dynamic roles in multiple signal transduction axis of neurodegeneration.
Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation
and development of aging-related neurodegenerative diseases. This review compiles the
underlying pathological mechanisms of aging and related neurodegenerative diseases.
Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network
of lncRNAs in neurodegenerative diseases are also explored.

Keywords: long non-coding RNAs, ageing, neurodegenerative diseases, Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, amyotrophic lateral sclerosis

INTRODUCTION

Neurodegenerative diseases are a range of disorders characterized by irreversible neuron or
myelin sheath loss and gliosis, which deteriorate over time and result in dysfunction. Aging
significantly enhances the risk of developing neurodegenerative diseases (Hou et al., 2019). The
world population over the age of 60 is expected to double to 22% by 2050. An increase in
morbidity and mortality has been noted among the aging individuals (Divo et al., 2018). With
aging populations, aging-related neurodegenerative disorders, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are
prevalent worldwide. Therefore, it is important to gain a deeper insight into biological mechanisms
underlying these diseases.

Although the function of protein aggregation in neurodegenerative diseases have received
considerable attention, increasing evidence also focus on RNAs as contributing factors in these
diseases. Because proteins are vital functional expression of genetic code, messenger RNAs
(mRNAs) have been explored more intensively than non-coding RNAs (ncRNAs). Nevertheless,
extensive research into the function of ncRNAs has broadened our understanding of diverse
biological and pathological processes over the past few decades. Among the subtypes of ncRNAs,
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long non-coding RNAs (lncRNAs) account for a large proportion,
which are a momentous source of molecular regulatory factors
in eukaryotic nuclei and are involved in modulating gene
expression, including chromatin structure, transcription, and
translation (Xiang et al., 2014). LncRNAs are increasingly
regarded as indispensable molecules in diverse cellular processes
such as differentiation, proliferation, apoptosis and senescence
(Mercer and Mattick, 2013; McHugh et al., 2015). Moreover,
it has been shown that lncRNAs are associated with various
pathological processes of aging-associated diseases, such
as neurodegeneration, metabolic imbalances, and cancer
(Greco et al., 2015). This review summarizes the pathological
mechanisms of aging-related neurodegenerative diseases,
including AD, PD, HD, and ALS. Then, we mainly concentrate
on the functions of lncRNAs in the progression of these
neurodegenerative diseases.

THE PATHOLOGICAL MECHANISMS OF
AGING-RELATED
NEURODEGENERATIVE DISEASES

With aging, the central nervous system (CNS) gradually
undergoes degeneration, which is featured by a chronic and
temporary loss of the function and structure of neuronal
substances, eventually leading to mental and functional
impairment (Campbell et al., 1999). Increasing evidence
demonstrates that mitochondrial dysfunction, oxidative stress,
and inflammation are primarily pathophysiological mechanisms
of aging-related neurodegenerative diseases (Figure 1).

Mitochondrial Dysfunction
Mitochondria are pivotal modulators of cellular lifecycle, exerting
an important role in aging-related neurodegenerative disorders.
Emerging evidence suggests that mitochondrial dysfunction
shows causal effects in the pathogenesis of these diseases.

Mitochondrial Dysfunction and Aging
Mitochondrial dysfunction accelerates aging primarily through
two mechanisms, including stimulation of mitochondrial DNA
(mtDNA) mutations and generation of reactive oxygen species
(ROS). mtDNA mutations, such as point mutations or massive
deletions, accumulate with age (Corral-Debrinski et al., 1992).
The polymerase chain reaction (PCR) strategy revealed an
average of two point mutations per 10 kb in the two protein-
coding regions of mtDNA in the elderly subjects, compared
with one point mutation per 10 kb in the young brains
(Lin et al., 2002). The aggregation of mtDNA mutations with
aging is relevant to the mitochondrial dysfunction. In addition,
net production of ROS is another momentous mechanism
and is considered to be important for mitochondria aging
(Munro and Pamenter, 2019).

Mitochondrial Dysfunction and Alzheimer’s Disease
Studies have found that the typical histopathological changes
of AD are amyloid deposition and neurofibrillary tangles
(NFTs). There are many theories trying to explain this

change, including the amyloid-β peptide (Aβ) waterfall theory,
hyperphosphorylated tau (P-tau) protein theory, neurovascular
hypothesis and so on (Ballard et al., 2011). Emerging evidence
suggests that mitochondrial dysfunction is associated with
AD pathogenesis (Lin and Beal, 2006). In transgenic amyloid
precursor protein (APP) mice, oxidative damage preceded Aβ

deposition and was associated with upregulation of apoptosis and
mitochondrial metabolism related genes (Reddy et al., 2004).

Mitochondrial Dysfunction and Parkinson’s Disease
The level of dopaminergic (DA) neurons in the substantia
nigra striatum decreases with age. Lewy bodies are unique
cytoplasmic inclusion, immunostaining for α-synuclein and
ubiquitin. Several causative genes, including DJ-1, PTEN-
induced kinase 1 (PINK1), and Parkin (PARK2), strongly support
mitochondria dysfunction as a crucial pathogenesis in PD (Lin
and Beal, 2006). For example, Chung et al. (2004) found that
the functions and mutations of Parkin could be exacerbated by
mitochondrial dysfunction.

Mitochondrial Dysfunction and Huntington’s Disease
Huntington’s disease is caused by the amplification of CAG
triplet repeat in the first exon of huntingtin (HTT) gene,
resulting in abnormal forms of the protein to clump together
and form aggregates in brain cells. Mitochondrial dysfunction
is involved in HD process. Mitochondrial respiration and
adenosine triphosphate (ATP) production of striatal cells were
obviously impaired in mutant HTT (mHTT) embryos (Milakovic
and Johnson, 2005). mHTT can directly act on mitochondria or
indirectly affect mitochondrial function via altering transcription
(Panov et al., 2002; Sadri-Vakili and Cha, 2006).

Mitochondrial Dysfunction and Amyotrophic Lateral
Sclerosis
There are 2 types of ALS, among them about 90% are sporadic
ALS (SALS) and 10% are familial ALS (FALS). Mutations in
superoxide dismutase 1 (SOD1) gene cause 15% of FALS,
while SOD1 dysfunction may also be a causal factor of
sporadic ALS (Abati et al., 2020). Pathological biopsy of nerves
and muscles revealed abnormal mitochondrial structure and
localization in ALS. SOD1 mutations cause toxic aggregates
formation in mitochondria, thereby disrupting several cellular
processes and causing diverse detrimental effects (Hayashi
et al., 2016). Animal studies showed that SOD1 mutation
overexpression resulted in impaired mitochondrial energy
metabolism (Mattiazzi et al., 2002).

Oxidative Stress
Oxidative stress is an imbalance between biological oxidative
and antioxidative systems, which is caused by excessive ROS
production (Newsholme et al., 2016). It plays deleterious
effects in modulating the function of biomolecules that are
sensitive to ROS/reactive nitrogen species (RNS), thus involving
neuronal deterioration (Islam, 2017). In addition, the function
of heavy metals as antioxidants in oxidative stress and their
harmful effects on CNS are indisputable. Oxidative stress is
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FIGURE 1 | Pathological mechanisms of aging-related neurodegenerative diseases. Mitochondrial dysfunction, oxidative stress, and inflammation are essential
cellular and molecular events in the pathogenesis of aging-related neurodegenerative diseases. Mitochondrial dysfunction results in Aβ deposition by stimulating
mtDNA mutations and ROS production in AD. It can also aggravate the functions and mutations of Parkin, causing PD development. Besides, mHTT impairs
mitochondrial ATP production and mitochondrial respiration in HD. SOD1 dysfunction is a cause of sporadic ALS. Secondly, oxidative stress is a key player in
aging-related neurodegenerative diseases. Aβ-induced oxidative imbalance and P-tau protein are critical in the neurodegeneration of AD with oxidative stress.
Enhanced oxidative stress causes UPS dysfunction and further aggravates the injury of dopaminergic neurons in PD substantia nigra. ROS plays a role in blocking
neurotransmitter transmission in HD through stimulating protein misfolding and forming inclusion bodies. Besides, ROS/RNS overproduction is evident in ALS
patients. Thirdly, neuroinflammation is implicated in the pathologic processes of aging-related neurodegenerative diseases. The inflammation of AD is mainly
regulated by microglia in the innate immune response of the central nervous system. The accumulation and aggregation of α-synuclein in Lewy bodies are involved in
the development of PD. The release of inflammatory cytokines induced by mHTT and the activation of NF-kB signaling pathway are the main inflammatory
mechanisms of HD. The increased microgliosis and astrocytosis result in decreased MHCI level and ultimately contribute to neurotoxicity in ALS.

associated with the occurrence and development of aging-related
neurodegenerative diseases.

Oxidative Stress and Aging
Emerging evidence demonstrates that the free radical theory of
aging has gradually become a major mechanism. Oxidative stress
cause telomere dysfunction and shortening, which ultimately
leads to cell senescence. ROS generation and response to
oxidative stress are crucial factors in determining longevity
(Finkel and Holbrook, 2000). Antioxidants, such as mental
iron, copper, and zinc, are bioaccumulated by various activities.
Decreased antioxidants and elevated ROS levels contribute to
cellular senescence and thereby lead to various aging-related
neurodegenerative diseases.

Oxidative Stress and Alzheimer’s Disease
The significance of oxidative stress and ROS in AD through
harmful effects on biomolecules has been indicated. It has

been reported that accumulation of Aβ aggregates exerts a
crucial role in oxidative stress, causing energy failure and
mitochondrial dysfunction (Tönnies and Trushina, 2017).
Moreover, Aβ-induced oxidative imbalance is associated with
increased levels of DNA/RNA oxidation, lipid peroxidation, and
protein oxidation, suggesting a central role in AD (Wang X.
et al., 2014; Butterfield and Boyd-Kimball, 2018). In addition,
emerging evidence proves that metals accumulate in brain with
aging and are involved in the pathogenesis of AD. Moreover,
P-tau protein, the main constituent of NFTs, is involved in the
cognitive decline and neurodegeneration with oxidative stress in
AD (Goedert and Spillantini, 2006).

Oxidative Stress and Parkinson’s Disease
Motor dysfunction in PD is caused by dopamine depletion
in the substantia nigra striatum pathway and dopaminergic
neurons loss in the substantia nigra pars compacta (SNpc)
(Ramalingam et al., 2019). Oxidative stress exhibits an inevitable
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effect in progressive neurodegenerative PD (Trist et al., 2019).
Dopaminergic neurons are sensitive to mitochondrial ROS
(Chen et al., 2019). ROS production is regulated by dopamine
metabolism and glutathione in the SNpc (Smeyne and Smeyne,
2013). Patients with PD have enhanced levels of oxidized
molecules and reduced glutathione (Homma and Fujii, 2015).
The ubiquitin-proteasome system (UPS) reduces oxidative free
radicals production (Collier et al., 2011). Enhanced oxidative
stress lead to UPS dysfunction and further aggravate the injury
and damage of dopaminergic neurons in PD substantia nigra
(Betarbet et al., 2005).

Oxidative Stress and Huntington’s Disease
Although the primary cause of HD has been proved to be
the toxicity of mHTT, diverse other processes have also been
shown to be associated with HD (e.g., oxidative stress). Singh
et al. (2019) revealed that oxidative stress exerts a vital role in
neuronal degeneration cascade in HD. ROS causes the formation
of inclusion bodies by inducing protein misfolding, which
clump together in neurons and block neurotransmitter delivery
(Rubinsztein and Carmichael, 2003). Repair of damaged DNA
may result in instability and amplification of CAG nucleotide
repeats in mHTT (Kolli et al., 2017).

Oxidative Stress and Amyotrophic Lateral Sclerosis
Studies have shown that oxidative stress regulated a range of
cellular biological and pathological processes, including lipid
peroxidation, protein injury, as well as DNA and RNA oxidation
in ALS (Morimoto et al., 2020). SOD1 mutations and ROS/RNS
overproduction are evident in ALS (Baltazar et al., 2014).
Besides, the oxidative stress biomarkers can bind to biomolecules,
such as malondialdehyde (MDA) modified protein and lipid
peroxidation product in ALS (Mendez and Sattler, 2015).

Inflammation
Neurodegeneration, featured by the loss and progressive
dysfunction of axons and neurons, is the main pathological
feature of neurodegenerative disorders (Amor et al., 2010).
Recent studies have shown the function of neuroinflammation in
neurodegeneration, especially in the elderly. There is a growing
awareness that inflammation is involved in the pathological
process of aging-related neurodegenerative diseases. Although
triggering events are varied, chronic immune activation is a
common feature. Immune activation in the CNS exerts a pivotal
role in the modulation of brain homeostasis during development
and aging. When responding to tissue damage and pathogen
invasion, nerve cells continuously survey the microenvironment
and promote the inflammatory response, thereby further
engaging self-limiting reaction through the immune system and
starting tissue repair (Wyss-Coray and Mucke, 2002).

Inflammation and Aging
Inflammation plays a double-edged sword in the process of
aging. Advantageously, it is closely associated with immunity
by resisting pathogen invasion. Detrimentally, an excessive
inflammatory response can disrupt the balance of the organism,
which may eventually lead to disease. “Neuroinflammatory

aging” is related with an obvious reduction of neuron numbers,
neuronal dendrites, cortex and spine volume. The brain barrier
is a structure that maintain the normal functional activities
of neurons in the CNS, which is composed of cerebrospinal
fluid-brain barrier (CBB), blood–brain barrier (BBB), and
blood-cerebrospinal fluid barrier (BCB) (Abbott et al., 2010).
The neuroinflammation sensitivity of different barriers and
brain regions is significantly different (Stephenson et al.,
2018). Changes in cells activation during aging explain the
incremental susceptibility of the elderly to neuroinflammation
and neurodegenerative diseases (Benz and Liebner, 2020).

Inflammation and Alzheimer’s Disease
Considerable evidence suggests that systemic inflammation is
closely related to the pathogenesis of AD (Holmes, 2013).
Systemic inflammation in AD could increase the expression
of central proinflammatory cytokines, the death of neuronal
cells, and the generation of ROS (Perry et al., 2010), thereby
exacerbating the clinical symptoms. Moreover, the permeability
of BBB gradually increases the progression of AD (Farrall and
Wardlaw, 2009). The harmful effects of peripheral inflammation
are associated with central inflammatory response because of
the crosstalk between the periphery and the CNS. Therefore, it
suggests that peripheral inflammation is a potential risk factor
for AD progression. Inflammation in AD is primarily regulated
by microglia in the innate immune responses of the CNS.

Inflammation and Parkinson’s Disease
Since PD-like symptoms were first observed in individuals
infected with influenza virus, the function of inflammation in
PD has been widely studied (Lutters et al., 2018). Inflammation
contributes to the occurrence and development of PD both
directly or indirectly. Studies have found that some viral
proteins could promote the accumulation and aggregation
of α-synuclein in Lewy bodies (Maries et al., 2003), further
suggesting brain inflammation in the pathogenesis of PD.
In addition, neurotropic pathogens could reach the basal
ganglia via diverse pathways, and ultimately cause a series
of neuroinflammation and neurodegenerative disorders in the
nigrostriatal tract (Hawkes et al., 2007).

Inflammation and Huntington’s Disease
There is a growing interest of inflammation in HD progression.
It has been demonstrated the higher expression of mHTT in
monocytes and microglia (Moscovitch-Lopatin et al., 2010).
Increasing evidence proves that mHTT influences the function
of monocytes and microglia by mediating inflammation in
HD (Valadão et al., 2020). On the one hand, mHTT directly
induces the release of inflammatory cytokines (Gupta et al.,
2021). On the other hand, mHTT promotes the release of
inflammatory chemokines or cytokines by modulating nuclear
factor-κB (NF-κB) signaling pathway (Khoshnan et al., 2004).
Neuronal damage itself can cause a vicious cycle of inflammatory
response and neurodegenerative events, which in turn leads to
more neuronal death in HD (Zuccato et al., 2010). Moreover,
a pioneer study observed the high levels of interleukin-6 (IL-
6), IL-8, IL-10 and tumor necrosis factor-α (TNF-α) in HD
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patients, all of which were associated with disease progression
(Silvestroni et al., 2009).

Inflammation and Amyotrophic Lateral Sclerosis
Neuroinflammation is a key modulator of ALS progression, and
is featured by astroglia, microglia, infiltrating lymphocytes
and peripheral monocytes in CNS (Lyon et al., 2019).
Emerging evidence shows that inflammation of the innate
immune system is linked to ALS (Lu et al., 2016). Major
histocompatibility complex class I (MHCI) expression is
increased in neuromuscular junction (NMJ) and peripheral
motor axons and NMJs in SOD1 mutation mice (Nardo et al.,
2016). Increased MHCI level exhibits a neuroprotective
effect in peripheral nerves, depending on the removal
of motor axon debris by immune cells (Thonhoff et al.,
2018). MHCI level is decreased because of the increased
microgliosis and astrocytosis in SOD1 mutation mice
and ALS patients, ultimately promoting neurotoxicity
(Song et al., 2016).

LncRNAs AND AGING

Aging is a natural phenomenon featured by accumulation
of degenerative alterations and damage. It is a primary risk
factor in the etiology and development of various diseases,
such as metabolic disruptions, neurodegenerative disorders,
cardiovascular malfunctions, and cancers. Progressive loss of
the functions of multiple cells, tissues, or organs is positively
associated with aging. Though diverse mechanisms of aging
have been studied, such as telomere shortening, free radicals,
accumulated mutations, defective DNA repair, and increased
DNA damage, the aging process remains widely unknown
(Sinha et al., 2014). In fact, the current knowledge underscores
the significance of multiple theories of aging. Therefore, it is
best defined as a multifactorial process that involves complex
interacting molecular and cellular mechanisms. Accordingly,
there is currently no single measure that can be qualified
as a specific biomarker or hallmarks of aging. A growing
number of studies are exploring multiple biomarkers of aging
at different levels, providing potential prospects for clinical
diagnosis and therapy.

Cellular senescence is a causative process of aging and
is responsible for aging-related diseases. It is a permanent
state of cell cycle arrest, accompanied by an enhanced
secretory phenotype and resistance to cell death. Cellular
senescence can be induced by telomere attrition, DNA damage,
mitochondrial dysfunction, chromosome destabilization, and
oncogene activation (Wei and Ji, 2018). There are no specific
or universal hallmarks for senescent cells. Several senescence
biomarkers can be used to assess cellular senescence, such as
higher activities of senescence-associated β-galactosidase (SA-
β-gal), changes in senescence-related proteins (p16, p21, p27, and
p53), alterations in cellular senescence-related morphology, and
production of senescence-associated secretory phenotype (SASP)
(Calcinotto et al., 2019; Ni et al., 2020). There is growing interest
in discovering novel markers of senescence.

LncRNAs, a class of ncRNAs ≥ 200 nt in length, play
an important role in many biological processes, such as
transcription, post-transcriptional processing, and chromatin
modification. According to their genomic location and
orientation, they can be divided into sense, antisense,
bidirectional, intergenic, intron, enhancer, and promoter
lncRNAs (He et al., 2018; Cui et al., 2021). Mammalian
transcription generates various lncRNAs involved in organ
development (Rayner and Liu, 2016), differentiation (Chen and
Zhang, 2016), synaptic formation (Maag et al., 2015), learning
and memory (Gudenas and Wang, 2015). Increasing evidence
has shown that a large number of lncRNAs are involved in
cellular senescence at diverse stages of the cell cycle (Puvvula,
2019). With the accumulated evidence, we hereby discuss the
association and correlation between lncRNAs and aging.

Firstly, lncRNAs play a role in cellular senescence and
organismal aging by regulating cell cycle. For example, studies
have demonstrated that depletion of metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) could induce G1 or
G1/S arrest, thereby enhancing senescence phenotype and
inhibiting cell growth (Tripathi et al., 2013). LncRNA H19 is
necessary in cell proliferation, growth, and senescence. Ratajczak
(2012) proved that imprinting deletion of insulin-like growth
factor-2 (Igf2)-H19 locus was involved in cellular senescence.
Besides, p21-associated ncRNA DNA damage activated (PANDA)
has been reported to trigger DNA damage via p53, leading to G1
cell cycle arrest (Wang Y. et al., 2017). In addition, several other
lncRNAs are associated with aging process by affecting cell cycle,
including Gadd7, 7SL, FAL1, etc. (Liu et al., 2012; Kour and Rath,
2016).

Secondly, lncRNAs participate in the progression of SASP and
promote the secretion of inflammatory factor. LncRNA nuclear
paraspeckle assembly transcript 1 (NEAT1) is regarded as a
novel inflammatory modulator. It can influence the formation
of paraspeckles and subsequently regulate cellular senescence
(McCluggage and Fox, 2021). Moreover, lncRNA LET stimulates
the accumulation of nuclear factor 90 (NF90), which inhibits
the translation of several SASP factors (Tominaga-Yamanaka
et al., 2012; Yang et al., 2013). Cui et al. (2014) revealed that
lnc-IL7R could alleviate the inflammatory response induced
by lipopolysaccharide, suggesting an involvement in SASP
production. Additionally, lincRNA-Cox2, Lethe, and THRIL
have been shown to contribute to the generation of SASP
(Panda et al., 2017).

Thirdly, lncRNAs is involved in telomere dynamics and
attrition. TElomere Repeat-containing RNA (TERRA) is a
lncRNA transcribed by telomeric DNA sequences. Many studies
have been conducted on how TERRA transcription modulates
telomere structure (Aguado et al., 2020). Yehezkel et al. (2013)
confirmed an association between TERRA and aging process.
They found that TERRA expression was upregulated, telomere
shortening was accelerated, and replicative senescence enters
prematurely in immunodeficiency, centromeric instability and
facial anomalies (ICF) syndrome type I. Moreover, telomeric
RNA component (TERC), a 451 nt lncRNA, is the core
component of telomerase with classical function to provide
template for the extension of telomerase. Introduction of TERC
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rescued premature aging phenotype of telomerase deficient
mice, suggesting a role of TERC in senescence and aging
(Samper et al., 2001).

Lastly, lncRNAs contribute to recruitment of chromatin
remodeling complexes during senescence and aging. HOX
antisense intergenic RNA (HOTAIR) plays a role in the
recruitment and binding of chromatin remodeling complexes
to the HOX sites, leading to retargeting of polycomb repressive
complex 2 (PRC2) (Rinn et al., 2007). Besides, KCNQ-
overlapping transcript 1 (Kcnq1ot1) has been reported to affect
Kcnq1 locus by interacting with PRC2 complexes (Pandey
et al., 2008). Additionally, recent studies have demonstrated that
several other lncRNAs, such as Air, H19, and TERRA are also
involved in chromatin remodeling (Zhu et al., 2013; He et al.,
2018).

ROLES OF lncRNAs IN AGING-RELATED
NEURODEGENERATIVE DISEASES

Aging-related neurodegenerative diseases are a range of
progressive atrophy and loss of neurological function of neurons
and neural tissues, eventually leading to cognitive or motor
impairments. Although common mechanisms may result in
neuron loss in a variety of disorders, different pathological
characteristics are caused by specific toxic aggregation of
particular proteins and/or genetic mutations. For example,
Aβ aggregation and P-tau in AD, α-synuclein Lewy bodies in
PD, mHTT aggregates in HD and SOD1 in ALS (Chung et al.,
2011). Increasing evidence indicates that diverse lncRNAs are
involved in neural function, and their related RNA networks
may influence neurodegeneration (Wu and Kuo, 2020). Since
the pathology of neurodegenerative diseases are related to
accumulation of certain proteins, studies have suggested that
lncRNAs are associated with different protein aggregation events
and disease pathogenesis. Abnormal regulation of lncRNAs
is related to the aging process and aging-related diseases. In
the following sections, we summarize the roles of lncRNAs in
aging-related AD, PD, HD, and ALS.

Roles of lncRNAs in Alzheimer’s Disease
Alzheimer’s disease, the major etiology of dementia, is
characterized by aggregation of Aβ peptides and P-tau in
neurofibrillary tangles. APP is a transmembrane protein that
produces Aβ by sequential division of β-site APP cleaving
enzyme-1 (BACE1) and γ-secretase (Karran et al., 2011).
The balanced ratio of Aβ42/Aβ40 is disrupted and cause the
amyloid plaques in AD brain (Ballard et al., 2011). It has
been demonstrated that multiple lncRNAs are involved in AD
pathology (Figure 2). In this section, we compile the roles of
lncRNAs in aging-related AD (Table 1).

BACE1 has been extensively recognized as the potential to
develop Aβ-lowering drug therapy for AD. BACE1 antisense
transcript (BACE1-AS) is a conserved lncRNA transcribed
from the antisense protein-coding BACE1 gene (Fotuhi et al.,
2019). Faghihi et al. (2008) reported that BACE1-AS realizes its
function via raising BACE1 mRNA stability and then producing

additional Aβ42, suggesting the driving function of BACE1-AS
in AD pathologic process. They also demonstrated that BACE1-
AS could prevent binding to miR-485-5p. HuD, one of the
main neuronal RNA-binding proteins (RBPs), is involved in
mediating neuronal maintenance, differentiation and plasticity,
thus regulating memory and learning. HuD could interact with
BACE1 mRNA, APP mRNA, and BACE1-AS to prolong the
half-lives of the mRNA and enhance the expression of BACE1
(Deschênes-Furry et al., 2006). Kang et al. (2014) found elevated
expressions of HuD and BACE1-AS in AD brains.

Brain cytoplasmic 200 (BC200) is a major cytoplasmic
lncRNA, which is mainly expressed in neurons and can be
transported to dendrites. It is a translational modulator that
selectively targets the somatic dendrite domain of neurons.
BC200 is believed to act as a regulator of local protein synthesis
in the postsynaptic dendrite microdomain and is involved in
maintaining long-term synaptic plasticity (Mus et al., 2007).
BC200 has been reported to exhibit important effects in human
lung, esophagus, and cervix tumors (Hu and Lu, 2015). Mus et al.
(2007) proved that BC200 RNA expression was markedly specific
increased in AD brains. They also indicated that elevated BC200
levels was paralleled with the severity of AD. In addition, studies
have shown that BC200 upregulation directly promote BACE1
level and impair cell viability subsequently, thereby increasing
Aβ42 expression (Feng et al., 2018; Li et al., 2018).

Brain cytoplasmic 1 (BC1) contains a 5′ stem-loop domain,
followed by a single-stranded central homopolymer A-rich region
and a 3′-stem-loop domain (Lin et al., 2008). BC1 acts as a
translational repressor, which is modulated by the adjacent A-rich
region and 3′ stem-loop through interactions with poly(A)-
binding protein (PABP), eukaryotic initiation factor 4A (eIF4A),
and eIF4B (Kondrashov et al., 2005; Lee et al., 2020). It is
abundant in the synapse and inhibits translation at initiation.
BC1 is a cytoplasmic lncRNA in neurons that promotes APP
mRNA translation through the interaction with the fragile
X syndrome protein (FMRP) (Aleshkina et al., 2021). Zhang
et al. (2018) demonstrated that inhibition of BC1 blocked
the accumulation and aggregation of Aβ in AD mice brains
and protected them from memory and learning deficits. In
contrast, exogenous overexpression of BC1 caused Aβ peptides
aggregation and induced learning and memory disorders.

NEAT1 consists of two subtype transcripts, NEAT1v1 and
NEAT1v2, which are essential components of para-nuclear
plaque formation (Koyama et al., 2020). LncRNA NEAT1 has
been reported to be widely expressed in many mammalian
cells. Increasing evidence demonstrates that NEAT1 plays
crucial roles in multiple pathophysiological processes including
neurodegenerative diseases (An et al., 2018), cancers (Yu et al.,
2017), immune disorders (Taheri et al., 2020), and etc. Previous
studies have shown that NEAT1 is involved in the occurrence
of AD. Ke et al. (2019) found that NEAT1 exacerbated P-tau
expression, Aβ level, and neuron damage via sponging miR-
107, thus boosting AD progression. Besides, it has been reported
that NEAT1 is involved in AD through modulating the miR-
124/BACE1 signaling pathway (Zhao et al., 2019). Additionally,
Spreafico et al. (2018) indicated that NEAT1 facilitated neuronal
cell death via regulating the expression of microRNA-15/107
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FIGURE 2 | Molecular mechanisms of lncRNAs in AD. Overexpression of BACE1-AS, BC200, and BDNF-AS is associated with BACE1 activity. Elevated level of 51A
in AD patient altered splicing mode of SORL1, causing damage to APP processing and leading to promotion of the Aβ deposition. Upregulation of BC1 induces APP
mRNA translation by binding to FMRP. Enhanced expression of NDM29 induces APP synthesis. Overexpression of LRP1-AS is involved in regulating Aβ

accumulation. NAT-RAD18 level is upregulated in response to Aβ40. Overexpression of 17A is tightly associated with Aβ secretion and Aβ42 production.
Down-expression of MEG3 promotes neuroinflammation via PI3/Akt pathway. Significantly upregulated expression of MALAT1 inhibits neuroinflammation through
reducing IL-6 and TNF-α. NEAT1 and linc00507 have been characterized to be involved in Tau. Upregulation of NEAT1 promoted Tau protein phosphorylation by
sponging miR-107, while elevated level of linc00507 enhances hyperphosphorylation of Tau protein through regulating miR-181c-5p/MAPT/TTBK1 pathway.
Upregulation of NETA1 and MALAT1 promoted cell apoptosis by targeting miR-15/107 and miR-125b, respectively. In addition, EBF3-AS exhibits a role in regulating
neurons apoptosis.

family in postmortem AD tissues. MALAT1, also known as
NEAT2, has recently been implicated in neurodegenerative
diseases due to anti-inflammatory property (Masoumi et al.,
2019). Ma et al. (2019) indicated that MALAT1 interacted with
miR-125b to promote neurite growth while inhibit neuronal
apoptosis and suppress inflammatory cytokines in AD.

LncRNA 17A is synthesized by RNA polymerase III and
located at intron 3 of g protein-coupled receptor 51 gene (Luo and
Chen, 2016). LncRNA 17A could damage gamma-aminobutyric
acid type B (GABAB) signal transduction by generating non-
functional receptor isoforms, enhance the Aβ42/Aβ40 peptide
ratio, and promote neurodegeneration (Massone et al., 2011).
Moreover, lncRNA 17A expression has been found to be
upregulated in AD patients. Besides, inflammation of brain tissue
triggers 17A expression and complicates the AD process (Wang
X. et al., 2019).

LncRNA 51A locates in an antisense configuration on intron 1
of the neuronal sortilin-related receptor (SORL1) gene. SORL1

has been reported to interact with APP, affect transport and
proteolysis, and participate in AD pathogenesis (Ciarlo et al.,
2013). Decreased SORL1 level shifts APP from the reverse
transcriptional cycle to the β-secretase cleavage pathway, thus
increasing APP secretion and subsequent Aβ formation. It
has been proposed that overexpression of 51A promotes Aβ

formation by decreasing SORL1 variant A, thereby increasing
susceptibility to AD (Ma et al., 2009).

Brain-derived neurotrophic factor (BDNF), a member of
the neurotrophic factor family, is a widely studied growth
factor which includes neurotrophin-3 (NT3), neurotrophin-
4 (NT4), and nerve growth factor (NGF) (Björkholm and
Monteggia, 2016). BDNF has a profound impact on brain
morphology, development, and function because it is widely
expressed in the CNS. BDNF-antisense (BDNF-AS) is a lncRNA
with dozens of alternate splicing variants transcribed from
11p14 cytogenetic band. LncRNA BDNF-AS continuously
reduces endogenous BDNF protein levels and functions by
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TABLE 1 | Roles of lncRNAs in ageing-related Alzheimer’s disease.

Disease LncRNAs Expression Functions References

AD BACE1-AS ↑ Increase BACE1 mRNA stability, generate Aβ42, interact
with HuD.

Deschênes-Furry et al., 2006;
Faghihi et al., 2008

BC200 ↑ Promote BACE1 activity and expression, induce plasticity
failure.

Mus et al., 2007; Feng et al., 2018;
Li et al., 2018

BC1 ↑ Induce Aβ peptide accumulation, cause memory and
spatial learning impairments.

Zhang et al., 2018

NEAT1 ↑ Enhance Aβ and P-tau level, induce neuronal death. Ke et al., 2019

MALAT1 (NEAT2) ↑ Inhibit neuron apoptosis and neuroinflammation. Ma et al., 2019

17A ↑ Enhance the Aβ42/Aβ40 peptide ratio, deactivate GABAB
signaling.

Massone et al., 2011

51A ↑ Interact with APP, promote Aβ formation. Ma et al., 2009; Ciarlo et al., 2013

BDNF-AS ↑ Enhance apoptosis and decrease cell viability, act as
ceRNA to promote neurotoxicity.

Guo et al., 2018; Ding et al., 2021

SOX2OT ↑ Reduce neurogenesis. Arisi et al., 2011

GDNFOS Dysregulated Regulate endogenous GDNF level. Airavaara et al., 2011

EBF3-AS ↑ Regulate neuron apoptosis. Gu et al., 2018

NDM29 ↑ Induce APP synthesis, promote cleavage. Massone et al., 2012

LRP1-AS ↑ Regulate Aβ accumulation. Yamanaka et al., 2015

linc00507 ↑ Promote p-Tau accumulation. Yan et al., 2020

MEG3 ↓ Reduce Aβ expression, decrease inflammation. Yi et al., 2019

NAT-RAD18 ↑ Induce defective DNA repair. Parenti et al., 2007

altering the chromatin structure of the BDNF region, thereby
inhibiting the expression of BDNF sense transcripts (Modarresi
et al., 2012). It is involved in a variety of processes in the
CNS, including synaptic plasticity, synapse formation, and
neuronal maturation. Abnormal regulation of BDNF-AS
is implicated in AD process. Guo et al. (2018) found an
increased level of BDNF-AS and a reduced expression of
BDNF, accompanied by enhanced apoptosis induction and
decreased cell viability in an AD cell model established by
Aβ25−35 exposure to PC12 cells. They also demonstrated
that BDNF-AS silencing had crucial beneficial effects on
enhancing cell viability, and suppressing oxidative stress and
apoptosis through negative modulation of BDNF. Ding et al.
(2021) uncovered an elevated expression of BDNF-AS in the
peripheral blood of AD patients. Further mechanism studies
showed that BDNF-AS acted as a ceRNA to competitively
bind miR-9-5p to induce BACE1 expression, ultimately
promoting neurotoxicity.

The human SOX2 gene encodes a protein of 317 amino acids
(Stevanovic et al., 1994). The structural core of SOX2 is its
high-mobility-group (HMG) domain, which contains a nuclear
export signal and a nuclear localization in addition to binding
to specific DNA consensus sequences (Novak et al., 2020). The
transcription factor SOX2 is a single exon protein, which exerts
an essential and pleiotropic role in development and homeostasis.
LncRNA SOX2 overlapping transcript (SOX2OT) is located at
3q26.3 on human chromosome and is constitutive of more than
two transcription start sites and ten exons (Wang et al., 2020).
The intronic region of SOX2OT contains a SOX2 structure and
shares the same transcriptional direction (Fantes et al., 2003).
Arisi et al. (2011) revealed that SOX2OT reduces neurogenesis
by mediating SOX2 gene expression in AD. It has been proved

that abnormal expression or activation of 10–11 translocation-
2 (TET2) is closely associated with AD (Carrillo-Jimenez et al.,
2019). Li L. et al. (2021) demonstrated that TET2 was involved
in neuron formation via modulating several lncRNAs (SOX2OT,
MALAT1, etc.).

Glial cell line-derived neurotrophic factor (GDNF) is a 134
amino acid protein in the GDNF family ligands (GFLs) including
artemin, persephin, and neurturin (Cintrón-Colón et al., 2020).
It is an effective nutrient factor for central norepinephrine
neurons, midbrain dopaminergic neurons, spinal motoneurons
and peripheral neurons. GDNF opposite strand (GDNFOS), as its
name suggests, is transcribed from the opposite strand of GDNF
gene in the primate genome. GDNFOS isoforms have been found
to be differentially expressed in tissue expression patterns and
could regulate the level of endogenous GDNF in AD brains
(Airavaara et al., 2011).

Early B cell factor 3 (EBF3) belongs to the Collier/Olf/EBF
(COE) transcription factor family. It is an evolutionarily
conserved atypical transcription factor thought to affect the
stratification of cerebral cortex. Gu et al. (2018) revealed that
lncRNA EBF3 antisense (EBF3-AS) expression was enhanced in
hippocampus of AD mice. Moreover, they also found that EBF3-
AS was involved in the regulation of neurons apoptosis in AD cell
models induced by okadaic acid (OA) and Aβ25−35.

Neuroblastoma differentiation marker 29 (NDM29) is a
lncRNA transcribed by RNA polymerase III. NDM29 markedly
enhances APP level, which in turn increases generation of
the two major Aβ isoforms (Li D. et al., 2021). LncRNA
NDM29 was reported to induce APP synthesis and accelerate the
cleavage through γ-secretase and BACE1, which can be restrained
by anti-inflammatory agents and accelerated by inflammatory
stimulation (Massone et al., 2012).
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Low-density lipoprotein receptor (LDLR)-related protein
(LRP1) is a large endophagocytic and signal transduction
receptor in the LDLR gene family. It is widely expressed in the
brain. Apolipoprotein E (ApoE), the ligand of LRP1, is involved
in senile plaques in AD brains (Rebeck et al., 1993), implicating
a role for LRP1 in the accumulation of Aβ. LRP1-antisense
(LRP1-AS) negatively mediates LRP1 expression at both protein
and RNA levels. It was reported that LRP1-AS expression was
significantly increased in the AD brain (Yamanaka et al., 2015).

In addition, a variety of other lncRNAs exhibit an
indispensable role AD progression. For instance, Yan et al.
(2020) demonstrated that elevated linc00507 level in AD
models promoted P-tau accumulation through miR-181c-
5p/microtubule-associated protein tau (MAPT)/tau-tubulin
kinase-1 (TTBK1) network. LncRNA MEG3 is an imprinted gene
mapped in human chromosome 14 and mouse chromosome
12. Yi et al. (2019) found a downregulated level of MEG3
in AD mice. They proved that upregulation of MEG3 could
decrease Aβ expression, reduce inflammation injury, and protect
neurons by phosphatidylinositol 3-kinase (PI3K)/protein kinase
B (Akt) pathway. RAD18 is a member of the chromosome family
responsible for repairing DNA damage (Hedglin and Benkovic,
2015). NAT-RAD18 is a lncRNA of the natural antisense
transcript against RAD18. It was found that RAD18 expression
was down-regulated, while NAT-RAD18 level was up-regulated
in response to Aβ40 (Parenti et al., 2007).

Roles of lncRNAs in Parkinson’s Disease
Parkinson’s disease is pathologically characterized by α-synuclein
aggregation in Lewy bodies. Several site mutations are recognized
to cause hereditary PD, including α-synuclein, Parkin, DJ-
1, LRRK2, PINK1, and ATP13A2 (Majidinia et al., 2016).
Neurotoxins such as 6-hydroxydopamine (6-OHDA) and
MPTP/MPP+ have been often utilized to induce degeneration
dopaminergic neuron degeneration and reproduce pathological
features of PD (Nagel et al., 2009). Accumulating evidence
proposes that lncRNAs are closely related to the development of
PD (Figure 3). In this section, we discuss the roles of lncRNAs in
aging-related PD (Table 2).

The original sequence of MALAT1 gene is over 8,000 bp,
which is highly conserved in 33 species of mammals (Ji et al.,
2003). It is also named as NEAT2. Given that MALAT1
is expressed in a variety of nerve cells in the brain, it is
not surprising that MALAT1 exerts diverse roles in normal
brain physiology. Increasing evidence observes dysregulated
MALAT1 in PD progression. MALAT1 is upregulated in MPP+
induced PD cells and MTPT-induced PD mice (Kraus et al.,
2017). Studies have found that MALAT1 participates in PD
pathology through regulating various mechanisms, including
α-synuclein proteostasis, neuroinflammation, autophagy, and
neuroapoptosis. LRRK2 mutation is one of the causes for
inherited and sporadic PD (Jankovic and Tan, 2020). Liu et al.
(2017) found a reversed expression between MALAT1 and miR-
124 in MPTP-induced PD mice. Further mechanistic studies
showed that MALAT1 promoted apoptosis by interacting with
miR-124 and negatively modulating its expression. Zhang et al.
(2016) proved that MALAT1 could increase the expression of

a-synuclein protein by binding with it to enhance the stability.
Besides, Chen et al. (2018) revealed elevated levels of MALAT1
and LRRK2, and decreased expression of miR-205-5p in MPTP-
induced PD mice. They proposed that the MALAT1/miR-205-5p
axis modulates cellular apoptosis by targeting LRRK2.

LncRNA HOTAIR is transcribed from the antisense chain
of homologous frame C locus on chromosome 12. HOTAIR
has been extensively explored in human cancer (Rajagopal
et al., 2020). Molecular mechanisms of HOTAIR in cancer
progression include recruitment of lysine specific demethylase
1 (LSD1) complexes and PRC2, histone 3 lysine 4 (H3K4)
demethylation and histone 3 lysine 27 (H3K27) methylation (Qu
et al., 2019). Recent studies have found the functions of HOTAIR
in PD progression. HOTAIR has been reported to accelerate
MPP+-induced neuron damage by mediating the miR-874-
5p/autophagy-related 10 (ATG10) axis in PD (Zhao et al., 2020).
Besides, Wang S. et al. (2017) demonstrated that HOTAIR could
enhance the expression and stability of LRRK2, thus involving
in PD process. Rab3a interacting protein (RAB3IP), is a Rab-
specific guanine nucleotide exchange factor (GEF) (Tong et al.,
2021). Lin et al. (2019) indicated the function of the cellular
HOTAIR/miR-126-5p/RAB3IP signaling pathway in PD. NOD-
like receptor family pyrin domain containing 3 (NLRP3) is a
prominent inflammasome in immune system and contributes
to several disease. HOTAIR targeted miR-326 to promote the
neuronal injury through facilitating NLRP3 mediated apoptosis
in PD (Zhang et al., 2021). Additionally, Lang et al. (2020)
explored that HOTAIR enhanced neuronal pentraxin II (NPTX2)
through targeting miR-221-3p, thereby driving autophagy in
PD mouse models.

LncRNA small nucleolar RNA host gene 1 (SNHG1),
also known as linc00057, is approximately 3,927 bases in
length (Tycowski et al., 1994). Studies has focused on its
roles as a competing endogenous RNA (ceRNA) to modulate
tumorigenesis (Lu Q. et al., 2018). SNHG1 attenuates p53
expression, thus promoting cell migration, proliferation, and
invasion (Shen et al., 2017). Notably, SNHG1 has been recognized
as a key modulator of PD neurotoxicity. The C-X-C motif
chemokine ligand 12 (CXCL12) binds to its receptors to
induce downstream signaling pathways (Shi et al., 2020).
Wang et al. (2021) demonstrated that SNHG1 stimulated
MPP+ induced neuronal damage through mediating miR-181a-
5p/CXCL12 axis. Besides, Qian et al. (2019) indicated another
mechanistic pathway by which SNHG1 targets miR-221/222 and
subsequently modulates p27/mammalian target of rapamycin
(mTOR) expression in MPP+-induced PD models. Moreover,
SNHG1 regulates PD by participating in miR-7/NLRP3 pathway
to promote neuroinflammation (Cao et al., 2018). Moreover,
Xiao et al. (2021) proved that SNHG1 could also promote
oxidative stress, apoptosis, and inflammation by modulating the
miR-125b-5p/mitogen-activated protein kinase 1 (MAPK1) axis
in models of PD.

LncRNA urothelial carcinoma-associated 1 (UCA1) was
first identified in human bladder transitional cell line (Wang
et al., 2006). Increasing evidence demonstrates that UCA1
is involved not only in many tumor diseases, but also in
regulating neurodegenerative disorders. LncRNA UCA1 has been
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FIGURE 3 | Molecular mechanisms of lncRNAs in PD. Overexpression of MALAT1, HOTAIR, SNHG1, p21, UCA1, NEAT1, and H19 are in associations with neurons
apoptosis. Besides, lncRNAs, including HOTAIR, SNHG1, and NEAT1, also play a role in modulating autophagy. Additionally, elevated levels of SNHG1, NEAT1,
Mirt2, UCA1, and p21 in AD are positively related to oxidative stress and neuroinflammation.

widely studied in the pathogenesis and development of PD.
Studies have demonstrated that UCA1 participates in regulating
α-synuclein aggregation, dopaminergic neuroapoptosis, and
neuroinflammation. Lu M. et al. (2018) explored that UCA1
promoted the expression of a-synuclein in PD development.
Besides, Cai et al. (2019) showed that UCA1 could aggravate
dopaminergic neuronal damage, inflammation, and oxidative
stress by promoting the PI3K/Akt axis, while reduction of UCA1
exerted opposite effects in a PD rat model.

LncRNA-p21 has been studied to regulate PD via mediating
α-synuclein, mitochondrial dysfunction, oxidative stress and
neuroinflammation. Xu et al. (2018) indicated that lncRNA-
p21 stimulated cellular apoptosis and suppressed cell viability
by sponging miR-1277-5p and indirectly enhancing α-synuclein
level in PD. The transient receptor melastatin 2 (TRPM2) is
a non-selective Ca2+ osmotic channel elevated in PD brains

(Belrose and Jackson, 2018). It has been found that lncRNA-p21-
miR-625-TRPM2 axis has pivotal effects in oxidative stress and
neuroinflammation in PD models (Ding et al., 2019).

LncRNA NEAT1 is also referred to PD progression.
Overexpression of NEAT1 was positively correlated with
the concentration of MPTP and promoted the stability of PINK1
protein (Yan et al., 2018). Mechanistically, NEAT1 positively
modulated PINK1 level through stabilizing PINK1 protein
and suppressing PINK1 protein degradation. The levels of
TNF-α, IL-6, and IL-1β, were up-regulated in MPP+-induced
PD models, implying that NEAT1 is closely correlated with
neuroinflammation (Yan et al., 2018). In addition, Liu and Lu
(2018) showed that NEAT1 could promote α-synuclein-related
apoptosis in PD.

In addition, many other lncRNAs play important roles PD
process. For example, myocardial infraction associated transcript
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TABLE 2 | Roles of lncRNAs in aging-related Parkinson’s disease.

Disease LncRNAs Expression Functions References

PD MALAT1 ↑ Promote α-synuclein proteostasis, neuroinflammation,
autophagy and neuroapoptosis.

Zhang et al., 2016; Liu et al., 2017; Chen et al.,
2018

HOTAIR ↑ Enhance LRRK2 level, induce neuronal injury, apoptosis,
autophagy.

Wang S. et al., 2017; Lin et al., 2019; Lang et al.,
2020; Zhao et al., 2020; Zhang et al., 2021

SNHG1 ↑ Promote neuronal damage, increase cell death, regulate
mTOR phosphorylation, promote neuroinflammation and
oxidative stress.

Cao et al., 2018; Qian et al., 2019; Wang et al.,
2021; Xiao et al., 2021

UCA1 ↑ Promote α-synuclein expression, induce neuronal damage,
oxidative stress and inflammation.

Lu M. et al., 2018; Cai et al., 2019

p21 ↑ Mediate α-synuclein, neuroinflammation, mitochondrial
dysfunction and oxidative stress.

Xu et al., 2018; Ding et al., 2019

NEAT1 ↑ Promote α-synuclein associated apoptosis, promote
neuroinflammation.

Liu and Lu, 2018; Yan et al., 2018

Mirt2 ↓ Block MAPK and NF-κB cascades. Han et al., 2019

H19 ↑ Mediate neuronal apoptosis. Zhang et al., 2020

MAPT-AS1 ↓ Regulate MAPT expression. Coupland et al., 2016

2 (Mirt2) exerts anti-inflammatory effects in many cell types,
while PD is often associated with excessive inflammation.
Therefore, Han et al. (2019) proved that miR-101 inhibited
by Mirt2 led to the blocking of MAPK and NF-κB cascades,
which might be important in the treatment of PD. Besides,
Zhang et al. (2020) demonstrated that lncRNA H19 mitigated
neuronal apoptosis by targeting miR-585-3p/phosphoinositide-
3-kinase regulatory subunit 3 (PIK3R3) in MPP+ treated
neuroblastoma cells and MPTP-induced PD mice. LncRNA
microtubule-associated protein tau antisense RNA 1 (MAPT-
AS1) locates on the antisense chain of the promoter region of
MAPT, which is believed to associated with disease state of PD
(Wang D. et al., 2019). It has been found that MAPT-AS1 is
an underlying epigenetic modulator of MAPT expression in PD
(Coupland et al., 2016).

Roles of lncRNAs in Huntington’s
Disease
Huntington’s disease is a neurodegeneration caused by a CAG
repeat in the gene encoding HTT protein (Jimenez-Sanchez
et al., 2017). Brain-derived neurotrophic factor (BDNF), a
neurotransmitter regulator, is involved in neuroplasticity and is
critical for its survival and growth (Sharma et al., 2021). It has
been found that BDNF expression reduces in HD (Humbert
and Saudou, 2005). Repressor element 1-silencing transcription
factor (REST) has the capacity to modulate the epigenome and
transcriptome (Buckley et al., 2010). HTT blocks REST-mediated
transcriptional inhibition through the cytoplasmic complex of
HTT-associated protein 1 (HAP1). Therefore, REST can assemble
the repressor complex in the nucleus in mHTT (Hwang and
Zukin, 2018). PRC2 catalyzes mono-, di-, and trimethylation
of H3K27, acting as a chromatin associated methyltransferase
(Laugesen et al., 2019). Notably, major targets of these genes
are p53 and REST, while some of which interact with the PRC2
complex. Emerging evidence indicates that some lncRNAs are
closely associated with the etiology of HD.

LncRNA human accelerated region 1 (HAR1), a direct target
of REST, is a region where the sequence has been obviously
changed. It is a constituent of two overlapping lncRNA loci,
including HAR1A and HAR1B (Waters et al., 2021). Johnson
et al. (2010) found HAR1 expression was significantly lower in
HD patients. Further mechanistic study revealed that HAR1 was
repressed by REST by specific DNA regulatory motifs, suggesting
that the roles of HAR1 in HD progression.

MEG3 is also known as gene trap locus 2 (Gtl2). LncRNA
MEG3 regulates a range of aging-related neurodegenerative
diseases. Inactivation of Meg3 results in a marked increase
in microvascular formation and angiogenesis-promoting gene
expressions in the brain (Zhou et al., 2012). MEG3 is another
target of REST and is associated with PRC2 complex (Johnson,
2012; Chang et al., 2017). Chanda et al. (2018) found that after
MEG3 knockout in HD cell models, mHTT aggregates were
markedly reduced and endogenous Tp53 levels were down-
regulated.

Taurine-upregulated gene 1 (TUG1) is actively involved in
numerous physiological processes, including modulating genes
at epigenetics, transcription, post-transcription, translation, and
post-translation (Guo et al., 2020). Studies have demonstrated
that lncRNA TUG1 is closely associated with PRC2 among HD-
related lncRNAs. Since the interaction of epigenetic regulatory
complex of PRC2, the altered expression of TUG1 is related
to diverse molecular pathways in HD brain. Khalil et al.
(2009) indicated that TUG1 regulated the cytotoxicity of
mHTT through p53.

LncRNA DiGeorge syndrome critical region gene 5 (DGCR5),
also known as linc00037, is a REST-regulated lncRNA in
neurodegeneration (Dong et al., 2018). The downregulation of
DGCR5 in HD brain implies that DGCR5 is closely associated
with transcriptional regulation in the progression of HD
(Johnson et al., 2009).

NEAT1 is essential for structural integrity of the nuclear
paraspeckle. A reanalysis of microarray data revealed an
improvement in HD patients compared to the control group
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(Hodges et al., 2006). Cheng et al. (2018) confirmed that
NEAT1_2 detected a threefold increase in the brains of HD
patients. Besides, it has been proved that NEAT1 is overexpressed
of in HD model brain of transgenic mice (Chanda et al., 2018).
Moreover, the roles of NEAT1 were also demonstrated in cell
models of HD (Sunwoo et al., 2017).

Roles of lncRNAs in Amyotrophic Lateral
Sclerosis
Amyotrophic lateral sclerosis primarily targets motor neurons,
leading to serious disability and ultimately death from respiratory
failure (Hardiman et al., 2017). RBPs mainly include fused in
sarcoma/translated in liposarcoma (FUS/TLS) and TAR DNA-
binding domain protein 43 (TDP43), which is involved in
regulating RNA metabolism (Tischbein et al., 2019). It has been
revealed that the abnormal aggregation of TDP43 and FUS/TLS
directly causes the misfolding of wild-type SOD1 (wtSOD1) in
ALS (Pokrishevsky et al., 2012). In FALS and SALS, the most
common candidate mutations are SOD1, FUS, and C9orf72
gene both (DeJesus-Hernandez et al., 2011; Ajroud-Driss and
Siddique, 2015). There is mounting evidence indicates that
lncRNAs exerts a vital role in ALS pathogenesis.

LncRNA NEAT1_2 has been shown to be associated with the
early course of ALS (Nishimoto et al., 2013). They also explored
that the interaction between NEAT1_2 and ALS-associated
RBPs, and found that FUS/TLS and TDP43 were enriched
in paraspeckles. Besides, Hutchinson et al. (2007) investigated
markedly raised frequency of paraplaque formation in the early
stage of ALS pathology, implying that NEAT1_2 could serve as
the scaffold of RBPs in the ALS motor nucleus.

Postmortem ALS tissues were examined by iCHIP, and NEAT1
was found to interact with FUS/TLS and TDP43, MALAT1 with
TDP43, and MEG3 with FUS (Tollervey et al., 2011; Lagier-
Tourenne et al., 2012). Moreover, Biscarini et al. (2018) found
that three of the identified conservative lncRNAs, including

lncMN-1, lncMN-2, and Lhx1os, were affected by FUS/TLS in
ALS mouse models.

CONCLUSION AND PERSPECTIVES

LncRNAs knowledge has changed dramatically over the past
decade and is likely to continue to in the future. It has been
demonstrated that lncRNAs own diverse molecular functions,
such as translation, post-translation, and epigenetic modification.
Massive evidence proves that lncRNAs are involved in aging-
related neurodegenerative diseases. As the aging population
continues to increase, aging-related neurodegenerative diseases
will become a heavy burden of society. Therefore, it is
essential to further understanding of mechanisms and roles of
lncRNAs in these diseases. However, there exists some challenges
regarding its clinical application. In addition, the functions
of lncRNAs at molecular or cellular levels remain elusive.
In-depth understanding of the mechanisms and networks of
lncRNAs from different perspectives will provide new insights
into the prevention, diagnosis and treatment of aging-related
neurodegenerative diseases.
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