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Abstract

A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod,
composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes
them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their
detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a
neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a
low level of false positives (,10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes.
We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families,
including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein
families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing
experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington’s disease. Using yeast two
hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods
associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted
interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein.
An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://
www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple
sequence alignments.
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Introduction

Tandems of repeated protein sequences forming structural

domains occur in at least 3% of proteins in eukaryotic organisms

[1]. Characterization of these repeats by sequence similarity is

sometimes difficult as weak evolutionary constraints cause rapid

sequence divergence [2]. In particular, repeats including two alpha

helices packed together then stacked to form a flexible rod (denoted

here alpha-rod) belong to this category (see an example in Figure 1).

Some of these alpha-rod repeats have been defined in terms of

sequence similarity and are widespread in multiple protein

families: HEAT [3,4], Armadillo [5] and HAT [6]. Others are

evident in just one protein family, for example the PFTA repeats

[7]. Some, however, bear no statistically significant sequence

similarity and may not have originated from sequence duplication

(for example, the all-helical VHS domain in Drosophila melanogaster

Hrs protein [8], or the subunit H of Saccharomyces cerevisiae vacuolar

ATP synthase [9]).

This divergence complicates the detection of alpha-rod repeats

by methods based on sequence similarity. For example, profile-

based methods used in the protein domain databases PFAM [10]

and SMART [11] detect only two of the 14 HEAT repeats of

human AP-2 complex subunit beta-1 (Figure 1), and might fail to

detect any repeats in other alpha-rod containing sequences.

Despite the heterogeneity of alpha-rod repeats, they have

common features (discussed in [4]): length of about 40 amino

acids, anti-parallel alpha-helices, and constraints given by the

packing of consecutive repeats. This suggests that alpha-rod

repeats are a protein structural feature that obeys some physical

constraints irrespective of their evolutionary origin and particular

sequence. Coiled coils and transmembrane alpha-helices are other

examples of such structural features. Statistical methods have been

used to predict coiled coils [12] and transmembrane alpha-helices

[13] with excellent reliability, using algorithms that learn to

recognize these features from amino acid sequences. In particular,

back-propagation neural networks [14] have been used with

success to predict secondary structure [15,16], transmembrane

alpha-helices [17], and protein residue solvent accessibility [18].

We hypothesized that a back-propagation neural network could

be better suited than homology based methods for the detection of
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different types of alpha-rod repeats, if trained in an appropriate set

of sequences containing these repeats. The last ten years have seen

the resolution of a sufficient number of protein 3D structures of

sequences with alpha-rod repeats to provide a useful training set

for such predictions.

Results

We manually compiled a set of protein sequences with known

structures reported to contain structural repetitions forming an

alpha-rod composed of stacked repeats (see supplementary Table

S1 in Text S1, positives). To reduce redundancy, no two sequences

with more than 70% identity were included in the set (after

verifying that they were full length homologs). We included one

protein from each of three HEAT repeat types [4], two armadillo

repeat proteins, and five other unrelated proteins. A similar sized

set of sequences adopting a variety of structures but without alpha-

rod repeats was compiled as a negative set (Table S1 in Text S1,

negatives).

The input window of the neural network was chosen to be 39

amino acids, which is close to the average repeat length. Since

these repeats are characterized by two helices of similar size, we

chose as the central defining feature the middle residue in the

hinge between the two helices. This residue should be equidistant

from two secondary structure elements with particular packing

features, likely presenting a periodicity of small and hydrophobic

residues constrained by the intra-repeat interactions between the

two helices and the inter-repeat interactions with the stack of

consecutive repeats [4]. Therefore, the network was trained to

detect the central residue of the hinge (see Methods). The file with

the annotated sequences used for the training is provided as

supplementary Dataset S1.

Analysis of Proteins of Known Structure
The parameters of the method were optimized using the

analysis of proteins of known structure. We found that hits above a

score of 0.8 were reliable, especially when the protein had several

of them in the appropriate periodicity. Identification of a sequence

as containing an alpha-rod was optimal when requiring at least

three hits above a score of 0.8 with a minimum spacing of 30

amino acids between hits and a maximum of 135. Further details

can be found in the supplementary Text S1.

A total of 87 sequences were selected with this threshold, which

can be grouped in 12 protein families of which 8 were not

homologous to those used in the training set (Table S2 in Text S1).

Since these examples correspond to proteins of known structure, it

was easy to visually verify that of those eight families seven were

true positives and only one constituted a false positive. Homology

of these proteins to the ones used in the training is extremely low

or statistically non-significant. Therefore, we concluded that the

network was useful in expanding our current knowledge of the

occurrences of these repeats and we set to demonstrate this. For

simplicity we will denote our methodology as ARD (Alpha-rod

Repeat Detection) henceforth.

Analysis of Complete Genomes
To illustrate the coverage of the method we analyzed the

complete protein sets from a series of fully sequenced organisms.

The threshold tested in the analysis of PDB was used to select

positive sequences. The results of the analysis are in Table 1. The

fractions of alpha-rod repeat proteins are around 0.4% for the nine

eukaryotic genomes and lower (0.05%–0.21%) in the three

prokaryotic organisms tested. No correlation was found between

proteome size and fraction of positives.

Using ARD we were able to detect protein sequences that

PFAM [10] and SMART [11] do not detect or that they detect

with multiple profiles (PFAM: Arm, HEAT_PBS and HEAT;

SMART: ARM, EZ_HEAT and HEAT). Many of these were not

described in the literature.

To illustrate the ability of ARD to identify new results we will

focus on families with at least one human gene. To illustrate how

the method covers various profiles used by SMART and PFAM

we will examine results on families with HEAT repeats of the PBS

type from fungi, bacteria, and archaea. Finally, we illustrate an

experimental application of the method to dissect domains in

huntingtin, the protein mutated in Huntington’s disease, for which

little is known regarding its structure and function.

Survey of Human Genes
A total of 86 human proteins were found to contain alpha-rod

repeats, which we grouped in 52 families on the basis of their

sequence similarity. Of those families, at least 16 have not been yet

described to contain alpha-rod repeats in the literature, with 9

undetected by both the SMART and PFAM domain detection

web tools (see Table 2).

In particular, six families have neither literature nor database

repeat assignment; for these, we could verify the repeats using a

manually tuned iterative PSIBLAST sequence search [19] of the

region with repeats, which showed significant similarity to alpha-

rod repeat regions in other protein families. Four of these families

encode proteins of unknown function: Serac1, C8orf73, C17orf66,

and KIAA0423 (and homolog LOC23116). A fifth family has

three members in humans, the stromal antigens 1, 2 and 3

(STAG1-3), subunits of the cohesin complex, which mediates

cohesion between sister chromatids [20]. In particular, the

phosphorylation of STAG2 is essential for cohesin dissociation

during prophase and prometaphase [21]. This family has two

homologs in Xenopus (demonstrated to form part of two different

cohesion complexes [22]), the plant Arabidopsis thaliana (Scc3,

needed for the orientation of the kinetochores during meiosis [23])

and yeast (Irr1/Scc3, involved in cell wall integrity [24]). The

Author Summary

Many proteins have an elongated structural domain
formed by a stack of alpha helices (alpha-rod), often found
to interact with other proteins. The identification of an
alpha-rod in a protein can therefore tell something about
both the function and the structure of that protein.
Though alpha-rods can be readily identified from the
structure of proteins, for the vast majority of known
proteins this is unavailable, and we have to use their
amino acid sequence. Because alpha-rods have highly
variable sequences, commonly used methods of domain
identification by sequence similarity have difficulty detect-
ing them. However, alpha-rods do have specific patterns of
amino acid properties along their sequences, so we used a
computational method based on a neural network to learn
these patterns. We illustrate how this method finds novel
instances of the domain in proteins from a wide range of
organisms. We performed detailed analysis of huntingtin,
the protein mutated in Huntington’s chorea, a neurode-
generative disease. The function of huntingtin remains a
mystery partially due to the lack of knowledge about its
structure. Therefore, we defined three alpha-rods in this
protein and experimentally verified how they interact with
each other, a novel result that opens new avenues for
huntingtin research.

Detection of Alpha-Rod Protein Repeats
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analysis of the family suggests that their sequences are composed of

alpha-rod repeats (Figure 2 and Figure S3A in Text S1).

The sixth novel assignment case is the PSMD family

(proteasome 26S subunit, non-ATPase) members 1, and 2, and

5. PFAM/SMART identify these as containing repeats of the

Proteasome/cyclosome (PC_rep), originally predicted to be

composed of a beta strand and a alpha helix [25]. However,

ARD predicts 5 repeats which overlap with those. Secondary

structure predictions (using JPRED3 [26]) and homology to alpha-

rod repeats proposed for PSMD1 yeast homolog Sen3/RPN2 [27]

clearly suggest that these are alpha-rod repeats, and that the

current PC_rep motif used by PFAM/SMART cuts one of the

helices in half. This suggests that the PFAM/SMART domain

definition should be revised.

Another family for which a redefinition of the PFAM/SMART

profile may be required is RRP12, homolog to the yeast

Ribosomal RNA processing 12, identified as HEAT-repeat

containing, Ran binding, and required for the nuclear export of

both the 40S and 60S ribosomal subunits in yeast [28]. SMART

and PFAM identify only one HEAT repeat in the human sequence

because other repeats overlap with domain NUC173, defined as

present in several nucleolar proteins [29], whereas ARD identifies

9 repeats.

Three other families remain undetected by PFAM and SMART

profiles but have been described to contain alpha-rod repeats in

separate publications: these are the MRO (Maestro), which

expresses a nucleolar protein of unknown function during male

mouse gonad development [30], FRAP1/mTOR, which we

described as repeat containing in the first publication defining

the HEAT repeats [3] (Figure 2 and Figure S3B in Text S1), and

NIPBL (the homolog to Drosophila Nipped-B) related to sister

chromatid cohesion yeast proteins Scc2 and Mist4 [31].

Figure 1. Detection of repeats in an alpha-rod protein. Structure (alpha-backbone trace) of the 591 aa N-terminal fragment of human adaptor-
related protein complex 2, beta 1 subunit, as forming part of the AP2 clathrin adaptor core [69] (PDB code 2VGL chain B). Green and blue represent
residues in alpha-helix and in disordered conformation, respectively. This structure has no residue in beta-strand conformation and is entirely
composed of an alpha-rod of 14 repeats previously classified as HEAT repeats of type ADB [4]. The label for each repeat indicates the following:
repeat order, residue detected by the network, score of hit, and position relative to residue used for training. For example, ‘‘1 N24 0.84:1’’ indicates
that the residue detected for repeat #1 was N (amino acid code for asparagine) in position 24 of the sequence, with score 0.84, but that the residue
in relative position 1 (that is, at 25) was the one used to train the network as being in the hinge. Ten out of the 14 repeats were detected, 8 of them
with score. = 0.80. The inset shows repeats 12 (right, top) and 1 (right, bottom) with the residue used as positive in the training underscored. A
coloured label indicates the residue identified by the network after training, which in both cases is not the one given in the training but others
belonging to the hinge (E25 and S438). The figure was generated using NCBI’s linked viewer, Cn3D [70].
doi:10.1371/journal.pcbi.1000304.g001

Detection of Alpha-Rod Protein Repeats
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For ten other gene families, PFAM and SMART suggest the

presence of the repeats but their coverage is more limited than that

of ARD and this evidence remains unreported in the literature.

This is the case of STK36/FU (the homolog to Drosophila fused, a

mediator of sensitivity to PARP [32]), INTS4 (integrator complex

subunit 4, which associates with the C-terminal domain of RNA

polymerase II large subunit [33]), and of eight hypothetical

proteins: C1orf175, LOC165186, HEATR2, HEATR4,

HEATR6, KIAA1468, RTDR1 (deleted in rhabdoid tumour),

and TMCO7 (which interacts with MACF1, the microtubule-actin

crosslinking factor 1 according to a two-hybrid screening [34]).

The combination of ARD analyses of the human protein

homologs in other organisms, secondary structure prediction and

definition of regions of amino acid composition bias facilitates the

definition of the boundaries of domains composed of repeats

sometimes reused in different domain architectures. Here we

present three examples.

We found that the LOC165186 and KIAA0423 hypothetical

human proteins (mentioned above) define two families whose

structured sequence is likely alpha-rods; these two proteins share a

C-terminal domain possibly made of more than 10 repeats

(Figure 2 and Figure S3C in Text S1). LOC165186, conserved in

mammals, has an additional N-terminal composition biased region

of around 500 amino acids, whereas KIAA0423, conserved down

Table 2. Selected predictions for human genesa.

Representative Description Ab S P R Refc Relatedd

Novel STAG1 Homologs of yeast subunit of the cohesin complex 3
(Scc3/IRR1)

4 0 0 0 u STAG2 STAG3

SERAC1 serine active site containing 1 3 0 0 0 u

C8orf73 5 0 0 0 u

C17orf66 6 0 0 0 u

KIAA0423 LOC23116 11 0 0 5 u

PSMD1 proteasome 26S subunit, non-ATPase family 5 0 0 0 u PSMD2 PSMD5

No PFAM/SMART MRO Maestro 3 0 0 0 [30] NP_775760.2 Q8NDA8_HUMAN
Q8ND95_HUMAN

NIPBL Nipped-B homolog (Drosophila) 7 0 0 5 [31]

FRAP1 FRAP1/mTOR 16 0 0 11 [3]

Domain redefinition RRP12 Ribosomal RNA processing 12 homolog (yeast) 9 1 1 0 [28]

CLASP1 CLASP family 10 4 4 7 [38] CLASP2

CKAP5 CKAP5 18 3 3 10 [31]

Not reported in literature KIAA1468 6 0 3 0 u

HEATR2 9 6 6 11 u

HEATR4 9 0 3 0 u

HEATR6 7 2 2 4 u

TMCO7 7 0 2 0 u

STK36 Serine/threonine kinase 36, fused homolog (Drosophila) 7 3 3 0 u

INTS4 integrator complex subunit 4 8 5 5 5 u Q96LV5_HUMAN

RTDR1 Rhabdoid tumor deletion region protein 1 6 0 1* 0 u

LOC165186 7 1 1 0 u

C1orf175 6 0 1 0 u

aHits not included: reported in the literature (SF3B1, MMS19, huntingtin, PSME4, NCAPD3, NCAPG2, TBCD, BTAF1, KOG1, PDS5B); armadillo repeats (JUP, RAP1GDS1);
likely false positives (OBSCN, P2RY8, PACS2); other genes homologous to 3D structures discussed before.

bPredicted number of repeats by ARD (A), SMART (S), PFAM (P), REP (R).
cReference column. ‘‘u’’ indicates unknown from the point of view of the literature.
dClose homologous genes are indicated.
*Armadillo repeat.
doi:10.1371/journal.pcbi.1000304.t002

Table 1. Results of predictions in complete genomes.

Organism Proteins Hits1 Genes Fraction

Homo sapiens 43797 159 86 0.36%

Mus musculus 32241 125 93 0.39%

Monodelphis domestica 32685 131 81 0.40%

Gallus gallus 22250 102 75 0.46%

Xenopus tropicalis 28324 96 69 0.34%

Danio rerio 36078 116 85 0.32%

Drosophila melanogaster 19789 52 41 0.26%

Saccharomyces cerevisiae 6697 23 23 0.34%

Gibberella zeae 11640 37 37 0.32%

Escherichia coli 4133 2 2 0.05%

Anabaena variabilis ATCC 29413 5634 11 11 0.20%

Methanosarcina mazei 3303 7 7 0.21%

1At least three matches with score. = 0.8 and with . = 30 aa spacing.
doi:10.1371/journal.pcbi.1000304.t001

Detection of Alpha-Rod Protein Repeats
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to worms, has an extra N-terminal domain of alpha-rod repeats

connected to the C-terminal repeat domain by a middle linker that

is enlarged in the chordate sequences.

Human CKAP5/TOG (cytoskeleton associated protein 5), a

component of the centrosome that is required for spindle pole

assembly [35], has similar-length homologs in mammals, frog, and

fly. Analysis of the family identifies five alpha-rods of six repeats

each in these sequences and a C-terminal non-repeat containing

domain (Figure 2 and Figure S3D in Text S1). The worm

homologs are shorter since they have only three of the repeat

domains. The structure of one of those domains in Caenorhabditis

elegans zyg9 was solved and confirmed the presence of an alpha-rod

of six repeats [36].

The CLASP family proteins are microtubule-associated proteins,

conserved in animals, fungi, and plants [37]. In humans, there are

two homologs, hCLASP1 and hCLASP2, which, similar to CKAP5,

associate with the ends of growing microtubules to participate in

mitotic spindle formation [38]. Their multiple sequence alignment

with homologs suggests that they are formed by four alpha-rods

(Figure 2 and Figure S3E in Text S1), also noted in [38].

Other genes previously identified in the literature and by

SMART/PFAM are: TBCD (tubulin folding cofactor D) reported

by [31]; PSME4/PA200, identified as containing 18 HEAT-like

repeats in [39]; BTAF1 (RNA polymerase II, B-TFIID transcription

factor-associated, 170 kDa) whose homolog in yeast, Mot1, was

noted by [31]; MMS19, involved in nucleotide excision repair and

transcription, noted by [40]; huntingtin [3]; both subunits of non-

SMC condensin II complex D3 and G2, noted by [31]; and PDS5B/

APRIN, a chromatin regulator in hormonal differentiation [41],

whose homolog Spo76 in Sordaria macrospore was noted by [31].

The existence of two cases where the evidence of repeats

originates from low resolution electron microscopy images

deserves special mention. SF3B1 (splicing factor 3b, subunit 1) is

proposed to have 22 repeats according to the structure obtained by

single-particle electron cryomicroscopy at a resolution of less than

10 angstroms of its complex with splicing factor 3a (SF3B14/P14)

where it is shown to coil around SF3B14 [42]. The low resolution

electron microscopy structure of the yeast complex of mTOR with

KOG1 suggests that KOG1 has a middle alpha-rod domain [41].

We can confirm through ARD analysis that both SF3B1 and

KOG1 have alpha-rods in the regions suggested.

As noted in the section on analysis of PDB, armadillo repeats

are not well detected by ARD and generally PFAM and SMART

are as good or better than ARD in recognizing them (for example,

for JUP and ARMC8). However, two genes are detected by ARD

that are covered by one single PFAM armadillo match and no

SMART matches: these are HSPBP1 (hsp70-interacting protein)

whose solved 3D structure indicates four armadillo repeats [43]

and newly identified RTRD1, for which we detect 3 and 6 repeats,

respectively.

Finally, of all 52 protein families with human genes we

recognized just three false positives: PACS2 (phosphofurin acidic

cluster sorting protein 2), OBSCN (obscurin, cytoskeletal calmod-

ulin and titin-interacting RhoGEF), and P2RY9 (purinergic

receptor P2Y, G-protein coupled, 8). This was determined by

lack of further evidence (no homology to regions with repeats in

other families, incompatible secondary structure predictions)

combined with a small number of hits in the human sequence,

in homologs in other species, or by the overlap of those hits with

other domains.

Short Repeats Highly Identical within Protein Sequences
In the results of fungal and prokaryotic sequences, we noted a

number of cases where the repeats identified for the sequences

selected were so similar that it was possible to align most of the repeats

Figure 2. Selected human protein families with alpha-rod repeats. The cartoon summarizes the findings for seven human proteins. The
green ellipses represent regions of alpha-rod repeats as deduced by a combination of our method, analysis of homologs, and iterative sequence
analysis. Further details for each case, including an overview of repeat predictions and regions with amino acid bias overlaid to the multiple sequence
alignment of the family using an update of the BiasViz software [71] are available as supplementary Figure S3 in Text S1.
doi:10.1371/journal.pcbi.1000304.g002

Detection of Alpha-Rod Protein Repeats
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by hand in stark contrast to the very divergent examples noted above.

We illustrate these with 8 examples, which are not related by

homology (see Table S3 in Text S1). Their high percentage of inter-

repeat sequence identity is indicative of very recent events of

duplication occurring independently in these eight examples.

Secondary structure prediction suggests that the structure of the

repeat is composed of two helices of ,10 residues, with a middle loop

of three, and an outer loop of ,10 residues, for a total length of 31–

35 aa.

Although most of the repeats were identified by SMART and

PFAM (EZ_HEAT and HEAT_PBS profiles, respectively), not all

repeat instances were marked and some were detected with the

alternative HEAT profile. In contrast, ARD identified all obvious

repetitions and some additional borderline ones.

Orthologs of these eight examples were identified in related taxa

(Table S3 in Text S1). The puzzling question remains of why or

how these eight apparently unrelated families arose and converged

to these short alpha-rod repeats. Whether there are common

mechanisms for the duplication and selection of these repeats and

for their functions is, at the moment, unclear.

Dissecting Huntingtin
The human protein huntingtin is involved in Huntington’s

disease. Its function remains unclear [44]. In 1995 we described

that huntingtin contains HEAT repeats [3] but their identification

was restricted to 10 units covering ,400 scattered amino acids out

of a total sequence length of 3144 amino acids. Since then, no

other characteristic structural features have been described for this

protein, which complicates its description in terms of separate

domains with independent folds and functions. As a result no 3D

structure of any fragment of this protein has been yet solved, and

although interacting partners of this protein have been found they

are mostly restricted to the N-terminal 500 amino acids of the

protein [45]. Here, we applied the methodology described above

to define alpha-rods in huntingtin and subsequently tested the

validity of our predictions experimentally.

Initially, we produced an alignment of human huntingtin with a

representative set of homologous sequences from the database

(provided as supplementary Dataset S2). For this we used not only

sequences from protein databases but also sequences derived from

ESTs and from genomic fragments. We identified for the first time

the existence of huntingtin homologs in worms (nematoda genus

Caenorhabditis, and annelida Capitella sp.), amoebae (Naegleria fowleri

and Dictyostelium discoideum), sea anemone Nematostella vectensis, and

choanoflagellate Monosiga brevicollis, notably expanding the scope of

this family. We did not find homologs of huntingtin in fungi.

The analysis of human huntingtin by ARD suggests six matches

but other low scoring hits are consistently present in homologs.

Comparison to biased regions sharply defines two N-terminal

domains of six and seven repeats (H1 from amino acid 114 to 413

and H2 from 672 to 969) and suggests the existence of a C-terminal

domain of seven repeats (H3 from 2667 to 2938) (Figure 2 and

Figure S3F in Text S1). Iterative sequence searches using PSIBLAST

with these regions indicated homology to HEAT repeats in otherwise

unrelated proteins in the 2nd or 3rd iterations. Consistently, sequence

analysis suggested a HEAT-repeat fold (using SVMfold [46]), and

threading suggested that those regions adopt a HEAT-repeat fold

with high likelihood (using GenTHREADER [47]). The compar-

ative protein structure modeling tool TASSER-Lite [48] produced

an alpha-rod for H1 and H2, but an alpha-beta barrel for H3

(incompatible with the predicted secondary structure of the region

using JPRED3 [26]). Given secondary structure predictions and

scattered matches it is tempting to speculate that other alpha-rods

exist outside of the H1, H2, and H3 domains. However, we were

unable to obtain consistent results using PSIBLAST or threading for

fragments outside these regions.

To test our predictions, we produced huntingtin fragments

spanning the complete sequence of the protein but separating the

predicted alpha-rods into different fragments (Figure 3A) in order

to study intra-molecular domain interactions in huntingtin by

yeast two hybrid (Y2H) assays (see Methods). Our rationale is that

only well defined domains will fold and produce interactions,

whereas wrongly defined domains will either not interact or

produce nonspecific interactions.

We found that the huntingtin fragment Htt507-1230 with the

H2 domain self-associates in the Y2H assays. In addition,

interactions between Htt507-1230 and Htt1-506Q23 (H1 domain)

as well as with the fragment Htt2721-3144 (H3 domain) were

observed (Figure 3B). No other interactions were observed.

The results obtained with the Y2H assays were also confirmed

in mammalian cells using a modified version of the LUMIER

method (luminescence-based mammalian interactome mapping

technology, [49]). Protein A (PA)-Renilla luciferase- and Firefly-

V5 luciferase (Luc)-tagged huntingtin fusion proteins were co-

expressed in HEK293 cells and were assessed for the expression of

the fusion proteins by immunoblotting and luciferase assays

(Figure 3C and 3D). The PA-Renilla-tagged fusion protein is then

immunoprecipitated from the soluble cell extracts with IgG coated

Dynal magnetic beads. After washing, binding of the Firefly-V5

Luc-tagged fusion protein is quantified by measuring the firefly

luciferase activity in a luminescence plate reader. As shown in

Figure 3D, interactions between the huntingtin fragments Htt1-

506Q23 and Htt507-1230, Htt507-1230 and Htt507-1230,

Htt507-1230 and Htt2721-3144 were observed with the assays.

Taken together, these experimental results give the first

evidence of domains in huntingtin that mediate potential intra-

as well as inter-molecular huntingtin interactions. One of many

plausible structural assemblies of huntingtin’s domains that are

consistent with our results and with those in the literature is

discussed in Figure 4.

Discussion

Performance of the Method
We have developed and applied a neural network for the

prediction of alpha-rod repeats. Analysis of the results suggests that

it discovers more repeat-containing proteins and repeats per

protein than sequence similarity based methods using manually

curated profiles, which were previously the best method to detect

these repeats. We estimate a level of false positives below 10%: 1 in

12 families in the analysis of PDB (approximately 8%), 3 in 52

families in the analysis of human genes (below 6%). The level of

false negatives could be eventually reduced by expanding the

training set after new structures of sequences with alpha-rod

repeats are solved, but one must be cautious about this to avoid

over-prediction. Here, we preferred to train the neural network

with a conservative set of known structures to demonstrate that

they allow detection of recently identified cases.

We consider it very encouraging that the network learned from

a small number of examples and generalized to recognize repeats

not used in the training, e.g. the shorter PBS lyase repeats, or those

found for the first time in six human protein families. Most of the

repeats detected correspond to HEAT, PBS, and Armadillo.

Whereas the network effectively detected a number of unrelated

alpha-rod repeat types, it failed to detect the HAT repeats [6].

Although their length is similar, their structural arrangement in

highly parallel helices [50] and the conservation of aromatic residues
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[51] make them significantly different from HEAT and Armadillo

repeats explaining why they cannot be detected by our method.

The performance of PFAM, SMART and ARD in predicting

each type of alpha-rod repeats in sequences deposited in the PDB

database is summarized in Table 3. ARD outperforms PFAM and

SMART in the detection of HEAT and PBS repeats but

underperforms in the detection of Armadillo repeats (although it

identifies some proteins with Armadillo repeats that escape

detection by both PFAM and SMART, see Table S2 in Text

S1). The proteins in PDB that are currently annotated with HAT

repeat regions are detected exclusively by SMART.

Evolutionary and Structural Implications
The lack of a common evolutionary origin for all repeats forming

alpha-rods indicates that some specific constraints drive convergent

evolution to repeatedly rediscover these repeats as a common

solution to a general functional need: protein–protein interactions.

Structures of alpha-rods suggest that they are extremely flexible and

this allows the ensemble to coil around their target as a boa

constrictor would do with its prey. A good example is given by the

structure of Exportin Cse1p in complex with Kap60p and RanGTP,

where both Cse1p and Kap60p are alpha-rods which wrap around

each other, and Cse1p wraps around RanGTP [52].

The necessity to coil around proteins possibly explains why the

length of these repeats varies between 30 and 45 amino acids.

Shorter repeats might not produce enough interactions between

the units to form the rod; consequently the rod would not be stable

enough and would unfold too easily. Longer repeats might not

produce a rod flexible enough to coil around typical protein targets

of diameters in the range of 30 to 50 angstroms.

The current data from protein structures and the predictions of

protein domains for proteins with alpha-rods (See Table S2 in

Text S1) does not suggest the co-occurrence of alpha-rods with

other protein domains. We think that this constitutes further

evidence that alpha-rods can be used pretty much to bind any

protein as needed.

Functions of Proteins with Alpha-Rods
Neuwald and Hirano identified in [31] several novel HEAT-

repeat containing proteins with functions related to chromosomal

Figure 3. Study of interactions between fragments of huntingtin. (A) Schematic overview of huntingtin fragments used in Y2H and LUMIER
experiments. (B) The results obtained with the Y2H assays. (C) The expression of different fusion pairs was analyzed by Western blot using antibodies
against V5-epitope (Invitrogen, 1:5000, monoclonal antibody) and Protein-A (Sigma 1:2000, polyclonal antibody); 15 ml from 100 ml of each cell
extract was loaded onto SDS-PAGE gel. Detection with anti-tubulin antibodies was used as a loading control. (D) Firefly luciferase activities of
immunopurified protein complexes in relative fluorescence units (RFU).
doi:10.1371/journal.pcbi.1000304.g003
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organization and microtubule interaction. In agreement with this,

here we have identified many alpha-rod repeat containing

sequences with related functions, notably direct tubulin binding.

A well characterized example is the TOG domain (an alpha-rod

of HEAT repeats), which binds tubulin heterodimers to assist

addition of tubulin to the plus-end of microtubules [53]; the crystal

structure of the TOG domain in Caenorhabditis elegans Zyg9 suggests

how this interaction may happen through intra-repeat turns [36].

There is evidence of other microtubule-interacting sequences with

alpha-rod repeats: yeast Stu2p binds tubulin [36], clathrin-coated

vesicles are assembled along microtubules [54], the protein

phosphatase 2A (PP2A) binds to microtubules [55], armadillo-

repeat containing sperm antigen 6 (Spag6) colocalizes with

microtubules [56] (its homolog in Chlamydomonas reinhardtii is

PF16, involved in protein–protein interactions required for

microtubule stability and flagellar motility [57]), huntingtin

association with microtubules was initially found in vitro [58]

and then with the beta subunit of tubulin in vivo [59].

A particular case is the plant specific family Tortifolia1/TOR1/

SPR2, first characterized in Arabidopsis thaliana as microtubule-

associated protein and containing HEAT repeats [60]. Its N-

terminal HEAT repeat domain has been proven to bind to tubulin

[61]. Our analysis suggests that this domain possibly contains

seven repeats and is distantly related to the CLASP family (data

Figure 4. Hypothetical 3D structure of huntingtin. The cartoon represents a hypothetical model of huntingtin interactions consistent with our
results. (a) The N-terminus with the poly-Q tail (red arch) is followed by the H1 alpha-rod domain (residues 114 to 431, yellow cylinder), a small
domain (432 to 671, blue), the H2 alpha-rod domain (672 to 969, yellow), a large domain (970 to 2666, green), the H3 alpha-rod domain (2667 to
2938), and a small C-terminal domain (2939–3144). (b) The three rods could assemble by coiling anti-parallel to each other with H2 in the middle: that
would explain the interactions between H1 and H2, and between H2 and H3. (c) Formation of a huntingtin homodimer [66] with a second molecule
of huntingtin (gray) could happen through their H2 domains. The N-terminal poly-Q tail and the H1 domain remain exposed and can interact with
other proteins, as previously reported [45]. The figure was produced with Google SketchUp.
doi:10.1371/journal.pcbi.1000304.g004

Table 3. Evaluation of the predictions of PFAM, SMART and
ARD, for all proteins in the PDB with four types of alpha-rod
repeats.

PFAM1 % SMART2 % ARD % Total

HEAT 21 36 0 0 58 100 58

PBS 1 25 1 25 3 75 4

Armadillo 44 80 50 90 28 50 55

HAT 0 0 7 100 0 0 7

1PFAM profiles used were PF02984 (HEAT), PF03130 (PBS), PF00514 (Armadillo)
and PF02184 (HAT).

2SMART profiles used were SM00567 (PBS), SM00185 (Armadillo) and SM00386
(HAT).

doi:10.1371/journal.pcbi.1000304.t003
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not shown). Several non-plant protozoan sequences (in amoeba

Dictyostelium discoideum, and in ciliates Paramecium tetraurelia strain d4-

2 and Tetrahymena thermophila SB210) are more similar to the plant

family than to distantly related metazoan members hinting at a

complex evolution for this family, possibly involving horizontal

transfer events between plants and protozoa (data not shown).

Other proteins with alpha-rod repeats not known to be directly

involved in interaction with microtubules or tubulin have broadly

associated functions: excess importin-beta blocks kinetochore-

associated microtubule formation and enhances centrosome-

associated microtubule formation [62], STAG/Scc3 localizes to

the spindle poles during mitosis and interacts with NuMA, a

spindle pole-associated factor required for mitotic spindle

organization [60].

This evidence further confirms a general function of eukaryotic

alpha-rods in the organization of cellular structure, chromosome

segregation, vesicular transport, and control of cell division by

protein–protein interactions that tend to involve the microtubules

if not tubulin subunits directly.

Study of Huntingtin
We demonstrated how to combine information from homolo-

gous proteins and secondary structure predictions for a better

definition of domains of repeats. We used this approach to define

three domains of alpha-rod repeats in human huntingtin: H1

between positions 114–413, H2 between 672–969, and H3

between 2667–2938 (Figure 3A). The definition of these three

domains correlates well with previous definitions of cleavage sites

in huntingtin. In striatum of brains from patients of Huntington’s

disease a 40–50 kDa N-terminal and a C-terminal 30–50 kDa

fragment are observed [63], which would include H1 and H3,

respectively. In addition, several caspase cleavage sites have been

verified for huntingtin in positions 513, 552 and 586 [64], which

fall in between predicted H1 and H2 alpha-rods.

Using our predictions, we verified for the first time interactions

between domains of human huntingtin. These involve three

domains of HEAT-repeats. Interactions between domains com-

posed of HEAT-repeats are known. For example, several of the

subunits of the AP1 clathrin adaptor core are an alpha-rod of

HEAT-repeats and interact with each other [65]. We observed the

self-association of one of the huntingtin fragments containing a

HEAT-repeat domain. This suggests the possibility that huntingtin

homodimerizes through inter-molecular association of this do-

main, in agreement with previous reports [66]. Homodimerization

through interaction of domains with HEAT repeats has been

suggested for the DNA-PKc/Ku70/Ku80 complex [67].

The interaction of these domains implies their folding in

functional units that correspond to the boundaries we have

defined. These results are the first demonstration of domains in

huntingtin. This opens avenues for further research into the

structure and function of this large protein, which had been

hampered until now by its lack of definition in terms of structural

units. It is now possible to study the interaction of huntingtin with

other proteins on a per domain basis.

Conclusion
We have provided a way forward for the description of these

elusive repeats that will facilitate the characterization of domains,

structures, and eventually functions of a large number of proteins,

possibly up to 0.5% of the proteomes of eukaryotic organisms.

Further work is needed to expand the scope of the method, for

example to detect HAT repeats and conceivably other as-yet

undiscovered alpha-rod repeats. To facilitate the use of the

method we have made it available at http://www.ogic.ca/

projects/ard. Results of the analysis of protein families can be

studied together using ARD in combination with secondary

structure predictions via an updated version of our BiasViz

multiple sequence alignment viewer (http://biasviz.sourceforge.

net).

Methods

Neural Network
We used a neural network of feed-forward type with three layers

of neurons [14]. Inputs were obtained by scanning the sequence

with a 39 amino acid window. The encoding procedure converts

the sequence into a binary string where each amino acid is codified

by the binary pattern. The length of the entry layer is 39 times 20,

where 20 is the number of possible amino acids. One hidden layer

with three neurons is used for connecting the inputs with the

output layer containing one neuron predicting whether the

window is on a repeat or not (e.g. takes real values from 0.1 to

0.9 where the larger values indicates the larger probability of the

repeat detection). This architecture was found to be optimal in

terms of recall and precision on the training set and computation

time required for training and evaluation. Further details of

algorithm and training procedure are available in the supplemen-

tary Text S1.

Cloning of Huntingtin Fragments
DNA fragments coding for huntingtin fragments separating

predicted domains of alpha-rod repeats were generated by PCR

amplification using pAC1-HD plasmid as template. PCR reactions

contained, in a 50 ml volume, ,50 ng plasmid DNA, 15 pmol

primer oligonucleotides, 20 mM TRIS-HCl pH 8.8, 2.5 mM

MgCl2, 50 mM KCl, 10 mM 2-mercaptoethanol and 2.5 U Pwo

DNA polymerase (Sigma). Fragments were amplified in 30 cycles

with the following profile: 60 s denaturation at 94uC followed by

120 s annealing at 45–65uC and 120 s extension at 72uC. Amplified

DNA products were isolated from 1.2% agarose gel and

recombined into GATEWAY compatible pDONR221 plasmid

(Invitrogen), thus creating the desired entry DNA plasmids. The

identity of all PCR products was verified by DNA sequencing. The

sequences of the oligonucleotide primers used to generate

huntingtin fragments are available at the supplementary Text S1.

Recombination of entry vectors with pACT-DM and

pBTM116_D9 plasmids was used to create prey and bait plasmid

constructs for Y2H interaction mating, respectively. Recombina-

tion of different DNA fragments was checked by BsrGI restriction.

Y2H Analysis of Huntingtin Fragments
DNA sequences encoding the huntingtin fragments Htt1-

506Q23, Htt507-1230, Htt1223-1941, Htt1934-2666, Htt2536-

3144 and Htt2721-3144 were sub-cloned into DNA binding

domain (baits) and activation domain (preys) Y2H plasmids using

GATEWAY technology (Invitrogen) and a matrix of individual

MATa and MATalpha yeast strains was generated for systematic

interaction mating [68]. Then, yeast strains expressing bait and

prey proteins were mixed in 96-well microtiter plates and diploid

yeast strains were formed on YPD agar plates. Y2H interactions

were scored by the frequency of appearance on the SDIV agar

plates and b-galactosidase activity in SDII and SDIV nylon

membranes, respectively. Growth in SDII-agar was monitored as

a mating control.

Cell Line, Cell Culture and Western Blot
Human embryonic kidney HEK293 cells were seeded in 96-well

plates and cultured in Dulbecco’s modified Eagle’s medium
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supplemented with 10% fetal bovine serum at 37uC and 5% CO2.

Co-transfection of plasmids was done using Lipofectamine 2000

(Invitrogen) following the manufacturer’s protocol. The analyses

were performed after 48 hours of transfection. For immunoblot-

ting and LUMIER assay, cells were lysed at 4uC for 40 min in

100 ml lysis buffer containing 50 mM HEPES-KOH pH = 7.4,

150 mM NaCl, 0.1% NP40, 1.5 mM MgCl2, 1 mM EDTA,

1 mM DTT, 75 Unit/ml Benzonase (Merck) in the presence of

protease inhibitor cocktail (Roche Diagnostic). The expression of

the constructs was analyzed by Western blot using antibodies

against V5-epitope (Invitrogen) and Protein-A (Sigma), while equal

protein loading with anti-tubulin antibodies (Figure 3C).

LUMIER Assay
For LUMIER assay two vectors were generated based on

pCDNA3.1(+) (Clontech). For the pPAReni-DM the following

cassette was cloned between the BamHI and XbaI sites: Kozak

sequence, a double protein A epitope, Renilla Luciferase and the

ccdB cassette with flanking R1 and R2 att-sites. For the pFireV5-

DM vector the following cassette was cloned between the BamHI

and XbaI sites: firefly Luciferase, V5 epitope and the ccdB cassette

with flanking R1 and R2 att-sites. (Sequences of cloned inserts are

in Supplementary Table S4 in Text S1).

Pairs of PA-Renilla and firefly-V5-tagged huntingtin-fragment

fusion proteins were co-expressed in HEK293 cells. Cell extracts

were prepared and assessed for the expression of the fusion

proteins by immunoblotting and luciferase assays. Protein

complexes were isolated from 70 ml cell extracts using 5 ml IgG-

coated Dynal magnetic beads (Dynabeads M-280 Sheep anti-

Rabbit IgG), subsequently washed with 100 ml PBS, and the

binding of the firefly-V5-tagged fusion huntingtin fragment (Co-

IP) to the PA-Renilla-tagged fusion huntingtin fragment protein

was quantified by measuring the firefly luciferase activity in a

luminescence plate reader (TECAN Infinite M200). Renilla

activity was also measured as a control for PA-Renilla constructs

expression and binding (IP, data not shown). Luciferase activity

was measured using the Dual-Glo Luciferase Assay System

(Promega) and a luminescence plate reader (TECAN Infinite

M200). Each experiment was performed as triplicate transfection.

Supporting Information

Dataset S1 Annotated sequences used for the training set

Found at: doi:10.1371/journal.pcbi.1000304.s001 (0.14 MB TDS)

Dataset S2 Full length multiple sequence alignment of human

huntingtin and representative homologs

Found at: doi:10.1371/journal.pcbi.1000304.s002 (0.19 MB TDS)

Text S1 Supplementary text and supporting figures

Found at: doi:10.1371/journal.pcbi.1000304.s003 (0.63 MB
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