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A B S T R A C T

Background: Underlying neural factors contribute to poor outcomes following anterior cruciate ligament re-
construction (ACLR). Neurophysiological adaptations have been identified in corticospinal tract excitability,
however limited evidence exists on neurostructural changes that may influence motor recovery in ACLR patients.
Objective: To 1) quantify hemispheric differences in structural properties of the corticospinal tract in patients
with a history of ACLR, and 2) assess the relationship between excitability and corticospinal tract structure.
Methods: Ten participants with ACLR (age: 22.6 ± 1.9 yrs; height: 166.3 ± 7.5 cm; mass: 65.4 ± 12.6 kg,
months from surgery: 70.0 ± 23.6) volunteered for this cross-sectional study. Corticospinal tract structure
(volume; fractional anisotropy [FA]; axial diffusivity [AD]; radial diffusivity [RD]; mean diffusivity [MD]) was
assessed using diffusion tensor imaging, and excitability was assessed using transcranial magnetic stimulation
(motor evoked potentials normalized to maximal muscle response [MEP]) for each hemisphere. Hemispheric
differences were evaluated using paired samples t-tests. Correlational analyses were conducted on structural and
excitability outcomes.
Results: The hemisphere of the ACLR injured limb (i.e. hemisphere contralateral to the ACLR injured limb)
demonstrated lower volume, lower FA, higher MD, and smaller MEPs compared to the hemisphere of the non-
injured limb, indicating disrupted white matter structure and a reduction in excitability of the corticospinal
tract. Greater corticospinal tract excitability was associated with larger corticospinal tract volume.
Conclusions: ACLR patients demonstrated asymmetry in structural properties of the corticospinal tract that may
influence the recovery of motor function following surgical reconstruction. More research is warranted to es-
tablish the influence of neurostructural measures on patient outcomes and response to treatment in ACLR po-
pulations.

1. Introduction

Musculoskeletal injuries, such as those to the anterior cruciate li-
gament (ACL), are often treated as injuries with solely musculoskeletal
consequences. For instance, rupture of the ACL destabilizes the knee,
creating joint laxity and functional instability. These impairments are
frequently treated via surgical ACL reconstruction (ACLR) to restore
static stability, and therapeutic rehabilitation to increase strength of the
musculature surrounding the knee (Ingersoll et al., 2008). Despite these
invasive and timely interventions, deficits in clinically meaningful

measures such as quadriceps strength and patient-reported function, as
well as altered mechanical loading at the knee joint, persist for years
following surgery. These less than optimal outcomes have reinforced
the need for researchers to study and identify the underlying physio-
logic mechanisms that contribute to impairments after ACLR
(Ageberg, 2002).

Beyond well-appreciated musculoskeletal consequences, recent
evidence has established that systemic neurological alterations also
occur following ACLR (Needle et al., 2017). Specifically, alterations in
afferent and reflexive neural excitability have been observed acutely
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following injury, due to the loss or overactivity of the mechan-
oreceptors, effusion, and pain originating from the joint (Lepley et al.,
2015) In the later stages of injury recovery, abnormal activation and
excitability of the descending corticospinal pathways has also been
observed (Lepley et al., 2015; Grooms et al., 2017; Kapreli et al., 2009).
These systemic changes in peripheral and central nervous system
function can render traditional therapeutic approaches ineffective for
patients with these impairments, potentially perpetuating poor clinical
outcomes (Ingersoll et al., 2008; Needle et al., 2017; Ward et al., 2015).

The corticospinal tract is essential for motor performance. Hence,
understanding if unexplored abnormalities are present in this key white
matter pathway is critical for elucidating the barriers to neuromuscular
recovery following ACLR. In other neurologically impaired patient
populations, such as those with multiple sclerosis (MS) or stroke,
structural changes in the corticospinal tract evaluated via diffusion
tensor imaging (DTI) are evident (Moller et al., 2007) and linked to the
recovery of corticospinal excitability and motor function
(Jayaram et al., 2012). Additionally, structural white matter changes in
anisotropy and diffusivity outcomes have been identified in patients
with low back pain (Pijnenburg et al., 2014) and ankle instability
(Terada et al., 2019), establishing a connection between musculoske-
letal injury and neurostructural reorganization. While ACL injury is not
a direct insult to the central nervous system, the disrupted afferent
input from the lost ligament mechanoreceptors (Kennedy et al., 1982;
Valeriani et al., 1999) and associated motor compensations
(Paterno et al., 2007) result in altered motor cortex (Grooms et al.,
2017) and corticospinal activity and excitability (Lepley et al., 2015;
Lepley et al., 2019). These functional changes observed following in-
jury, if not addressed in therapy, may result in neurostructural changes
that further impede optimal voluntary motor control and potentially
contribute to chronic dysfunction (Mansour et al., 2013).

Improved understanding of the systemic consequences of peripheral
musculoskeletal injuries, including underlying neurostructural adap-
tions, can aid clinician-scientists in identifying the origins of chronic
impairments. This information can profoundly influence the develop-
ment of more accurate prognostics and more effective rehabilitation
interventions to improve motor function, such as motor skill learning
and feedback/cognitive training, which have been shown to induce
beneficial structural changes in white matter pathways
(Hofstetter et al., 2013; Nadkarni et al., 2015; Sampaio-Baptista et al.,
2013). Therefore, the purpose of this investigation was to 1) quantify
hemispheric differences in structural properties of the corticospinal
tract in patients with a history of ACLR, and 2) to assess the relationship
between excitability and structure of the corticospinal tract.

2. Materials and methods

Participants were recruited from the Department of Orthopaedic
Surgery and University population who were between the ages of 16–35
and had a history of primary, unilateral ACLR. Participants were ex-
cluded if they had a history of previous orthopedic surgery (other than
ACLR), ligamentous knee injury, or sustained any lower extremity
musculoskeletal injury in the last six months. Further exclusion criteria
included history of a concussion or head injury in the past 6 months,
previous loss of consciousness associated with a concussion, history of a
stroke, cranial neurosurgery, migraines, cancer in the brain, a diag-
nosed neurological or psychiatric disorder, currently taking medica-
tions that alter neural activity, or imbedded intracranial metallic clips.
Written, informed consent was provided prior to testing, and all pro-
cedures were approved by the University's Institutional Review Board.
Participants reported to the laboratory for a single testing session in
which measures of corticospinal tract structure and then excitability
were assessed.

2.1. Corticospinal tract structure

All participants completed a magnetic resonance imaging (MRI)
session comprised of anatomical and DTI sequences. DTI outcomes are
considered to be sensitive markers of neuropathology, providing in-
formation on the microstructural architecture of white matter
(Alexander et al., 2007). Lower anisotropy (fractional anisotropy [FA]),
and higher diffusivity (axial diffusivity [AD]; radial diffusivity [RD];
mean diffusivity [MD]) values indicate increased water diffusion and
loss of coherence of diffusion along the white matter tract
(Alexander et al., 2007; Soares et al., 2013), which is interpreted as
deleterious changes in white matter microstructure due to pathology,
aging, disuse, or prolonged changes in neural activity or excitability
(Pijnenburg et al., 2014; Mansour et al., 2013; Berghuis et al., 2019;
Fujiyama et al., 2016).

MRI was performed in a 3-Tesla Siemens Prisma scanner using a 20-
channel phase array receiver-only head coil (Siemens, Erlangen,
Germany). DTI data were acquired using echo-planar imaging (EPI)
sequences with opposite phase encoding directions (A-P, P-A) con-
sisting of transaxial images collected in 32 gradient directions at a b-
value of 1000s/mm2 with four b= 0 weighted images (TR = 5000 ms,
TE = 69 ms, 40 contiguous slices, 2 × 2 × 3-mm voxel,
FOV = 256 mm). Structural scans acquired included sagittal 3-D
MPRAGE sequence (TR = 2300 ms, TE = 2.26 ms, 176 contiguous
slices, 1 × 1 × 1-mm voxel, FOV = 220 mm, flip angle = 7°).

Anatomical scans were aligned to AC-PC, then reconstructed using
FreeSurfer software suite (version 6.0) (Dale et al., 1999). Morpho-
metric properties of the brain (e.g. cortical thickness, regional volumes)
were obtained through FreeSurfer's segmentation of white matter, gray
matter, and cerebrospinal fluid. DTI data were pre-processed using
TORTOISE (version 3.1.1) software package for motion, eddy current,
and EPI distortion corrections (Irfanoglu et al., 2015; Pierpaoli et al.,
2010; Irfanoglu et al., 2018). Bilateral corticospinal tracts were re-
constructed (Fig. 1) using TRACULA (in Freesurfer version 6.0), an
automated method that reconstructs probabilistic distributions of major
white-matter pathways using each individual's native diffusion images
(Yendiki et al., 2011). TRACULA yielded diffusivity measures for each
hemisphere's respective corticospinal tract, including FA, AD, RD, and
MD). The hemisphere of the ACLR injured limb was defined as the
hemisphere contralateral to the ACLR knee.

2.2. Corticospinal tract excitability

Corticospinal excitability was assessed via motor evoked potentials
(MEP) elicited during transcranial magnetic stimulation (TMS). MEPs
represent the magnitude of excitability that is able to be transmitted
through the descending corticospinal tract and alpha motor neuron
(Groppa et al., 2012). Lower MEP amplitudes indicate less information
is transmitted through the corticospinal tract, and ultimately will result
in decreased motor output to the muscle (Needle et al., 2017).

Following standard electromyography preparation, two 10 mm, pre-
gelled Ag–AgCl (EL503, BIOPAC Systems Inc., Goleta, CA, USA) disk-

Fig. 1. 3D structural reconstruction of the right (red) and left (blue) corti-
cospinal tracts from a selected participant (coronal view).

A.S. Lepley, et al. NeuroImage: Clinical 25 (2020) 102157

2



shaped surface EMG electrodes, with an inter-electrode difference of
1.75 cm, were positioned over the distal vastus medialis muscle belly
(Lepley et al., 2015). During testing, participants were seated in the
testing chair (MagVenture Treatment Chair, 9016B008 MagVenture
Inc., Atlanta, GA) with their knees and hips at 90° of flexion. A lycra
swim cap, with a 0.5 cm grid, was placed on the participant's head to
allow for identification of the motor cortex location and origin of cor-
ticospinal neurons (Lepley et al., 2015; Norte et al., 2010). A double
cone angled TMS coil (D-B80, MagVenture Inc., Atlanta, GA) was po-
sitioned over the intersected grid lines and moved in increments of
0.5 cm in anterior-to posterior and medial-to-lateral directions until the
optimal stimulating point was detected, which was defined as the lo-
cation producing the greatest MEP amplitude in the vastus medialis
(Fig. 2) (Livingston and Ingersoll, 2008). Once the optimal stimulating
point was located, the coil was secured over that spot using a flexible
mount (Super Flex Arm, MagVenture Inc.). Active motor thresholds
(AMT) were then identified by detecting the lowest TMS intensity re-
quired to evoke a measurable (>100 μV) MEP in five out of 10 trials
(Lepley et al., 2015; Pietrosimone et al., 2015). Once AMT was estab-
lished, five MEPs were elicited at 120% of AMT. The five peak-to-peak
MEP amplitude values were averaged and normalized to the average of
three maximal muscle responses that were elicited at rest immediately
following TMS testing using peripheral electrical nerve stimulation
(Kapreli et al., 2009). During testing, participants generated an iso-
metric knee extension contraction of 10% of their maximal muscle force
production, which was objectively assessed and monitored by the in-
vestigator via a belt stabilized handheld dynamometer with verbal
feedback provided to the participant during contraction (micro FET;
Hoggann Scientific LLC, West Jordan UT) (Lepley et al., 2019).

2.3. Statistical analysis

Differences in corticospinal tract structural and excitability out-
comes between the hemispheres of the ACLR injured and non-injured
limbs were assessed using paired samples t-tests and Cohen's d effect
sizes were also calculated (Cohen, 1977). Separate Pearson Product
Moment correlations were conducted to investigate the relationship
between outcomes of corticospinal tract structure (volume, FA, AD, RD,
MD) and excitability (MEP) of the ACLR injured limb. Correlation
coefficients (r) were classified as weak (0–0.4), moderate (0.4–0.7), or
strong (0.7–1.0) (Cohen, 1977). All alpha levels were set a-priori at
p ≤ 0.05 and all statistical analyses were performed using SPSS soft-
ware version 26.0 (IBM, Armonk, NY, USA).

3. Results

A total of ten participants with a history of ACLR were included in
this study. Demographic variables are reported in Table 1.

Means and standard deviations of structural and excitability mea-
sures of the corticospinal tract are displayed in Table 2. The hemisphere
of the ACLR injured limb demonstrated lower volume, lower FA, and
higher MD compared to the hemisphere of the non-injured limb
(p < 0.05), indicating altered white matter structure with increased
general diffusion and loss of coherence on diffusion along the corti-
cospinal tract direction (Soares et al., 2013). These differences also
demonstrated strong effect sizes (Table 2). No differences were detected
for AD or RD measures (p> 0.05). Additionally, MEPs were smaller for
the hemisphere of the ACLR injured limb, signifying a reduction in
excitability through the corticospinal tract to the quadriceps muscle
(p < 0.05) (Groppa et al., 2012).

Correlation analyses (Table 3) revealed a strong, positive correla-
tion between corticospinal tract volume and MEP of the ACLR injured
limb, indicating that smaller corticospinal tract volume is related to
lower corticospinal excitability. No other significant correlations were
identified.

4. Discussion

This investigation sought to assess hemispheric differences in
structural properties of the corticospinal tract in patients with a history
of ACLR, while also establishing the relationship between structure and
excitability of the corticospinal tract. Our results demonstrate that the
hemisphere of the ACLR limb displayed smaller corticospinal tract vo-
lume, lower FA, and higher MD values relative to the hemisphere of the
non-injured limb. Smaller corticospinal tract volume was also strongly
correlated with lesser excitability. These findings suggest that ACLR
patients demonstrate asymmetry in structural properties of the corti-
cospinal tract that may influence the recovery of motor function fol-
lowing injury and surgical reconstruction.

Neurological impairments after musculoskeletal injury are com-
monly evaluated in the literature by changes in the excitability of the
corticospinal tract via TMS (Needle et al., 2017). However, a major
limitation in this methodology is that it is unable to identify the un-
derlying factors responsible for the reduction in corticospinal drive.
Excitability of the corticospinal tract (i.e. the ability of the corticospinal
tract to transmit descending motor signals) is undoubtedly influenced
by the structural architecture of the white matter axons that are
transmitting that signal (Groppa et al., 2012), which was corroborated
by the significant relationship between excitability and volume in the
current study (Table 3). Evaluating corticospinal excitability in com-
bination with non-invasive DTI allows for the evaluation of the struc-
tural make-up of white matter neural tracts and its influence on corti-
cospinal drive to the muscle. This combined methodology represents a
promising technique to help elucidate the underlying neurophysiolo-
gical and neuroanatomical mechanisms that impede voluntary motor
control in these patients, as well as identify patients that are experi-
encing CNS dysfunction during recovery.

Fig. 2. Set-up for corticospinal excitability testing and screen shot of motor
evoked potential elicited via transcranial magnetic stimulation.

Table 1
Demographic variables.

N 10 (6 female/4 male)

Age (yrs) 22.6 ± 1.9
Height (cm) 166.3 ± 7.5
Mass (kg) 65.4 ± 12.6
Months from surgery 70.0 ± 23.6
IKDC 84.9 ± 9.9
Tegner Activity level 7.2 ± 1.4

Abbreviations: IKDC, International Knee Documentation Committee
Self-Reported Questionnaire.
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There is limited cadaveric evidence that the corticospinal tract of
the left hemisphere is larger than that of the right (Rademacher et al.,
2001). However, the balance of in vivo data suggests that healthy in-
dividuals display symmetrical anatomical and structural properties of
the corticospinal tract, even when accounting for handedness or later-
ality (Reich et al., 2006; White et al., 1997; Lee et al., 2016;
Dalamagkas et al., 2019; Seizeur et al., 2014). Therefore, assessment of
white matter asymmetries is often of clinical value, commonly used as a
marker of traditional neurological disease (Reich et al., 2006). The
participants with ACLR in the current study demonstrated reduced
corticospinal tract volume of the hemisphere of the ACLR injured limb
compared to the non-injured side, indicating potential atrophy of the
corticospinal tract serving the injured limb. This volumetric asymmetry
likely developed over time due to reductions in afferent signaling, re-
duced motor output, and motor inhibition that is present in these pa-
tients (Lepley et al., 2019; Luc-Harkey et al., 2017). Theoretical models
have suggested that the human body will limit activation of, or even
specifically inhibit, motor tracts to prevent unwanted movement of an
injured joint (Ingersoll et al., 2008; Needle et al., 2017; Ward et al.,
2015; Pietrosimone et al., 2012). This is hypothesized to be a protective
mechanism to avoid painful and unnecessary limb movement. It is
plausible that these neurostructural changes occur as an adaptation to
the reduced signaling coming from the motor cortex, which helps to
explain the strong correlation detected between corticospinal tract
structure and excitability in this data set (Table 3). Unfortunately, due
to the cross-sectional nature of this study, we are unable to determine
cause and effect, or when these changes occur during the recovery
process. It is important to note that the participants in the current study
were on average 70.0 ± 23.6 months post-surgery (range: 66.6 – 96.5
months), which is nearly six years removed from surgery. In agreement
with the excitability literature, corticospinal deficits appear to be pro-
gressive over time (Needle et al., 2017; Lepley et al., 2015), with larger
deficits the further a patient is removed from the injury. This may help
to explain our findings, that almost six years of reduced signaling from
the motor cortex post-ACLR would allow for negative structural adap-
tations in the corticospinal tract. However, larger scale longitudinal

investigations are needed to confirm this finding.
The interpretation of DTI outcomes can be complex (Jones et al.,

2013). DTI measurements assess water diffusion through a tissue, which
is highly sensitive to differences in the microstructural architecture of
cellular membranes. The sensitivity of these outcomes creates an ef-
fective method for detecting microscopic tissue properties, but results
must be interpreted carefully. For instance, FA is a highly sensitive
outcome for assessing overall structural changes in axonal tissue, but is
a relatively non-specific biomarker of neuropathology, whereas MD is
specific to the degree of organization and myelination in the neural
tracts (Alexander et al., 2007; Soares et al., 2013). One strength of the
current study is the reporting of multiple DTI outcomes, including FA,
AD, RD and MD, which help to better characterize the collective mi-
crostructural differences of the tissue. In the current study, we detected
smaller FA in the hemisphere of the injured limb of patients with ACLR
(Table 2). This corroborates recent work by Terada et al. (2019) who
also discovered structural white matter differences in patients following
peripheral musculoskeletal injury, with smaller FA values of the su-
perior cerebellar peduncle in patients with a history of ankle sprains
compared to controls. Another study by Lewis et al. (2018) reported
reduced FA of the midbrain and corpus callosum in patients with knee
osteoarthritis compared to controls. Similarly, others have also ob-
served reduced FA values in a wide range of pathologies that negatively
impair the nervous system and motor function, including ischemic
stroke and demyelination (Reich et al., 2006). Interestingly,
Stinear et al. (2007) demonstrated that corticospinal tract structure and
FA values were related to motor recovery following stroke, as FA values
predicted the potential for clinical improvement in MEPs and clinical
functional scores (Fugl-Meyer upper limb score). In a similar manner,
future work should explore the potential for neurostructural properties
to predict intervention response in those with musculoskeletal trauma.

In addition to FA abnormalities, we also detected higher MD values
in the hemisphere of the injured limb in patients with ACLR (Table 2),
which indicates potential differences in myelination of corticospinal
axons (Soares et al., 2013; Swaiman's pediatric neurology, 2018).
Higher MD has also been detected in a variety of motor diseases, in-
cluding chronic stroke patients, MS, neurodegenerative diseases, and
inflammation and edema (Reich et al., 2006). Notably, in MS patients,
MD of the corticospinal tract has been correlated with disability scores
(pyramidal function system score) that are related to motor function
(Lin et al., 2005), and others have found a significant relationship be-
tween corticospinal tract structure and hip and ankle strength in MS
patients (Reich et al., 2008). Although stroke and other neurological
disorders present a direct insult to the brain, and ACL injuries influence
neuroplasticity through disruption of afferent feedback and motor
compensations\disuse, these collective studies indicate that motor im-
pairments are connected to changes observed in corticospinal white
matter. Though function was not explicitly assessed in our cohort, there
is a documented link between corticospinal excitability and restoration
of clinical function (quadriceps muscle strength, self-reported

Table 2
Means and standard deviations for structural and excitability measures.

Hemisphere of ACLR injured limb Hemisphere of non-injured limb T p ES (95% CI)

CST structure
Volume (voxels - 2 mm) 567.1 ± 75.3 659.7 ± 64.3 −3.64 0.005* −1.27 (−2.23; −0.31)
FA 0.49 ± 0.01 0.53 ± 0.02 −2.72 0.02* −2.42 (−3.58; −1.27)
AD 1.17×10−3 ± 0.37×10−3 1.17×10−3 ± 0.02×10−3 1.01 0.34 0.00 (−0.88; 0.88)
RD 4.97×10−4 ± 0.16×10−4 5.00×10−4 ± 0.15×10−4 −0.74 0.47 −0.19 (−1.06; 0.69)
MD 7.58×10−4 ± 0.35×10−4 7.23×10−4 ± 0.10×10−4 3.14 0.01* 1.30 (0.34; 2.27)

CST excitability
MEP 0.013 ± 0.007 0.028 ± 0.010 −2.26 0.04* −1.66 (−2.68; −0.65)

Abbreviations: CST, corticospinal tract; FA, fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; MD, mean diffusivity; MEP, motor evoked potential; ES,
effect size; CI, confidence interval.

⁎ Significant difference between hemispheres (p < 0.05).

Table 3
Results of correlation analyses for the ACLR injured limb.

MEP

Volume r = 0.890; p = 0.001*
FA r = −0.08, p = 0.81
AD r = 0.09, p = 0.79
RD r = 0.13, p = 0.72
MD r = 0.11, p = 0.75

Abbreviations: FA, fractional anisotropy; AD, axial diffu-
sivity; RD, radial diffusivity; MD, mean diffusivity; MEP,
motor evoked potential.

⁎ Significant correlation between volume and MEP at
p = 0.001.
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outcomes) in patients with ACLR (Pietrosimone et al., 2013;
Lepley et al., 2014; Norte et al., 2018). The published data from other
neurologically impaired populations help to establish a relationship
between clinical outcomes and DTI derived values of corticospinal tract
structure in pathological populations, work that will need to be con-
tinued and verified in ACLR cohorts.

Identifying these systemic changes in nervous system function can
help clinicians understand the complex effects that these injuries have
on both the neurological and musculoskeletal systems. Importantly, this
new information can help researchers and clinicians to identify the
origins of clinical impairments for the purpose of developing novel
evidence-based therapeutic approaches to improve motor function. DTI
assessments represent a strong technique to identify indicators of dis-
ease and monitor the effectiveness of treatments in neuropathologies
(Alexander et al., 2007). Therefore, more research is warranted to es-
tablish the effectiveness of these techniques to predict recovery of
function and response to treatment in ACLR and other musculoskeletal
patients. More specifically, future research should focus on the extent to
which these neuroanatomical and neurophysiological alterations con-
tribute to functional outcomes, including sensorimotor function and
balance, muscle strength, lower extremity biomechanics, and self-re-
ported function. To that end, previous work has shown that neuro-
structural outcomes can be improved through specific types of inter-
ventions. Rather than traditional strength or endurance training, motor
skill learning, feedback/cognitive training, and coordination interven-
tions have all shown to induce beneficial structural changes in task-
relevant white matter pathways (Hofstetter et al., 2013; Nadkarni et al.,
2015; Sampaio-Baptista et al., 2013). Future work in ACLR populations
can help establish the effectiveness of these interventions on improving
clinical, neurophysiological, and neurostructural outcomes.

4.1. Limitations

Although this study detected differences in corticospinal tract
structure and excitability in a cohort of participants with ACLR, the
cross-sectional nature of this study makes it difficult to determine how
these adaptations occur overtime throughout the injury and recovery
processes. Future longitudinal, prospective investigations are warranted
to understand the evolution of neural changes in this population and
how they ultimately influence clinical outcomes. Our results were also
discovered in a general population of participants with ACLR, which
included mixed sexes, graft types, concomitant meniscal injury, and
varying times from surgery. Future studies should control for these
confounding variables to understand the effect of specific injury char-
acteristics on neural consequences of ACL injury.

Lastly, this study did not include a matched healthy control group;
therefore, we are unable to determine what effect ACL injury had on the
neural function and structure of the non-injured limb. There is evidence
(Lepley et al., 2015; Pietrosimone et al., 2015) of bilateral neural def-
icits following ACL injury, in which the non-injured limb demonstrates
alterations in corticospinal excitability, and clinical deficits in muscle
strength compared to healthy control groups. It is likely that bilateral
decreases in corticospinal excitability could initiate bilateral changes in
corticospinal tract structure, or help to identify differences in me-
chanisms contributing to corticospinal excitability deficits between
limbs, such as intracortical inhibition (Luc-Harkey et al., 2017). Future
work should look to incorporate an appropriately matched healthy
control group, or utilize longitudinal study designs as mentioned above,
to help better understand the negative consequences joint injury has on
non-injured limb function.

5. Conclusions/Implications

Participants with a history of ACLR displayed smaller corticospinal
tract volume, lower FA, and higher MD values in the hemisphere of
their ACLR limb compared to their contralateral side. Smaller

corticospinal tract volume was also strongly correlated with lesser ex-
citability. These findings suggest that ACLR patients demonstrate
asymmetry in structural properties of the corticospinal tract that may
influence the recovery of motor function following surgical re-
construction.
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