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Abstract Collective migration—the directed, coordinated motion of many self-propelled 
agents—is a fascinating emergent behavior exhibited by active matter with functional implications 
for biological systems. However, how migration can persist when a population is confronted with 
perturbations is poorly understood. Here, we address this gap in knowledge through studies of 
bacteria that migrate via directed motion, or chemotaxis, in response to a self-generated nutrient 
gradient. We find that bacterial populations autonomously smooth out large-scale perturbations 
in their overall morphology, enabling the cells to continue to migrate together. This smoothing 
process arises from spatial variations in the ability of cells to sense and respond to the local nutrient 
gradient—revealing a population-scale consequence of the manner in which individual cells trans-
duce external signals. Altogether, our work provides insights to predict, and potentially control, 
the collective migration and morphology of cellular populations and diverse other forms of active 
matter.

Editor's evaluation
The work provides new insights into the dual role of chemotactic sensing in both generating and 
controlling bacterial wave front patterns. Novel and elegant experimental techniques supported 
by computations using phenomenological models validate the hypothesis that chemotactic 
sensing smooths morphological variations; however, experiments suggest a richer picture than that 
predicted by the theory.

Introduction
The flocking of birds, schooling of fish, herding of animals, and procession of human crowds are all 
familiar examples of collective migration. This phenomenon also manifests at smaller scales, such as 
in populations of cells and dispersions of synthetic self-propelled particles. In addition to being a 
fascinating example of emergent behavior, collective migration can be critically important—enabling 
populations to follow cues that would be undetectable to isolated individuals (Camley, 2018), escape 
from harmful conditions and colonize new terrain (Cremer et al., 2019), and coexist (Gude et al., 
2020). Thus, diverse studies have sought to understand the mechanisms by which collective migration 
can arise.

Less well understood, however, is how collective migration persists after a population is confronted 
with perturbations. These can be external, stemming from heterogeneities in the environment (Sándor 
et al., 2017; Morin et al., 2016; Wong et al., 2014; Chepizhko and Peruani, 2013; Chepizhko et al., 
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2013; Chepizhko and Peruani, 2015; Toner et al., 2018; Maitra, 2020), or internal, stemming from 
differences in the behavior of individuals (Yllanes et al., 2017; Bera and Sood, 2020; Alirezaeizan-
jani et al., 2020). Mechanisms by which such perturbations can disrupt collective migration are well 
documented. Indeed, in some cases, perturbations can abolish coordinated motion throughout the 
population entirely (Sándor et al., 2017; Morin et al., 2016; Yllanes et al., 2017; Bera and Sood, 
2020; Chepizhko and Peruani, 2013; Chepizhko et al., 2013; Chepizhko and Peruani, 2015; Toner 
et al., 2018). In other cases, perturbations couple to the active motion of the population to destabilize 
its leading edge, producing large-scale disruptions to its morphology (Wong et al., 2014; Alert and 
Trepat, 2020; Alert et al., 2019; Driscoll et al., 2016; Doostmohammadi et al., 2016; Williamson 
and Salbreux, 2018; Miles et al., 2019). Indeed, for one of the simplest cases of collective migra-
tion—via chemotaxis, the biased motion of cells up a chemical gradient—morphological instabilities 
can occur due to the disruptive influence of hydrodynamic (Subramanian et al., 2011; Lushi et al., 
2012; Lushi et  al., 2018) or chemical-mediated (Ben Amar and Bianca, 2016; Ben Amar, 2016; 
Funaki et al., 2006; Brenner et al., 1998; Mimura and Tsujikawa, 1996; Stark, 2018) interactions 
between cells. By contrast, mechanisms by which migrating populations can withstand perturbations 
have scarcely been examined.

Here, we demonstrate a mechanism by which collectively migrating populations of Escherichia coli 
autonomously smooth out large-scale perturbations in their overall morphology. We show that chemo-
taxis in response to a self-generated nutrient gradient provides both the driving force for collective 
migration and the primary smoothing mechanism for these bacterial populations. Using experiments 
on 3D-printed populations with defined morphologies, we characterize the dependence of this active 
smoothing on the wavelength of the perturbation and on the ability of cells to migrate. Furthermore, 
using continuum simulations, we show that the limited ability of cells to sense and respond to a 
nutrient gradient causes them to migrate at different velocities at different positions along a front—
ultimately driving smoothing of the overall population and enabling continued collective migration. 
Our work thus reveals how cellular signal transduction enables a population to withstand large-scale 
perturbations and provides a framework to predict and control chemotactic smoothing for active 
matter in general.

eLife digest Flocks of birds, schools of fish and herds of animals are all good examples of collec-
tive migration, where individuals co-ordinate their behavior to improve survival. This process also 
happens on a cellular level; for example, when bacteria consume a nutrient in their surroundings, 
they will collectively move to an area with a higher concentration of food via a process known as 
chemotaxis.

Several studies have examined how disturbing collective migration can cause populations to fall 
apart. However, little is known about how groups withstand these interferences. To investigate, Bhat-
tacharjee, Amchin, Alert et al. studied bacteria called Escherichia coli as they moved through a gel 
towards nutrients.

The E. coli were injected into the gel using a three-dimensional printer, which deposited the 
bacteria into a wiggly shape that forces the cells apart, making it harder for them to move as a collec-
tive group. However, as the bacteria migrated through the gel, they smoothed out the line and grad-
ually made it straighter so they could continue to travel together over longer distances.

Computer simulations revealed that this smoothing process is achieved by differences in how the 
cells respond to local nutrient levels based on their position. Bacteria towards the front of the group 
are exposed to more nutrients, causing them to become oversaturated and respond less effectively to 
the nutrient gradient. As a result, they move more slowly, allowing the cells behind them to eventually 
catch-up.

These findings reveal a general mechanism in which limitations in how individuals sense and 
respond to an external signal (in this case local nutrient concentrations) allows them to continue 
migrating together. This mechanism may apply to other systems that migrate via chemotaxis, as well 
as groups whose movement is directed by different external factors, such as temperature and light 
intensity.

https://doi.org/10.7554/eLife.71226
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Results
Chemotactic smoothing is regulated by perturbation wavelength and 
cellular motility
To experimentally investigate the collective migration of E. coli populations, we confine them within 
porous media of tunable properties (Bhattacharjee and Datta, 2019a; Bhattacharjee and Datta, 
2019b; Bhattacharjee et al., 2021), as schematized in Figure 1A and B and detailed in Materials 
and methods. The media are composed of hydrogel particles that are swollen in a defined rich liquid 
medium with L-serine as the primary nutrient and chemoattractant. We enclose the particles at 
prescribed jammed packing fractions in transparent chambers. Because the hydrogel is highly swollen, 
it is freely permeable to oxygen and nutrient. However, while the particles do not hinder exposure of 
bacteria to these chemical signals, the cells cannot penetrate the individual particles and are instead 
forced to swim through the interparticle pores (Figure 1B). Varying the hydrogel particle packing 
density thus enables us to tune pore size and thereby modulate cellular migration without altering the 
nutrient field (Bhattacharjee and Datta, 2019a; Bhattacharjee and Datta, 2019b; Bhattacharjee 
et al., 2021). Specifically, we vary the mean pore size ‍ξ‍ between 1.2 µm and 2.2 µm, causing cellular 
migration through the pore space to be more and less hindered, respectively, without deforming the 
solid matrix (Bhattacharjee and Datta, 2019a). Moreover, the packings are transparent, enabling the 
morphologies of the migrating populations to be tracked in the ‍xy‍ plane using confocal fluorescence 
microscopy (Figure 1A); to this end, we use cells that constitutively express green fluorescent protein 
throughout their cytoplasm.

A key feature of the hydrogel packings is that they are yield-stress solids; thus, an injection 
micronozzle can move along a prescribed path inside each medium by locally rearranging the parti-
cles, gently extruding densely packed cells into the interstitial space (Figure 1A and B). The particles 
then rapidly re-densify around the newly introduced cells, re-forming a jammed solid matrix that 
supports the cells in place with minimal alteration to the overall pore structure (Bhattacharjee et al., 
2015; Bhattacharjee et al., 2016; Bhattacharjee et al., 2018). This approach is therefore a form of 
3D printing that enables the initial morphology of each bacterial population to be defined within the 
porous medium. The cells subsequently swim through the pores between particles, migrating outward 
through the pore space. For example, as we showed previously (Bhattacharjee et al., 2021), cells of 
E. coli initially 3D-printed in densely packed straight cylinders collectively migrate radially outward in 
smooth (‘flat’), coherent fronts. These fronts form and propagate via chemotaxis: the cells continually 
consume surrounding nutrient, generating a local gradient that they in turn bias their motion along 
(Adler, 1966; Cremer et al., 2019; Fu et al., 2018; Saragosti et al., 2011; Bai et al., 2021). As each 
front of cells migrates, it propagates the local nutrient gradient with it through continued consump-
tion, thereby sustaining collective migration. In the absence of nutrient, migrating fronts do not form 
at all (Bhattacharjee et al., 2021).

To test how perturbations in the overall morphology of the population influence its subsequent 
migration, we 3D-print densely packed E. coli in 1-cm-long cylinders with spatially periodic undula-
tions as perturbations prescribed along the ‍x‍ direction (Figure 1B). Each population is embedded 
deep within a defined porous medium; an initial population morphology is schematized at time ‍t = 0‍ 
in Figure 1B, with the undulation wavelength and amplitude denoted by ‍λ‍ and ‍A‍, respectively. An 
experimental realization with ‍A(t = 0) ≈ 300‍ µm, ‍λ ≈ 0.8‍ mm, and ‍ξ = 1.7‍ µm is shown in white in 
Figure 1C, which shows an ‍xy‍ cross section through the midplane of the population. After 3D printing, 
the outer periphery of the population spreads slowly, hindered by cell-cell collisions in the pore space, 
as the population establishes a steep gradient of nutrient through consumption (Bhattacharjee et al., 
2021). Then, this periphery spontaneously organizes into an ∼300 μm-wide front of cells that collec-
tively migrates outward (yellow in Figure 1C). The undulated morphology of this front initially retains 
that of the initial population. Strikingly, however, the front autonomously smooths out these large-
scale undulations as it continues to propagate (Video 1). We characterize this behavior by tracking the 
decay of the undulation amplitude, normalized by its initial value ‍A0 ≡ A(∆t = 0)‍, as a function of time 
elapsed from the initiation of smoothing, ‍∆t‍ (green circles in Figure 1F). The normalized amplitude 
decays exponentially (red line in Figure 1F), with a characteristic time scale ‍τ ≈ 2.5‍ hr, and the popu-
lation eventually continues to migrate as a completely flat front (cyan in Figure 1C).

We observe similar behavior when the wavelength ‍λ‍ is increased to 3.4 mm (Figure 1D, Video 2) 
or when the pore size ‍ξ‍ is increased to 2.2 μm (Figure  1E, Video  3); however, the dynamics of 

https://doi.org/10.7554/eLife.71226
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Figure 1. Experiments reveal that migrating E. coli populations autonomously smooth large-scale morphological perturbations. (A) Schematic of an 
undulated population (green cylinder) 3D-printed within a porous medium made of jammed hydrogel particles (gray). Each undulated cylinder requires 
∼10 s to print, two orders of magnitude shorter than the duration between successive 3D confocal image stacks, ∼10 min. The surrounding medium 
fluidizes as cells are injected into the pore space, and then rapidly re-jams around the dense-packed cells. (B) Two-dimensional ‍xy‍ slice through the 
midplane of the population. The starting morphology of the 3D-printed population has undulation wavelength ‍λ‍ and amplitude ‍A0‍, as defined by the 
undulated path traced out by the injection nozzle. The cells subsequently swim through the pores between hydrogel particles, with mean pore size 

‍ξ‍. The population thereby migrates outward in a coherent front that eventually smooths; we track the radial position of the leading edge of the front 

‍Rf ‍ and the undulation amplitude ‍A‍ over time ‍t‍. (C–E) Bottom-up (‍xy‍ plane) projections of cellular fluorescence intensity measured using 3D confocal 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.71226
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front smoothing are altered in both cases. Specifically, increasing the undulation wavelength slows 
smoothing, increasing ‍τ ‍ by a factor of ‍≈ 3‍ to reach ‍τ ≈ 6.5‍ hr (green squares in Figure 1F). Conversely, 
increasing the pore size—which enables cells to migrate through the pore space more easily—greatly 
hastens smoothing, decreasing ‍τ ‍ by more than a factor of ≈10 to become ‍τ ≈ 0.2‍ hr (blue circles in 
Figure 1F). This behavior is consistent across multiple experiments with varying ‍λ‍ and ‍ξ‍, as summa-
rized in Figure 1G. Our experiments thus indicate that the smoothing of collective migration is regu-
lated by both the undulation wavelength and the ease with which cells migrate.

A continuum model of chemotactic migration recapitulates the spatio-
temporal features of smoothing
To gain further insight into the processes underlying smoothing, we use the classic Keller–Segel model 
of chemotactic migration (Lauffenburger, 1991; Keller and Segel, 1971) to investigate the dynamics 
of undulated populations. Variants of this model can successfully capture the key features of chemo-
tactic migration of flat E. coli fronts in bulk liquid (Keller and Segel, 1971; Fu et al., 2018) and in 
porous media (Bhattacharjee et al., 2021); we therefore hypothesize that it can also help identify the 
essential physics of smoothing.

To this end, we consider a 2D representation of the population in the ‍xy‍ plane for simplicity, with 

‍⃗r ≡ (x, y)‍, and model the evolution of the nutrient concentration ‍c(⃗r, t)‍ and number density of bacteria 

‍b(⃗r, t)‍ using the coupled equations:

	﻿‍ ∂tc = Dc∇2c − bκg(c),‍� (1)

	﻿‍ ∂tb = −∇ · J⃗b + bγg(c), J⃗b = −Db∇b + bχ∇f(c).‍� (2)

Equation 1 relates changes in ‍c‍ to nutrient diffusion and consumption by the bacteria; ‍Dc‍ is 
the nutrient diffusion coefficient, ‍κ‍ is the maximal consumption rate per cell, and ‍g(c) = c/

(
c + c1/2

)
‍ 

describes the influence of nutrient availability relative to the characteristic concentration ‍c1/2‍ through 
Michaelis–Menten kinetics. Equation 2 relates changes in ‍b‍ to the bacterial flux ‍⃗Jb‍, which arises from 

their undirected and directed motion, and net 

image stacks. Images show sections of three initially undulated populations in three different porous media, each at three different times (superimposed 
white, yellow, cyan), as the cells migrate radially outward. A pixel corresponds to approximately one cell, and the images only show a magnified 
view of the overall population. Panels (C) and (D) demonstrate the influence of varying the undulation wavelength, keeping the mean pore size the 
same; increasing ‍λ‍ slows smoothing. Panels (C) and (E) demonstrate the influence of varying the pore size, keeping the undulation wavelength the 
same; increasing ‍ξ‍ hastens smoothing. (F) For each experiment shown in (C–E), the undulation amplitude ‍A‍, normalized by its initial value ‍A0‍, decays 
exponentially with the time ‍∆t‍ elapsed from the initiation of smoothing at ‍t = t0‍. Fitting the data (symbols) with an exponential decay (red lines) yields 
the smoothing time ‍τ ‍ for each experiment. (G) Smoothing time ‍τ ‍ measured in experiments increases with increasing undulation wavelength ‍λ‍ and 
decreasing medium mean pore size ‍ξ‍, which enables cells to migrate more easily. Error bars reflect the uncertainty in determining the initiation time ‍t0‍ 
from the exponential fit of the data.

Figure 1 continued

Video 1. Experiment probing chemotactic smoothing 
for ‍λ = 0.8‍ mm, ‍ξ = 1.7‍ μm. Video shows the 
maximum intensity fluorescence projection (bottom-up 
view) of migration from a 3D-printed undulated cylinder 
of closely packed E. coli. The cells collectively migrate 
outward in a front that autonomously smooths out the 
large-scale undulations as it continues to propagate.

https://elifesciences.org/articles/71226/figures#video1

Video 2. Experiment probing chemotactic smoothing 
for ‍λ = 3.4‍ mm, ‍ξ = 1.7‍ μm. Video shows the 
maximum intensity fluorescence projection (bottom-up 
view) of migration from a 3D-printed undulated cylinder 
of closely packed E. coli.
https://elifesciences.org/articles/71226/figures#video2

https://doi.org/10.7554/eLife.71226
https://elifesciences.org/articles/71226/figures#video1
https://elifesciences.org/articles/71226/figures#video2
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cell proliferation with a maximal rate ‍γ‍. In the 
absence of a nutrient gradient, bacteria move 
in an unbiased random walk (Berg, 2004); thus, 
undirected motion is diffusive over large length 
and time scales, with an effective diffusion coef-
ficient ‍Db‍ whose value depends on both cellular 
activity and confinement in the pore space, and 
is therefore ‍b‍-dependent as detailed in Materials 
and methods (Bhattacharjee and Datta, 2019a; 
Bhattacharjee and Datta, 2019b). In the pres-
ence of the local nutrient gradient established 
through consumption, bacteria perform chemo-
taxis, biasing this random walk (Berg, 2004); 
the function ‍f(c) ≡ log

[(
1 + c/c−

)
/
(
1 + c/c+

)]
‍ 

describes the ability of the bacteria to logarith-
mically sense nutrient with characteristic concen-
trations ‍c−‍ and ‍c+‍ (Cremer et  al., 2019; Fu 
et  al., 2018), and the chemotactic coefficient ‍χ‍ 

describes their ability to then bias their motion in response to the sensed nutrient gradient (Keller 
and Segel, 1971; Fu et al., 2018; Cremer et al., 2019). The chemotactic velocity is thus given by 

‍⃗vch ≡ χ∇f(c)‍, where similar to ‍Db‍, the value of ‍χ‍ depends on both intrinsic cellular properties and 
pore-scale confinement, and is also ‍b‍-dependent as detailed in Materials and methods (Bhattacharjee 
et al., 2021). Together, Equations 1 and 2 provide a continuum model of chemotactic migration that 
has thus far been successfully used to describe unperturbed E. coli populations (Keller and Segel, 
1971; Fu et al., 2018; Cremer et al., 2019; Bhattacharjee et al., 2021). We note that a recently intro-
duced growth-expansion model of chemotactic migration, for which analytical expressions describing 
chemotactic fronts have been obtained (Cremer et al., 2019; Narla et al., 2021), can be thought of 
as a limit of our model with bacterial growth taken to be independent of the attractant. An interesting 
direction for future work would be to study the phenomenon of chemotactic smoothing revealed here 
in the growth-expansion model, similar to a recent analytical study of small-amplitude perturbations 
in a simplified version of the model considered here (Alert and Datta, 2021).

Here, to simulate the chemotactic migration of populations with large-amplitude perturbations, 
we numerically solve Equations 1 and 2 using undulated morphologies as initial conditions for ‍b‍, 
similar to those explored in the experiments. The simulations employ values for all parameters based 
on direct measurements, as detailed in Materials and methods. Although we do not expect perfect 
quantitative agreement between the experiments and simulations due to their difference in dimen-
sionality and the simplified treatment of cell-cell interactions, the simulated fronts form, collectively 
migrate, and smooth in a manner that is remarkably similar to the experiments. Three examples 
are shown in Figure 2C–E (Videos 4–6), corresponding to the experiments shown in Figure 1C–E 
(Videos 1–3). Similar to the experiments, the outer periphery of each population first spreads slowly, 
then spontaneously organizes into an outward-migrating front that eventually smooths. We again find 
that the normalized undulation amplitude decays exponentially over time, as shown in Figure 2D. 
As in the experiments, increasing the undulation wavelength ‍λ‍ slows smoothing; compare Figure 2B 
to Figure 2A. Also as in the experiments, increasing the pore size ‍ξ‍, which increases the migration 
parameters ‍Db‍ and ‍χ‍, greatly hastens smoothing; compare Figure 2C to Figure 2A. This variation of 
the smoothing time scale ‍τ ‍ obtained from simulations with ‍λ‍ and ‍ξ‍ is summarized in Figure 2E. We 
observe the same behavior as in the experiments, with the absolute values of ‍τ ‍ agreeing to within a 
factor of ∼3. This agreement confirms that the continuum Keller–Segel model recapitulates the essen-
tial spatio-temporal features of smoothing seen in the experiments.

Chemotaxis is the primary driver of front smoothing
The simulations provide a way to directly assess the relative importance of cellular diffusion, chemo-
taxis, and cell proliferation to front smoothing. To this end, we perform the same simulation as in 
Figure 2A, but with each of the corresponding three terms in Equation 2 knocked out, and determine 

Video 3. Experiment probing chemotactic smoothing 
for ‍λ = 0.8‍ mm, ‍ξ = 2.2‍ μm. Video shows the 
maximum intensity fluorescence projection (bottom-up 
view) of migration from a 3D-printed undulated cylinder 
of closely packed E. coli.
https://elifesciences.org/articles/71226/figures#video3

https://doi.org/10.7554/eLife.71226
https://elifesciences.org/articles/71226/figures#video3


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Physics of Living Systems

Bhattacharjee, Amchin, Alert, et al. eLife 2022;11:e71226. DOI: https://doi.org/10.7554/eLife.71226 � 7 of 23

the resulting impact on collective migration. This procedure enables us to determine the factors 
necessary for smoothing.

While diffusion typically causes spatial inhomogeneities to smooth out, we do not expect it to play 
an appreciable role in the front smoothing observed here: the characteristic time scale over which 
undulations of wavelength ‍λ ≈ 1‍ mm diffusively smooth is ‍∼ λ2/Db ≈ 100‍ to 700 hr, up to three orders 
of magnitude larger than the smoothing time ‍τ ‍ measured in experiments and simulations. We there-
fore expect that the undirected motion of bacteria is much too slow to contribute to front smoothing. 
The simulations for ‍λ = 0.8‍ mm and ‍ξ = 1.7‍ μm confirm this expectation: setting ‍Db = 0‍ yields fronts 
that still smooth over a time scale ‍τ ∼ 1‍ hr similar to the full simulations (Figure 3A).

Another possible mechanism of front smoothing is differences in bacterial proliferation at different 
locations along the front periphery—for example, the front would smooth if cells in concave regions 

Figure 2. Continuum model captures the essential features of the smoothing of migrating bacterial populations. (A–C) Simulations corresponding 
to experiments reported in Figure 1C and E, respectively, performed by numerically solving Equations 1 and 2 in two dimensions (‍xy‍ plane). Images 
show the calculated cellular signal (details in Materials and methods) for three initially undulated populations in three different porous media, each 
at three different times (superimposed white, yellow, cyan), as the cells migrate outward. Panels (A) and (B) demonstrate the influence of varying the 
undulation wavelength, keeping the mean pore size the same; as in the experiments, increasing ‍λ‍ slows smoothing. Panels (A) and (C) demonstrate the 
influence of varying the pore size, keeping the undulation wavelength the same; as in the experiments, increasing ‍ξ‍, incorporated in the model by using 
larger values of the diffusion and chemotactic coefficients as obtained directly from experiments, hastens smoothing. (D) For each simulation shown in 
(A–C), the undulation amplitude ‍A‍,normalized by its initial value ‍A0‍, decays exponentially with the time ‍∆t‍ elapsed from the initiation of smoothing at 

‍t = t0‍ as in the experiments. Fitting the data (symbols) with an exponential decay (red lines) again yields the smoothing time ‍τ ‍ for each simulation. (E) 
Smoothing time ‍τ ‍ obtained from the simulations increases with increasing undulation wavelength ‍λ‍ and decreasing medium mean pore size ‍ξ‍, as in the 
experiments. Error bars reflect the uncertainty in determining the initiation time ‍t0‍ from the exponential fit of the data.

https://doi.org/10.7554/eLife.71226


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Physics of Living Systems

Bhattacharjee, Amchin, Alert, et al. eLife 2022;11:e71226. DOI: https://doi.org/10.7554/eLife.71226 � 8 of 23

were able to proliferate faster than those in convex 
regions. However, differential proliferation typi-
cally destabilizes bacterial communities, as shown 
previously both experimentally and theoretically 

(Fujikawa and Matsushita, 1989; Bonachela et al., 2011; Nadell et al., 2010; Farrell et al., 2013; 
Trinschek et al., 2018; Allen and Waclaw, 2019). Furthermore, even if proliferation were to help 
smooth the overall population, we again expect this hypothetical mechanism to be too slow to appre-
ciably contribute: the shortest time scale over which cells all growing exponentially at a maximal rate 

‍γ ∼ 1‍ hr-1 spread over the length scale ‍A0 ≈ 300‍ μm by growing end-to-end is ‍γ
−1 log2

(
A0/lcell

)
∼ 7‍ hr, 

where ‍lcell ≈ 2‍ μm is the cell body length. This time scale is over an order of magnitude larger than the 
‍τ ‍ measured in experiments and simulations. The simulations again confirm our expectation: setting 

‍γ = 0‍ yields fronts that still smooth over a time scale ‍τ ∼ 1‍ hr similar to the full simulations (Figure 3B).
These findings leave chemotaxis as the remaining possible mechanism of front smoothing. The 

simulations confirm this expectation: setting ‍χ = 0‍ yields a population that slowly spreads via diffusion 
and proliferation, but that does not form collectively migrating fronts at all (Figure 3C). Therefore, 
chemotaxis is both necessary and sufficient for the observed front smoothing.

Distinct modes by which chemotaxis impacts front morphology
How exactly does chemotaxis smooth bacterial fronts? To address this question, we examine the 
spatially varying chemotactic velocity ‍⃗vc = χ∇f(c)‍, which quantifies how rapidly different regions of 
the population migrate via chemotaxis. To gain intuition for the determinants of ‍⃗vc‍, we recast this 
expression in terms of the nutrient gradient:

	﻿‍

v⃗c = χf ′(c)︸ ︷︷ ︸
Response function

∇c︸︷︷︸
Forcing

.

‍�
(3)

As in linear response theory, the chemotactic 
velocity can be viewed as the bacterial response 
to the driving force given by the nutrient gradient, 
‍∇c‍, modulated by the chemotactic response 
function ‍χf ′(c)‍. Thus, variations in chemotactic 
velocity along the leading edge of the front, which 
specify how the overall front morphology evolves, 
are determined by the combined effect of varia-
tions in the nutrient gradient and the chemotactic 
response function. We therefore examine each 
of these modes by which chemotaxis influences 
front morphology in turn.

We first consider the nutrient gradient, which 
is the typical focus of chemotaxis studies. Our 

Video 4. Simulation probing chemotactic smoothing 
for ‍λ = 0.8‍ mm, ‍ξ = 1.7‍ μm. Video shows the 
calculated cellular fluorescence signal of cells 
migrating from an undulated stripe of closely packed 
E. coli similar to Video 1. As in the experiments, 
the cells collectively migrate outward in a front that 
autonomously smooths out the large-scale undulations 
as it continues to propagate.

https://elifesciences.org/articles/71226/figures#video4

Video 5. Simulation probing chemotactic smoothing 
for ‍λ = 3.4‍ mm, ‍ξ = 1.7‍ μm. Video shows the 
calculated cellular fluorescence signal of cells migrating 
from an undulated stripe of closely packed E. coli 
similar to Video 2.

https://elifesciences.org/articles/71226/figures#video5

Video 6. Simulation probing chemotactic smoothing 
for ‍λ = 0.8‍ mm, ‍ξ = 2.2‍ μm. Video shows the 
calculated cellular fluorescence signal of cells migrating 
from an undulated stripe of closely packed E. coli 
similar to Video 3.

https://elifesciences.org/articles/71226/figures#video6

https://doi.org/10.7554/eLife.71226
https://elifesciences.org/articles/71226/figures#video4
https://elifesciences.org/articles/71226/figures#video5
https://elifesciences.org/articles/71226/figures#video6
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simulations, which numerically solve the coupled system of Equations 1 and 2, directly yield the 
spatially varying nutrient field ‍c‍ and therefore ‍∇c‍. A snapshot from the representative example of 
Figure 2A is shown in Figure 4A, with the contours of ‍c = c−‍ and ‍c = c+‍ indicated by the cyan and 
magenta lines, respectively. The contours are spaced closer at the convex ‘peaks’ (e.g., at ‍y/λ = 0.5‍) 
than at the concave ‘valleys’ (e.g., at ‍y/λ = 0‍) along the leading edge of the front. Thus, the magni-
tude of the driving force given by ‍∇c‍ is larger at the peaks. We confirm this expectation by directly 
quantifying the nutrient gradient along the leading edge, focusing on the component ‍∂xc‍ in the 
overall front propagation direction (‍x‍) for simplicity, as shown by the orange symbols in Figure 4C; 
as expected, this driving force is stronger at the peaks. This spatial variation in the driving force 
promotes faster outward chemotactic migration at the peaks than at the valleys, amplifying front 
undulations—in opposition to our observation that the migrating population self-smooths. Variations 
in the local nutrient gradient along the leading edge of the front do not contribute to smoothing; 
rather, they oppose it.

We next turn to the chemotactic response function, which characterizes cellular signal transduction. 
Because ‍χ‍ is a constant for each porous medium (Bhattacharjee et al., 2021), spatial variations in the 
response function are set by variations in ‍f ′(c)‍. The sensing function ‍f(c)‍ is plotted in the upper panel 
of Figure 4B. It varies linearly as ‍∼ c

(
1/c− − 1/c+

)
‍ for ‍c ≪ c−‍ and saturates at ‍log

(
c+/c−

)
‍ for ‍c ≫ c+‍; 

the characteristic concentrations ‍c−‍ and ‍c+‍ represent the dissociation constants of the nutrient for 
the inactive and active conformations of the cell-surface receptors, respectively (Cremer et al., 2019; 
Fu et  al., 2018; Dufour et  al., 2014; Yang et  al., 2015). The response function ‍χf ′(c)‍ therefore 
decreases strongly as ‍c‍ increases above ‍c+‍, which accordingly is often referred to as an upper limit of 
sensing (Figure 4B, lower panel). That is, because high nutrient concentrations saturate cell-surface 
receptors, the chemotactic response function decreases with nutrient concentration. Inspection of the 
nutrient field indicates that nutrient concentrations are larger at the peaks than at the valleys along 
the leading edge of the front (Figure 4A). Thus, the chemotactic response of cells is weaker at peaks 
than at valleys, as shown by the points in Figure 4B, yielding slower outward chemotactic migration 
at peaks than at valleys and thereby reducing the amplitude of front undulations. Variations in the 
chemotactic response along the leading edge of the front promote smoothing, unlike variations in the 
nutrient gradient.

Spatial variations in chemotactic response drive morphological 
smoothing
We therefore hypothesize that the stabilizing effect of the chemotactic response (Figure 4C, blue) 
dominates over the destabilizing influence of the nutrient gradient (Figure  4C, red), leading to 
smoothing. Computation of the spatially varying chemotactic velocity at the leading edge of the front 
using Equation 3, focusing on the ‍x‍ velocity component ‍vc,x ≈ χf ′∂xc‍ for simplicity, supports this 

Figure 3. Chemotaxis is the primary driver of morphological smoothing. Images show the same simulation as in 
Figure 2A, which serves as an exemplary case, but with either (A) diffusive cell motion, (B) cell proliferation, or 
(C) cell chemotaxis knocked out by setting the diffusivity ‍Db‍, proliferation rate ‍γ ‍, or chemotactic coefficient ‍χ‍ to 
zero, respectively. Simulated bacterial fronts lacking diffusion or proliferation still smooth, as shown in (A, B), but 
simulated fronts lacking chemotaxis do not smooth, as shown in (C), demonstrating that chemotaxis is necessary 
and sufficient for the observed morphological smoothing.

https://doi.org/10.7554/eLife.71226
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Figure 4. Chemotaxis alters the morphology of migrating bacterial fronts in two distinct ways. (A) Magnified view of a migrating bacterial front from the 
simulation shown in Figure 2A at time ‍t = 41‍ min as a representative example. To illustrate the spatially varying nutrient levels, we show the contours of 
constant nutrient concentration ‍c = c+‍ and ‍c = c−‍ in magenta and cyan, respectively; these represent characteristic upper and lower limits of sensing. 
The contours are spaced closer at the leading edge of the convex peak (‍y/λ = 0.5‍) than the concave valley (‍y/λ = 0‍), indicating that the magnitude 
of the local nutrient gradient is larger at peaks than at valleys. The nutrient concentration itself, which increases monotonically with increasing ‍x‍, is 
also larger at the peak than at the valley. (B) Top and bottom panels show the variation of the nutrient sensing function ‍f(c)‍ and chemotactic response 
function ‍f ′(c)‍, respectively, with nutrient concentration ‍c‍. Because sensing saturates at high nutrient concentrations, chemotactic response is weaker 
at higher ‍c‍ (peaks) than at lower ‍c‍ (valleys). (C) Top panel shows the ‍x‍ component of the nutrient gradient ‍∂xc‍ (red, left axis) and the response function 

‍f ′‍ (blue, right axis), and bottom panel shows the ‍x‍ component of the chemotactic velocity ‍vc,x = χf ′∂xc‍ computed from these quantities, evaluated 
at different lateral positions ‍y‍ along the leading edge of the front in (A). While the driving force of chemotaxis represented by ‍∂xc‍ is smaller at the 
valley, the chemotactic response ‍χf ′‍ is larger at the valley and dominates in setting ‍vc,x‍: valleys move out faster than peaks, eventually catching up to 
them and smoothing out the undulations. (D) For all simulations (Figure 2E), the smoothing time ‍τ ‍ determined by analyzing the decay of large-scale 
undulations (Figure 2D) is similar to the time ‍τ ′‍ needed for valleys to catch up to peaks estimated using their different ‍x‍-component chemotactic 
velocities. Note that we do not expect an exact match between ‍τ ‍ and ‍τ ′‍ as they are related yet different quantities.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of reduced sensing.

Figure supplement 2. Chemotactic smoothing requires a concave sensing function ‍f(c)‍.
Figure 4 continued on next page

https://doi.org/10.7554/eLife.71226
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hypothesis: cells at concave regions migrate outward faster than those at convex regions (Figure 4C, 
lower panel). To further test this hypothesis, we assess the influence of varying ‍c+‍; we expect that 
reducing this upper limit weakens chemotactic response not just at the peaks, but also the valleys, 
thereby slowing smoothing. While tuning solely ‍c+‍ is challenging in the experiments, this can be 
readily done in the simulation—yielding slower smoothing, as expected (Figure 4—figure supple-
ment 1).

As a final test of our hypothesis, for each simulation shown in Figure  2, we determine the 
difference between the chemotactic velocities of the valleys and peaks, approximated by 

‍∆vc,x ≈ χ[
(
f ′∂xc

)
valley −

(
f ′∂xc

)
peak]‍, as a function of time ‍∆t‍. If smoothing is indeed due to varia-

tions of the chemotactic velocity along the leading edge, then the smoothing time ‍τ ‍ determined by 
analyzing the decay of the undulation amplitude, ‍A = A0e−∆t/τ

‍ (Figure 2D and E), should be similar 

to the time ‍τ ′‍ at which valleys catch up to peaks, that is, ‍
´ τ ′

0 ∆vc,x ∆t ≈ A0‍. To test this expectation, 
we plot the ‍τ ′‍ values thus obtained for all of our simulations of varying ‍λ‍ and ‍ξ‍ as a function of the 
corresponding ‍τ ‍, as shown in Figure 4D. We find that ‍τ ′‍ and ‍τ ‍ are indeed similar to one another in all 
cases—confirming that smoothing is determined by spatial variations in chemotactic velocity.

Discussion
By combining experiments and simulations, this study elucidates a mechanism by which collectively 
migrating populations can smooth out large-scale perturbations in their overall morphology. We focus 
on the canonical example of chemotactic migration, in which coherent fronts of cells move in response 
to a self-generated nutrient gradient. The smoothing of these fronts underlies the utility of standard 
agar-based assays for chemotaxis, in which bacteria spread outward in smooth, circular rings from a 
dense inoculum (Wolfe and Berg, 1989; Tittsler and Sandholzer, 1936; Croze et al., 2011; Cremer 
et al., 2019)—despite the presence of irregularities in the initial inoculum that are inevitably intro-
duced by human error. To our knowledge, the robustness of the front morphology to such pertur-
bations has never been examined or quantitatively explained; as a result, previous studies have only 
focused on the migration of the smooth fronts that ultimately result (Adler, 1966; Lauffenburger, 
1991; Keller and Segel, 1971; Cremer et al., 2019; Fu et al., 2018; Saragosti et al., 2011; Bhat-
tacharjee et al., 2021; Bai et al., 2021). Our work now provides an explanation for why perturbed 
fronts smooth out. It therefore provides a counterpoint to previous studies investigating the ability 
of perturbations to instead disrupt collective migration (Sándor et  al., 2017; Morin et  al., 2016; 
Yllanes et al., 2017; Bera and Sood, 2020; Chepizhko and Peruani, 2013; Chepizhko et al., 2013; 
Chepizhko and Peruani, 2015; Toner et al., 2018; Wong et al., 2014; Alert and Trepat, 2020; Alert 
et al., 2019; Driscoll et al., 2016; Doostmohammadi et al., 2016; Williamson and Salbreux, 2018; 
Miles et al., 2019; Subramanian et al., 2011; Lushi et al., 2012; Lushi et al., 2018; Ben Amar and 
Bianca, 2016; Ben Amar, 2016; Funaki et al., 2006; Brenner et al., 1998; Mimura and Tsujikawa, 
1996; Stark, 2018). It also complements recent theoretical work describing how chemotaxis can 
stabilize the hydrodynamic instabilities that arise in unconfined populations of self-propelled particles 
(Nejad and Najafi, 2019).

The 3D printing platform provides a unique way to tune the shape of the initial perturbation, as 
well as the extent to which cellular migration is hindered. Our experiments using this approach reveal 
that the dynamics of smoothing are regulated by both the undulation wavelength and the ease with 
which cells migrate. The continuum simulations recapitulate the essential features of this behavior 
and shed light on the underlying mechanism. We find that even though cells in peaks of an undulated 
front experience a stronger driving force given by the local nutrient gradient, the higher nutrient levels 
they are exposed to saturate their cell-surface receptors, and hence they exhibit a weaker chemo-
tactic response than cells in valleys. That is, while variations in the nutrient gradient along the leading 
edge of a front act to amplify undulations, variations in the ability of cells to sense and respond 
to this gradient dominate and instead smooth out the undulation. Importantly, this mechanism of 
smoothing is distinct from diffusion, which is typically responsible for the smoothing of traveling waves 
in reaction-diffusion systems—and in our case, is much too slow to drive smoothing.

Figure supplement 3. Convergence of the numerical simulations.

Figure 4 continued

https://doi.org/10.7554/eLife.71226
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Conditions for chemotactic smoothing to arise
While our study utilizes a specific form of the sensing function ‍f(c)‍ established for E. coli (Cremer et al., 
2019; Fu et  al., 2018), the phenomenon of chemotactic smoothing can manifest more generally. 
Specifically, our description of smoothing requires that (i) convex regions of a population are exposed 
to more nutrient ‍c‍ than concave regions, and (ii) ‍f(c)‍ is monotonically increasing and concave, with 

‍f ′′(c) < 0‍; when these conditions are satisfied, the chemotactic response is weaker at convex regions 
than at concave ones, thereby promoting smoothing (as indicated in Figure 4B).

The first requirement is frequently satisfied for collective migration in general; for example, in 
chemotactic migration, nutrient concentration ‍c‍ decreases from the outward boundaries into the 
population over a length scale given by the interplay between nutrient diffusion and consump-
tion. This first requirement is also satisfied by many other forms of active matter that rely on other 
modes of sensing to collectively migrate, for which ‍c‍ would generically represent the stimulus being 
sensed. Documented examples include durotactic cell groups (Roca-Cusachs et al., 2013; Sunyer 
et al., 2016; Alert and Casademunt, 2019), phoretic active colloids (Illien et al., 2017; Liebchen 
and Löwen, 2018Stark, 2018), and phototactic robots (Mijalkov et al., 2016; Palagi and Fischer, 
2018)—systems for which migration is directed toward regions of larger ‍c‍, and therefore convex 
regions are more likely to be exposed to larger ‍c‍.

The second requirement is also satisfied for diverse active matter systems; in the context of chemo-
taxis, specific examples include other bacteria (Menolascina et al., 2017), enzymes (Jee et al., 2018; 
Agudo-Canalejo et al., 2018; Mohajerani et al., 2018), aggregating amoeba cells (Keller and Segel, 
1970), and mammalian cell groups during development, immune response, and disease (Camley, 
2018; Iglesias and Devreotes, 2008; Theveneau et al., 2010; McLennan et al., 2012; Malet-Engra 
et al., 2015; Puliafito et al., 2015; Tweedy et al., 2020). This second requirement is again also satis-
fied for active matter that collectively migrates using other sensing mechanisms, for which sensing 
has been documented to increase and eventually saturate with the stimulus, be it the stiffness of the 
underlying surface (Roca-Cusachs et al., 2013; Sunyer et al., 2016; Alert and Casademunt, 2019), 
temperature (Illien et al., 2017; Liebchen and Löwen, 2018), or light intensity (Mijalkov et al., 2016; 
Palagi and Fischer, 2018). Thus, exploring the physics described here in diverse other forms of active 
matter will be a useful direction for future work.

As a final illustration of the necessity of the sensing function ‍f(c)‍ to be concave, ‍f ′′(c) < 0‍, we repeat 
our analysis but instead consider a strictly linear ‍f(c) = c/clin‍, which does not saturate. We choose 

‍clin =
(
1/c− − 1/c+

)−1
‍ so that the linear ‍f(c)‍ matches our original logarithmic ‍f(c)‍ at small ‍c‍. With 

this linear sensing function, the chemotactic response is independent of concentration, ‍f ′(c) = 1/clin‍, 
and the condition of concavity is violated: ‍f ′′(c) = 0‍. We therefore expect chemotactic smoothing to 
not occur. Consistent with our expectation, repeating the analysis underlying Figure 4C but for the 
strictly linear ‍f(c)‍ yields fronts for which valleys no longer move faster than peaks. Instead, as shown 
in Figure 4—figure supplement 2, the profile of chemotactic velocity is now inverted with respect 
to that of the bottom panel in Figure 4C. Hence, the front does not smooth. Overall, this sample 
computation illustrates a way of modifying ‍f(c)‍ that abrogates sensing saturation and hence would 
prevent chemotactic smoothing.

Broader implications of chemotactic smoothing
The chemotactic smoothing process described here is autonomous, arising without any external inter-
vention. Instead, it is a population-scale consequence of the limitations in cellular signal transduction—
motivating future studies of other population-scale effects, beyond smoothing, that may emerge from 
individual behaviors. Indeed, while studies of chemotaxis typically focus on the role of the external 
nutrient gradient in driving cellular migration, our work highlights the distinct and pivotal role played 
by the cellular chemotactic response function in regulating migration and large-scale population 
morphology more broadly. Our work therefore contributes a new factor to be considered in descrip-
tions of morphogenesis, which thus far have focused on the role of other factors—such as differential 
forcing by signaling gradients, differential proliferation, intercellular mechanics, substrate interactions, 
and osmotic stresses (McLennan et al., 2012; Fujikawa and Matsushita, 1989; Bonachela et al., 
2011; Nadell et al., 2010; Farrell et al., 2013; Trinschek et al., 2018; Allen and Waclaw, 2019; 
Beroz et al., 2018; Fei et al., 2020; Yan et al., 2019; Yan et al., 2017; Copenhagen et al., 2020; 

https://doi.org/10.7554/eLife.71226
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Smith et al., 2017; Ghosh et al., 2015; Zhang et al., 2021)—in regulating the overall morphology of 
cellular communities and active matter in general.

Materials and methods
Preparing and characterizing porous media
We prepared 3D porous media by dispersing dry granules of crosslinked acrylic acid/alkyl acrylate 
copolymers (Carbomer 980, Ashland) in liquid EZ Rich, a defined rich medium for E. coli. The compo-
nents to prepare the EZ Rich were purchased from Teknova Inc, autoclaved prior to use, and were 
mixed following the manufacturer’s directions; specifically, the liquid medium was an aqueous solution 
of 10× MOPS Mixture (M2101), 10× ACGU solution (M2103), 5× Supplement EZ solution (M2104), 
20% glucose solution (G0520), 0.132 M potassium phosphate dibasic solution (M2102), and ultrapure 
Milli-Q water at volume fractions of 10, 10, 20, 1, 1, and 58%, respectively. We ensured homogeneous 
dispersions of swollen hydrogel particles by mixing each dispersion for at least 2 hr at 1600 rpm using 
magnetic stirring and adjusted the pH to 7.4 by adding 10 N NaOH to ensure optimal cell viability. 
The hydrogel granules swell considerably, resulting in a jammed medium made of ∼5–10 μm diameter 
swollen hydrogel particles with ∼20% polydispersity and with an individual mesh size of ∼40–100 nm, 
as we established previously (Bhattacharjee and Datta, 2019b), which enables small molecules (e.g., 
amino acids, glucose, oxygen) to freely diffuse throughout the medium.

Tuning the mass fraction of dispersed hydrogel particles enables the sizes of the pores between 
particles to be precisely tuned. We measured the smallest local pore dimension by tracking the diffu-
sion of 200-nm-diameter fluorescent tracers through the pore space, as we detailed in a previous 
paper (Bhattacharjee et al., 2021). This previous paper shows the full pore size distributions thereby 
measured for porous media prepared in an identical manner to those used here; in this paper, we 
only describe each medium using the mean pore size ‍ξ‍, for simplicity. Indeed, the measured pore size 
distributions exhibit exponential decays characterized by the mean value ‍ξ‍, as reported in Bhattacha-
rjee et al., 2021, with pore sizes between 1 and 8 μm in the loosest packings and pores smaller than 
4 μm in the tightest packings.

3D printing bacterial populations
Prior to each experiment, we prepared an overnight culture of E. coli W3110 in LB media at 30°C. We 
then incubated a 1% solution of this culture in fresh LB media for 3 hr until the optical density reached 
∼0.6, and then resuspended the cells in liquid EZ Rich to a concentration of ‍8.6 × 1010‍ cells/mL. We 
then used this suspension as the inoculum that was 3D printed into a porous medium using a pulled 
glass capillary with a ∼100–200 μm-wide opening as an injection nozzle. Each porous medium had 
a large volume of 4 mL and was confined in a transparent-walled glass-bottom Petri dish 35 mm in 
diameter and 10 mm in height; in each experiment, the injection nozzle was mounted on a motorized 
translation stage that traces out a programmed two-dimensional undulating path within the porous 
medium, at least ∼500–1000 m away from any boundaries, at a constant speed of 1 mm/s. As the 
injection nozzle moved through the medium, it locally rearranged the hydrogel packing and gently 
extruded the cell suspension into the interstitial space using a flow-controlled syringe pump at 50 
μL/hr, which corresponds to a gentle shear rate of ∼4–36 s-1 at the tip of the injection nozzle. As the 
nozzle continued to move, the surrounding hydrogel particles rapidly densified around the newly 
introduced cells, re-forming a jammed solid matrix (Bhattacharjee et al., 2018; Bhattacharjee et al., 
2015; Bhattacharjee et al., 2016) that compressed the cellular suspension until the cells are closely 
packed to an approximate density of ‍0.95 × 1012‍ cells/mL. This protocol thus results in a 3D-printed 
bacterial population having a defined initial amplitude and wavelength. Moreover, as we showed in 
our previous work Bhattacharjee et al., 2021, this process does not appreciably alter the properties 
of the hydrogel packing and is sufficiently gentle to maintain the viability and motility of the cells.

Imaging bacteria within porous media
Because the 3D-printed undulated cylinders of densely packed cells are ∼1 cm long, each printing 
process requires ∼10 s. After 3D printing, the top surface of the porous medium was sealed with a thin 
layer of 1–2 mL of paraffin oil to minimize evaporation while allowing unimpeded oxygen diffusion. 
We then commenced imaging within a few minutes after printing. Once an undulated population is 

https://doi.org/10.7554/eLife.71226
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3D printed, it maintains its shape until cells start to move outward through the pore space. The time 
needed to print each cylinder is two orders of magnitude shorter than the duration between succes-
sive 3D confocal image stacks. Moreover, the 3D printing is fast enough to be considered as instan-
taneous when compared with the speed of bacterial migration. Thus, the imaging is sufficiently fast 
to capture the front propagation dynamics. To image how the distribution of cells evolves over time, 
we used a Nikon A1R + inverted laser-scanning confocal microscope maintained at 30 ± 1°C. In each 
experiment, we acquired vertical stacks of planar fluorescence images separated by 2.58 μm along 
the vertical (‍z‍) direction, successively every 2–30 min for up to 20 hr. We then produced a maximum 
intensity projection from each stack at every time frame with the logarithm of fluorescent intensities 
displayed at every pixel; examples are shown in Figure 1. Our prior work used high-resolution visual-
ization to obtain magnified views of the bacterial concentration fields at long times for unperturbed 
flat fronts and verified that the cells are swimming through the pore space as a suspension (Bhattacha-
rjee et al., 2021). Here, we instead use lower-resolution visualization to characterize population-scale 
front dynamics over larger length scales. We note that because our experiments probe fluorescence 
from GFP-expressing cells, the confocal images only show the actively moving cells near the leading 
edge of each propagating front because it is exposed to sufficient oxygen for the GFP to properly 
fold. As these cells move outward, they continually consume nutrient and oxygen—eventually causing 
the trailing ‘inner’ region of the population to become oxygen-depleted, as shown in our previous 
work (Bhattacharjee et al., 2021). Under these conditions, we conjecture that the GFP expressed by 
the cells does not properly fold, and the cells lose fluorescence over ∼30 min. Thus, even though some 
cells remain localized within the inner region, they turn dark and hence seem to disappear from the 
microscope fluorescence images.

Characterizing experimental front dynamics
We used each maximum intensity projection at each time point to manually measure the time-
dependent amplitude (‍A‍) and radial location of the front (‍Rf ‍) as defined in Figure 1B, identifying the 
edges of the front as the positions at which the fluorescent signal from cells matches the background 
noise.

As we showed in our previous work (Bhattacharjee et  al., 2021), due to the initially high cell 
density in the population, inter-cell collisions limit outward migration of the population; a coherent 
outward-propagating front only forms after at least ∼1 hr. Here, we do not focus on these initial 
transient dynamics, but instead examine the long-time smoothing behavior of undulated fronts. We 
did this by tracking the decay of the time-dependent undulation amplitude over time, as shown in 
Figure 1F; we identified the time t0 at which smoothing is initiated as the earliest time at which the 
error associated with an exponential fit to the decay of ‍A(t)‍ is minimized. The initial value A0 is then 
given by ‍A(t0)‍.

Details of continuum model
To mathematically model the dynamics of bacterial fronts, we use a continuum description of chemo-
tactic migration that we previously showed captures the essential dynamical features of flat fronts 
(Bhattacharjee et al., 2021). This model extends previous work on the classic Keller–Segel model (Fu 
et al., 2018; Saragosti et al., 2011; Cremer et al., 2019; Croze et al., 2011; Keller and Odell, 1975; 
Keller and Segel, 1971; Keller and Segel, 1970; Odell and Keller, 1976; Lauffenburger, 1991; 
Seyrich et al., 2019) to the case of dense populations in porous media. In particular, we consider a 
2D representation of the population in the ‍xy‍ plane for simplicity and describe the evolution of the 
nutrient concentration ‍c(⃗r, t)‍ and number density of bacteria ‍b(⃗r, t)‍ using the coupled Equations 1 and 
2.

Nutrient diffusion and consumption
The media used in our experiments have ‍L‍-serine as the most abundant nutrient source and chemo-
attractant (Neidhardt et  al., 1974). E. coli consume this amino acid first (Yang et  al., 2015) and 
respond to it most strongly as a chemoattractant compared to other components of the media (Wong 
et al., 2014; Mesibov and Adler, 1972; Adler, 1966; Menolascina et al., 2017). Furthermore, the 
nutrient levels of our liquid medium are nearly two orders of magnitude larger than the levels under 
which E. coli excrete appreciable amounts of their own chemoattractant (Budrene and Berg, 1991) 

https://doi.org/10.7554/eLife.71226
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and generate strikingly different front behavior (Budrene and Berg, 1991; Budrene and Berg, 1995; 
Mittal et al., 2003) than those that arise in our experiments; however, the nutrient levels we use are 
sufficiently low to avoid toxicity associated with extremely large levels of ‍L‍-serine (Neumann et al., 
2014). Thus, given all of these reasons, we focus on ‍L‍-serine as the primary nutrient source and 
attractant, described by the scalar field ‍c(⃗r, t)‍. Equation 1 then relates changes in ‍c‍ to nutrient diffu-
sion and consumption by the bacteria. The nutrient diffusion coefficient ‍Dc = 800‍ μm2/s is given by 
previous measurements in bulk liquid; we treat nutrient diffusion as being unhindered by the highly 
swollen hydrogel matrix due to its large internal mesh size. The maximal consumption rate per cell 
‍κ = 1.6 × 10−11‍ mM (cell/mL)-1 s-1 is chosen based on previous measurements (Croze et al., 2011), and 

‍g(c) = c/
(
c + c1/2

)
‍ describes the influence of nutrient availability relative to the characteristic concen-

tration ‍c1/2 = 1‍ μM through Michaelis–Menten kinetics, as established previously (Cremer et al., 2019; 
Croze et al., 2011; Monod, 1949; Woodward et al., 1995; Shehata and Marr, 1971). These values 
yield simulated fronts that we have previously validated against experiments in porous media for the 
unperturbed case (Bhattacharjee et al., 2021).

Bacterial diffusion and chemotaxis
The bacterial flux ‍⃗Jb‍ as included in Equation 2 arises from the undirected and directed motion of cells, 
that is, diffusion ‍−Db∇b‍ and chemotaxis ‍bχ∇f(c)‍, respectively. Our analysis focuses on the contribu-
tion of flagella-mediated swimming through the pore space to these fluxes, following our previous 
work (Bhattacharjee et al., 2021); however, incorporating other possible modes of motility such as 
surface-assisted propulsion would be a useful future extension. It is generally challenging to calculate 
the motility coefficients ‍Db‍ and ‍χ‍ a priori for a given porous medium and pore size distribution. To 
circumvent this uncertainty and avoid ad hoc approximations, our simulations use values of both that 
were directly determined from our prior experiments (Bhattacharjee and Datta, 2019a; Bhattacha-
rjee et al., 2021).

In particular, we measured the value of the active cellular diffusion coefficient ‍Db‍ by quantifying 
the undirected spreading of a dilute population of the same cells in porous media identical to those 
used here (Bhattacharjee and Datta, 2019a), but under uniform nutrient conditions. The measured 

‍Db = 2.32‍, 0.93, and 0.42 μm2/s for porous media with ‍ξ = 2.2‍, 1.7, and 1.2 μm, respectively.
For directed spreading, we describe cellular chemotaxis using the sensing function 

‍f(c) ≡ log
[(

1 + c/c−
)

/
(
1 + c/c+

)]
‍ and the chemotactic coefficient ‍χ‍, as established previously (Fu 

et al., 2018; Cremer et al., 2019). The characteristic concentrations ‍c−‍ = 1 μM and ‍c+‍ = 30 μM repre-
sent the dissociation constants of the nutrient for the inactive and active conformations of the cell-
surface receptors, respectively (Cremer et al., 2019; Fu et al., 2018; Dufour et al., 2014; Yang et al., 
2015; Sourjik and Wingreen, 2012; Shimizu et al., 2010; Tu et al., 2008; Kalinin et al., 2009; Shoval 
et al., 2010; Lazova et al., 2011; Celani et al., 2011). To measure the active chemotactic coefficient 

‍χ‍, we performed the same experiments as reported here, but using flat, unperturbed inocula (Bhat-
tacharjee et al., 2021). We then tracked the leading-edge position of the resulting flat chemotactic 
fronts over time to directly measure the long-time front propagation speed. Then, we performed the 
same simulations as reported in this paper, but using the flat, unperturbed inocula as initial conditions, 
and measured the long-time front propagation speed in simulations. Finally, we repeated the simula-
tions for different input values of ‍χ‍ and used the value of ‍χ‍ that yielded the best fit with the experi-
mentally measured long-time front propagation speed. Thus, our simulations employ values of ‍χ‍ that 
are directly matched to experiments in identically prepared porous media. Similar to ‍Db‍, the value of ‍χ‍ 
decreases with increasing pore-scale confinement (Bhattacharjee et al., 2021); we obtained ‍χ‍ = 145, 
9, and 5 μm2/s for porous media with ‍ξ‍ = 2.2, 1.7, and 1.2 μm, respectively. Although heterogeneity 
in ‍Db‍ and ‍χ‍ may be present within each population itself (Fu et al., 2018; Bai et al., 2021), we focus 
our analysis on the influence of pore size by assuming a constant value of both for each simulation.

Finally, we note that the motility parameters ‍Db‍ and ‍χ‍ reflect the ability of cells to move through the 
pore space via an unbiased or biased random walk with mean step length ‍l‍ whose value depends on 
pore-scale confinement and possible cell-cell collisions in the pore space. For the case of sufficiently 
dilute cells in porous media, ‍l‍ is set by the geometry of the pore space, as we previously established 
(Bhattacharjee and Datta, 2019a; Bhattacharjee and Datta, 2019b); in particular, ‍l ≈ lc‍, the mean 
length of chords, or straight paths that fit in the pore space (Torquato and Lu, 1993). However, when 
the cells are sufficiently dense, as arises in the experiments explored here, cell-cell collisions truncate 

https://doi.org/10.7554/eLife.71226
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‍l‍. Indeed, our porous media are highly confining; the pore sizes are <8 μm, comparable to the size 
of a single-cell body (length ∼2 μm and width ∼0.5 μm) and its flagella (length ∼5 μm), in all cases. 
Hence, because the pore space is too small to fit multiple cells side-by-side, cell-cell interactions are 
necessarily restricted to end-on interactions. We directly confirmed this phenomenon experimentally 
in our prior study (Bhattacharjee et al., 2021). This feature of confinement in a tight porous medium 
is starkly different from the case of cells in homogeneous liquid, in which short-range side-by-side 
interactions promote alignment of cell clusters and result in cooperative motions at high cell densities. 
We therefore did not incorporate such cooperative interactions in our model. Instead, we model cell-

cell collisions by considering the mean separation between cells 
‍
lcell ≈

(
3f

4πb

)1/3
− d

‍
, where ‍f ‍ is the 

volume fraction of the pore space between hydrogel particles, ‍b‍ is the local bacterial number density, 
and ‍d ≈ 1‍ μm is the characteristic size of a cell; for simplicity, when ‍lcell < lc‍, we assume that cell-cell 
collisions truncate the mean step length ‍l‍ and set its value to ‍lcell‍. That is, wherever ‍b‍ is so large that 

‍lcell < lc‍, we multiply the values of both ‍Db‍ and ‍χ‍ used in Equation 2 by the correction factor ‍(lcell/lc)2
‍ 

that accounts for the truncated ‍l‍ due to cell-cell collisions. Moreover, wherever ‍b‍ is even so large that 
this correction factor is less than zero—that is, cells are jammed—we set both ‍Db‍ and ‍χ‍ to zero. Based 
on our experimental characterization of pore space structure (Bhattacharjee and Datta, 2019b), we 
use ‍f ‍ = 0.36, 0.17, and 0.04, and ‍lc‍ = 4.6, 3.1, and 2.4 μm, for porous media with ‍ξ‍ = 2.2, 1.7, and 
1.2 μm, respectively. In this simple mean-field treatment of cell-cell interactions, as the cellular density 
increases, and thus the mean spacing between cells decreases, they increasingly truncate each other’s 
motion and the motility parameters ‍Db‍ and ‍χ‍ decrease—eventually becoming zero when the cells are 
so densely packed that they do not have space to move.

Bacterial proliferation
Changes in ‍b‍ can also arise from net cell proliferation, as described in Equation 2. In particular, we 
describe net cell proliferation with the maximal rate per cell ‍γ‍ multiplied by the Michaelis–Menten 
function ‍g(c)‍ that again describes the influence of nutrient availability, that is, it quantifies the reduc-
tion in proliferation rate when nutrient is sparse. We directly measured ‍γ ≡ ln 2/τ2‍ previously, where 

‍τ2 = 60‍ min is the mean cell division time in a porous medium for our experimental conditions. We note 
that because ‍c‍ and ‍b‍ are coupled in our model, we do not require an additional ‘carrying capacity’ of 
the population to be included, as is often done (Cremer et al., 2019; Croze et al., 2011); we track 
nutrient deprivation directly through the radially symmetric nutrient field ‍c(⃗r, t)‍.

Implementation of numerical simulations
While the experimental geometry is three dimensional, in previous work (Bhattacharjee et al., 2021), 
we found that radial and out-of-plane effects do not need to be considered to capture the essential 
features of bacterial front formation and migration. Thus, for simplicity, we use a 2D representation. 
In the ‍x‍ direction (coordinates defined in Figures 2 and 4), no flux boundary conditions are used at 
the walls of the simulated region for both field variables ‍b‍ and ‍c‍. In the ‍y‍ direction, no flux boundary 
conditions are used after one wavelength of the undulation, peak to peak, which comprises a single 
repeatable unit. The initial cylindrical distribution of cells 3D printed in the experiments has a diam-
eter of ∼100 μm; so, in the ‍x‍ dimension of the numerical simulations, we use a Gaussian with a 100 
μm full width at half maximum for the initial bacteria distribution ‍b(x, t = 0)‍, with a peak value that 
matches the 3D-printed cell density in the experiments, ‍0.95 × 1012‍ cells/mL. We vary the center ‍x‍ 
position of the Gaussian distribution sinusoidally along ‍y‍ to reproduce a given experimental wave-
length and amplitude. Experimental wavelengths were measured directly from confocal images and 
rounded to the nearest 10 μm. The initial condition of nutrient is ‍c = 10‍ mM everywhere, characteristic 
of the liquid media used in the experiments. The initial nutrient concentration is likely lower within 
the experimental population initially due to nutrient consumption during the 3D printing process; 
however, we expect this discrepancy to play a negligible role as nutrient deprivation occurs rapidly in 
the simulations.

As previously detailed (Bhattacharjee et al., 2021), while the periphery of a 3D-printed bacterial 
population forms a propagating front, cells in the inner region remain fixed and eventually lose fluo-
rescence because they are oxygen-limited. Specifically, the fluorescence intensity of this fixed inner 
population remains constant over an initial duration ‍τdelay = 2‍ hr, and then exponentially decreases 
with a decay time scale ‍τstarve = 29.7‍ min. To facilitate comparison to the experiments, our simulations 

https://doi.org/10.7554/eLife.71226
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incorporate this feature to represent the cellular 
signal, which is the analog of the fluorescence 
measured in experiments, in Figures 2 and 4. We 
do this by multiplying the cellular density obtained 
by solving Equation 2 by a correction factor 
that incorporates the history of oxygen deple-
tion. Specifically, wherever ‍c(⃗r ′, t′)‍ drops below 
a threshold value, for all times ‍t > t′ + τdelay‍, we 
multiply the cellular density ‍b(⃗r ′, t)‍ by ‍e−(t−t′)/τstarve‍, 
where ‍t′‍ is the time at which the position ‍⃗r ′‍ became 
nutrient-depleted; oxygen and nutrient depletion 
occur at similar positions and times as detailed in 
Bhattacharjee et al., 2021.

To numerically solve the continuum model, 
we use an Adams–Bashforth–Moulton predictor 
corrector method (Seyrich et  al., 2019), where 
the order of the predictor and corrector are 3 
and 2, respectively. Since the predictor corrector 
method requires past time points to inform future 
steps, the starting time points must be found with another method; we choose the Shanks starter of 
order 6 (Shanks, 1966). For the first and second derivatives in space, we use finite difference equa-
tions with central difference forms in 2D. Time steps of the simulations are 0.01 s and spatial resolution 
is 10 μm. Because the experimental chambers are 3.5 cm in diameter, we use a distance of 3.5 × 104 
μm for the size of the entire simulated system in the ‍x‍ direction with the cells initially situated in the 
center. Our previous work (Bhattacharjee et al., 2021) demonstrated that the choice of discretization 
does not appreciably influence the results in numerical simulations of flat fronts; furthermore, our new 
results for the simulations performed here (Figure 4—figure supplement 3) indicate that our choice 
of discretization used is sufficiently finely resolved such that the results in numerical simulations of 
undulated fronts are not appreciably influenced by discretization.

Characterizing simulated front dynamics
For the analysis shown in Figure 2, the leading edge is defined as the locus of positions at which ‍b‍ 
falls below a threshold value equal to 10–4 times the maximum cell density of the initial bacterial distri-
bution, as in Bhattacharjee et al., 2021. For the analysis shown in Figure 4, to more accurately track 
the leading edge of the front, we define it as the locus of positions at which ‍b‍ falls below a threshold 
value specific to each condition tested; the threshold is 0.003 cells per μm3 for the prototypical case of 

‍ξ = 1.7‍ μm and ‍λ = 0.8‍ mm shown in Figure 4A–C, as well as all simulations for ‍ξ = 2.2‍ μm; 0.002 cells 
per μm3 for simulations for ‍ξ = 1.7‍ μm and ‍λ = 2.0‍ and 3.2 mm; and 0.001 cells per μm3 for simulations 
for ‍ξ = 1.2‍ μm and ‍λ = 0.8‍ mm. We note that the ‍b‍-dependence of the motility parameters ‍Db‍ and ‍χ‍ 
does not play an appreciable role in our analysis of smoothing since the definition used for the leading 
edge of each front is at a fixed, low value of ‍b‍.

Robustness of front smoothing
One may speculate that smoothing could be avoided or even reversed by lowering the initial nutrient 
concentration to a value in between ‍c+‍ and ‍c−‍, thereby diminishing the difference in chemotactic 
response between peaks and valleys and allowing the amplifying effects of the nutrient gradient to 
dominate. However, a simulation performed with a much lower initial nutrient concentration of 10 
μM throughout, chosen to be in between ‍c+‍ and ‍c−‍, does not even form a traveling front at all over 
the experimental time scale (Video 7). This absence of a front is due to the reduction in nutrient 
consumption as modulated by the Monod function ‍g(c)‍, which results in a drastic reduction in the 
nutrient gradient that drives front formation and propagation. Thus, despite varying the initial nutrient 
concentration over three orders of magnitude, the upper limit ‍c+‍ over an order of magnitude, and 
the migration parameters ‍Db‍ and ‍χ‍ over an order of magnitude, we have not found conditions under 
which chemotactic fronts, if they form, do not smooth. Smoothing therefore appears to be robust to 
large changes in the environmental conditions.

Video 7. Simulation probing the condition of lower 
initial overall nutrient concentration for ‍λ = 0.8‍ mm, 

‍ξ = 1.7‍ μm. Video shows the calculated cellular 
fluorescence signal of cells failing to migrate as a front 
from an undulated stripe of closely packed E. coli with 
initial ‍c = 10‍ μM. To more clearly show the lack of front 
formation, in this visualization we neglect fluorescence 
signal loss that occurs when cells are oxygen depleted.

https://elifesciences.org/articles/71226/figures#video7
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