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Induction of neuroplasticity by transcranial direct current stimulation (tDCS) applied to

the primary motor cortex facilitates motor learning of the upper extremities in healthy

humans. The impact of tDCS on lower limb functions has not been studied extensively

so far. In this study, we applied a system identification approach to investigate the impact

of anodal transcranial direct current stimulation of the leg area of the motor cortex via the

human visuo-myoelectric controller. The visuo-myoelectric reaching task (VMT) involves

ballistic muscle contraction after a visual cue. We applied a black box approach using a

linear ARX (Auto-regressive with eXogenous input) model for a visuomotor myoelectric

reaching task. We found that a 20th order finite impulse response (FIR) model captured

the TARGET (single input)—CURSOR (single output) dynamics during a VMT. The 20th

order FIR model was investigated based on gain/phase margin analysis, which showed a

significant (p < 0.01) effect of anodal tDCS on the gain margin of the VMT system. Also,

response latency and the corticomuscular coherence (CMC) time delay were affected

(p < 0.05) by anodal tDCS when compared to sham tDCS. Furthermore, gray box

simulation results from a Simplified Spinal-Like Controller (SSLC) model demonstrated

that the input-output function for motor evoked potentials (MEP) played an essential

role in increasing muscle activation levels and response time improvement post-tDCS

when compared to pre-tDCS baseline performance. This computational approach can

be used to simulate the behavior of the neuromuscular controller during VMT to elucidate

the effects of adjuvant treatment with tDCS.

Keywords: non-invasive brain stimulation, transcranial direct current stimulation, visuomotor task, response time,

myoelectric control

INTRODUCTION

Non-invasive brain stimulation (NIBS) techniques, such as transcranial direct current
stimulation (tDCS)—an electrically based intervention—can modulate brain activity to promote
neuroplasticity (Nitsche and Paulus, 2000). Following initial studies in healthy humans (Nitsche
and Paulus, 2000), numerous subsequent tDCS studies have been performed by various research
groups around the world that showed that tDCS can alter motor cortex excitability, and
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performance of the upper extremities. In one of the first
studies on application of tDCS for the leg area of the motor
cortex, Jeffery and colleagues (Jeffery et al., 2007) showed
that anodal tDCS transiently enhanced the excitability of the
contralateral leg motor cortex in healthy subjects. Tanaka
et al. (2009) showed that tDCS could improve leg motor
function in healthy humans. Excitability-enhancing anodal tDCS
transiently enhanced maximal leg pinch-force, but not reaction
time during its application. Roche et al. reported short-term
modulatory effects of anodal tDCS over the leg M1 on the
excitability of lumbar spinal circuits (Roche et al., 2011) and
lumbar propriospinal system excitability (Roche et al., 2012).
The authors concluded that anodal tDCS increased general
excitability of the stimulated cortical area, and that respective
excitability changes activated descending controls involved in co-
contraction. Our preliminary results from healthy humans in
a myoelectric target reaching task (see Figure 1) that involved
quick initiation/termination of muscle activation (Dutta et al.,
2014; Foerster et al., 2015; Kumar et al., 2016) showed that offline
anodal tDCS over the leg M1 (Dutta et al., 2014) decreased the
delay in the initiation of isometric contraction of the tibialis
anterior (TA) muscle, when compared to sham tDCS. A limited
number of studies in humans on tDCS effects over the leg M1
have revealed neuroplastic changes at multiple levels of cortical
and spinal networks, which affect “direct control” (Tanaka et al.,
2009; Madhavan et al., 2011) as well as “gating” actions of motor
cortex output neurons on spinal circuits (Roche et al., 2009, 2011,
2012).

Preliminary results showing cortical (Tanaka et al., 2009;
Madhavan et al., 2011) as well as spinal effects (Roche et al.,
2009, 2011, 2012) of anodal tDCS motivated our investigation of
the short-term modulatory effects of tDCS on cortical vs. spinal
parts of the central nervous system by simulating the effects
using a tunable spinal-like controller (Stefanovic and Galiana,
2014a) that represents behavioral patterns during a lower limb
reaching task (Stefanovic and Galiana, 2014a). These studies
have shown that the slope of the input-output (I-O) curve of
motor evoked potentials (MEP) increases after anodal tDCS over
M1, which is an index of enhanced cortical excitability (Nitsche
et al., 2005). Increased cortical excitability is postulated to affect
systems performance during the visuomotor task (Foerster et al.,
2015), which involves discrete cued reaching movements of the
cursor. In accordance to our postulate, the computational model
directly connecting primary motor cortex (M1) to spinal circuits
(see Figure 2) is based on the results from transcranial magnetic
stimulation (TMS) of the human nervous system which showed
that corticospinal neurons make powerful and direct connections
with most alpha motoneurons in the spinal cord, and these
connections likely control for muscle contractions (Mills, 2000).
These corticospinal projections have however also inhibitory
effects on the spinal cord via spinal interneurons. These can
“gate” the spinal circuits that receive peripheral inputs, and
therefore enable quick responses to ongoing changes required for
adaptation of complex behaviors. Although functional effects on
motor performance are obtained, mechanisms are not clarified
during a myoelectric target reaching task (see Figure 1) which
could include cortical and spinal components. Here, delineation

of cortical vs. spinal effects of anodal tDCS might then be crucial
for optimization of respective interventions aimed to improve
motor performance. Although the primary motor cortex can be
targeted using Finite Element Method (FEM) models based on
high-resolution magnetic resonance imaging (MRI) scans that
can identify the electric field at the targeted neural tissue in
the brain (Truong et al., 2015), however, the physiological and
behavioral effects of the electric field cannot be predicted by FEM
alone. Therefore, mathematical representations of the respective
dynamic system based on experimental data from behavioral
tasks may help to delineate cortical vs. spinal effects of anodal
tDCS. Moreover, systems analysis can be applied to understand
subject-specific effects, which is relevant because tDCS does not
produce identical treatment effects in each individual (inter-
subject variability) (Madhavan et al., 2016).

METHODS

In this study, system-identification techniques were applied to
characterize visuomotor control. During the visuomotor task
(VMT), the EMG of the TA muscle, as shown in Figure 1,
controls the cursor. There were three VMT sessions, one
is the Pre-tDCS, next is during-tDCS, and the final session
is Post-tDCS. The visual feedback of the cursor, as well as
the target, are provided to the subject. System identification,
the construction of mathematical models of dynamic systems
from input/output measurements, has been extensively used to
characterize visuomotor tasks (Baddeley et al., 2003), which is
also the focus of the current study. Specifically, we propose
an open-loop transfer function (i.e., open-loop identification),
which can be represented by a high-order finite impulse response
(FIR) filter in the time domain, where the feedback contribution
to the input spectrum is considered to be negligible. Identification
of the FIR filter requires no knowledge of the feedback in the
system and very few apriori assumptions, i.e., the span of the
memory of the system. A poor noise model can introduce a bias
into the model, which was investigated based on the residual
analysis. Specifically, the bias will be small when the feedback
contribution to the input spectrum is small, however after the
fast initial myoelectric control of the cursor to reach the target,
maintaining the cursor at the target requires visual feedback,
which may substantially affect the input spectrum in the model.
In that case, spectral analysis of the closed-loop system using
the open-loop transfer function may not provide correct results,
and we need to incorporate the feedback, e.g., using gray-box
modeling.

We first leveraged a linear black-box model, the linear Auto-
regressive with eXogenous input (ARX) model, which is the
simplest input and output polynomial model that can be fitted
using the System Identification toolbox of Matlab (Mathworks
Inc., USA). In the ARX model, the parameters of the error term
are linear, and the linear least squares method can be used for
parameter estimation. This method is numerically simple and
reliable and avoids problems of local minimum and convergence.
This ARX model can be used to investigate the transfer function
using its gain/phase margin. Then, for gray-box modeling (see
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FIGURE 1 | Experimental protocol. Top: for the reaching task, a random TARGET was shown on a computer monitor. The participants were instructed to contract

their tibialis anterior muscle to reach that target. Each muscle contraction cue of 5 s duration was preceded by a RELAX time (10 s) and a READY time (3–5 s) during a

trial, which was provided on the computer monitor. Middle: the computer monitor provided visual feedback of the task components, fixation (A), RELAX (B), READY

(C), and TARGET presentation (D). Bottom: Protocol for tDCS during the visuomotor task and the TMS-MEP measures.

Figure 2), we postulate that simulations of tDCS effects on a
myoelectric controller (Dutta et al., 2014) that adopts a spinal-
like network topology for a reaching task (Stefanovic andGaliana,
2014a) can be used to assess the effects of tDCS over the leg
M1 representation. Here, the Simplified Spinal-Like Controller
(SSLC) model is based on known physiological characteristics
of the spinal circuitry (Stefanovic and Galiana, 2014a,b, 2016),
including: Interneurons (IN) that connect afferent and efferent
divisions of neural projections and integrate sensory information,
Renshaw Cells (RC) that use efference feedback to predict system

dynamics or its effects, Motoneurons (Mn) that drive the stimuli
to the muscle fibers, and Spindles (SM) that act as muscle sensors
to deliver muscle stretch length and velocity information to the
CNS.

In this study, the target input and the cursor output
define the open-loop VMT system, while the EEG input
and EMG output represent the plant model for the cortico-
muscular transfer function (see Figure 3A). Corticomuscular
coherence (CMC) is a measure of the relationship between
electroencephalogram (EEG) and EMG (Salenius et al., 1997;
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FIGURE 2 | (A) Diagram of the SSLC at the spinal level including: Interneurons (IN) that connect afferent and efferent divisions of neural projections and integrate

sensory information; Renshaw Cells (RC) that provide copies/approximations of efferent neural signals to predict system dynamics or consequences; Motoneurons

(Mn) that drive activation of the muscle fibers; Superior Colliculus (SC) that projects a visually derived gain field due to effector-target error; and Spindles (SM) that act

as muscle sensors to deliver muscle stretch length and velocity information to the CNS. The topology also includes a Virtual Muscle (VM) agonist (VMag) and

antagonist (VMan). (B) The SSLC adopted for the isometric visuo-myoelectric reaction time task (VMT). SSLC is comprised of the following components: R, cortical

commands issued to the SSLC in the form of a sigmoidal activation function; D, signal delays between cortical and spinal circuits; G, collicular gain fields projected to

spinal circuits; M, Renshaw feedback of motoneuron activity; P, virtual muscle models; C, a scaling factor of co-contraction between the two sides in the controller.

Also, the following signals: e, motor drive signals projected to the spinal-like circuits; U, the motor activation level for each muscle model; Y, the generated muscle

tension. Subscripts T and G denote the agonist and antagonist muscles, respectively.

Witham et al., 2011) during muscle contraction, and a
physiological parameter involved in task performance. In a
lower-limb study on EEG-EMG beta-band coherence (Gwin and
Ferris, 2012), a significant coherence between electrocortical
signals of the contralateral motor cortex and EMG in the beta-
range (13–30Hz) and gamma-range (31–45Hz) was found for
different exercise types, e.g., isometric and isotonic, knee, and
ankle exercises. The study showed furthermore that gamma-
range coherence was significantly larger for isotonic exercises,
while isometric contractions favor beta-range oscillations. It
has been demonstrated that CMC originates from primary
motor cortex (M1) (Gerloff et al., 2006), and therefore tDCS
of M1 affecting cortical excitability is postulated to affect
CMC (Power et al., 2006). Therefore, we also investigated
the significance of the CMC and CMC time delay during
VMT.

Subjects
Ten healthy right leg-dominant male (4) and female (6)
volunteers (age: 26 ± 5 years) participated in this study after
giving informed consent, and all experiments were conducted in
accordance with the Declaration of Helsinki. The study obtained
ethics approval at the University Medical Center, Goettingen,
Germany. Subjects who (i) were taking any acute or regular
CNS-active medication, and (ii) had a history of neurological,
psychiatric, or medical disease, family history of epilepsy,
pregnancy, cardiac pacemaker or previous surgery involving
metallic implants at the time of the study, were excluded from
participation.

Visuo-Myoelectric Control Task
The brain-computer interface (BCI) for VMT, as shown in
Figure 1, is presented in detail in our earlier publication (Foerster
et al., 2015). The subject needs to make a muscle contraction as
fast as possible to reach the target and then maintain the cursor
as close to the target as possible. Each muscle contraction cue of
5 s duration was preceded by RELAX time (10 s) and READY
time (3–5 s) during a VMT trial, presented by Psychtoolbox
(http://psychtoolbox.org/) GUI—see bottom panel of Figure 1.
Fifteen VMT trials were conducted before and after 15min of
anodal tDCS over M1. Anodal tDCS (StarStim, Neuroelectrics,
Spain) with 2mA was conducted for 15min with the anode
(5 × 7 cm) positioned at Cz (international 10–20 system of
scalp sites) and the cathode (5 × 7 cm) placed over the right
supraorbital ridge at FP2 (international 10–20 system of scalp
sites). The electromyogram (EMG) was collected from the tibialis
anterior (TA) muscle of the right (dominant) leg, amplified and
band-pass filtered (anti-aliasing, frequency band =10–500Hz)
before being sampled at 2,000Hz by a 12-bit data acquisition
(DAQ) system (NI USB-6009, National Instruments, USA). The
EMG was recorded on a PC by Signal software (http://www.
ced.co.uk/pru.shtml?sig3wglu.htm) via a 16-bit DAQ for offline
analysis. Cortico-spinal excitability was monitored before and
after tDCS with TMS (Groppa et al., 2012). TMS was used to
identify the motor cortical localization (hotspot) of the right TA
muscle. The hotspot was determined as the TMS coil position
resulting in the largest motor evoked potential (MEP) of the
target muscle (Groppa et al., 2012), elicited by a Magstim 200
stimulator (Magstim, Dyfed, UK) with a figure-of-eight coil
(diameter 70mm). Eyes-open resting-state EEG was recorded
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FIGURE 3 | (A) Block diagram of the linear time invariant VMT system. tDCS is postulated to affect the cortico-muscular transfer function. The muscle to the cursor

mapping is set in the software (s/w). (B) An illustrative example of the pre-tDCS cortico-muscular transfer function shown by corticomuscular coherence (CMC) during

muscle contraction (in VMT). (C) Significance of the CMC, and CMC time delay, (D) Beta-range (13–30Hz) CMC peak during static EMG output required during the

muscle contraction task.

at 500Hz from the central site Cz (international 10–20) as well
as the nearby electrodes F3, F4, P3, P4 (international 10–20
system) before and after anodal tDCS over Cz. During tDCS, the
EEG could not be recorded from Cz, but only from the nearby
electrodes F3, F4, P3, P4 (international 10–20 system), which
were interpolated with spherical splines (Scherg et al., 2002)

to estimate EEG at Cz (virtual electrode) using the EEGLAB
“eeg_interp()” function (Delorme and Makeig, 2004). For task
performance, the participants had to contract the TA muscle
isometrically as fast as possible in response to a visual cue, the
TARGET. In each trial, the TARGET jumped to a randomized
value between 40 and 80% of maximum voluntary contraction
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(MVC), i.e., random TARGET. Myoelectric visual biofeedback
was presented with proportional system dynamics, and the
participants were instructed to adjust EMG activity to best match
the CURSOR to the TARGET level. The average rectified EMG
during 3 s of MVC was used for normalization of the EMG
during VMT. The moving average of the normalized rectified
EMG from the TA muscle was provided as CURSOR along
with the TARGET signal. The participants already learned the
VMT in a practice session before performing the experiment.
The VMT sessions contained 13 trials and a total duration is
roughly 10min, as shown in the bottom panel of Figure 1.
We analyzed the MVC-adjusted EMG-driven random TARGET
pursuit during VMT performance to estimate the model for
the human visuo-myoelectric controller as well as to calculate
EMG response latency, CURSOR response latency, and response
accuracy—see top panel of Figure 1.

ARX Black-Box Model Fitted to TARGET
(Input)-CURSOR (Output) VMT Data
Our goal was to perform a system identification using the
FIR model and its gain/phase margin analysis to find out
how performance of the human myoelectric controller changed
during visuomotor task performance due to tDCS (comparing
Pre-tDCS and Post-tDCS VMT sessions). We first investigated
the human visuo-myoelectric controller using a black box system
identification approach, specifically a single-input single-output
polynomial model (“polyest” in Matlab). Trial-to-trial variation
was investigated to understand how the brain optimized response
time for the initially ballistic (open-loop) task component,
and response accuracy moderated by visual feedback during
the myoelectric control task component. We fitted a FIR
model between the TARGET and the CURSOR. A respective
block diagram for VMT is shown in Figure 3A. We used the
system identification app of Matlab (The Mathworks, Inc. USA)
for selecting model order based on the Akaike Information
Criterion, and estimated the FIR model parameters using the
least squares method. We identified the best order for the ARX
model based on pre-tDCS experimental data and then fitted
the model to each trial pre and post-tDCS. We then used the
fitted ARX model to identify gain/phase margins pre and post-
tDCS to identify tDCS-caused changes from baseline values. We
hypothesized that there would be a movement of the zeroes
of the ARX model (poles are all at origin—FIR model) during
VMT due to tDCS intervention. The highest model order of
the regularized ARX that suited all subjects was present in
the pre-tDCS TARGET (input)-CURSOR (output) data based
on the Akaike information Criterion (Akaike, 1974). Since it
has been demonstrated that CMC originates from M1 (Gerloff
et al., 2006), it was postulated that anodal tDCS of M1 will
affect CMC (Power et al., 2006). CMC between the EEG at Cz
and EMG was calculated using Wavelet cross-spectrum analysis
(WCS). A new statistical test developed by Bigot and colleagues
(Bigot et al., 2011) was conducted to find significant CMC
values based on WCS. Then, the maximum CMC value during
the muscle contraction (task D during VMT—see the middle
panel of Figure 1) was defined as the CMC peak, as shown in

the Figure 3D. The CMC time delay was defined by the delay
in reaching the significant value (Bigot et al., 2011) after the
appearance of the visual cue, as shown in Figure 3B. Since VMT
involved isometric contractions, CMC was highest in the beta-
range during muscle contraction (5 s), as shown in Figure 3C.
We postulated that tDCS would change the corticomuscular
transfer function (see Figure 3A), which will be reflected in the
CMC peak (Figure 3D) and CMC time delay (Figure 3C). A
customMatlab script was written for these computations.

SSLC Gray Box Model Simulation Using
Input-Output Function of Motor Evoked
Potentials
We simulated the human visuo-myoelectric controller (Dutta
et al., 2014) with a novel gray box model that adopts a spinal-
like network topology (Stefanovic and Galiana, 2014a), as shown
in Figure 2B. The SSLC was adapted from our earlier studies
(Stefanovic and Galiana, 2014a,b, 2016) to simulate the VMT.
The SSLC is a model of the neural topologies that drive
neuromuscular control and coordination at the spinal level.
We first postulated that anodal tDCS effects on M1 will affect
the descending behavior of the SSLC in the s-domain (Laplace
transformation) without visual feedback, i.e., open-loop transfer
function—see Figure 2B:

YT(s) = UT(s)PT(s)

UT(s) = GTeT(s)− UT(s)MT(s)+ CUG(s)

Then, by rearranging the equation:

UT(s) =
GTeT(s)+ CUG(s)

1+MT(s)

In addition, eT(s)is defined by:

eT(s) = R(s)D(s)

Where D is the time delay from the cortical centers to the spinal
centers, f (t– δ), and whose Laplace Transform is represented
by,e−δs. Thus, for the tibialis anterior muscle,

eT(s) = R(s)e−δs

UT(s) =

e−δsGTR(s)
︸ ︷︷ ︸

Cortical Command

+ CUG(s)
︸ ︷︷ ︸

Co−contraction

1+MT(s)

Similarly for the gastrocnemius muscle,

UG(s) =
e−δsGGR(s)+ CUT(s)

1+MG(s)

According to these equations, the motor activation level is
directly proportional to two components, the cortical command,
R(s), and the co-contraction.

We hypothesized that anodal tDCS changes the gain of
corticomuscular control by changing the input-output (I-O)
function of the primary pyramidal neurons (Lafon et al., 2017),
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that constitutes the descending cortical command. Anodal M1
tDCS increases cortical excitability of M1. Theoretical analysis
reveals that excitatory synaptic strength controls the threshold
of the neuronal input-output (I-O) function, while inhibitory
synaptic strength alters the threshold and gain (Carvalho
and Buonomano, 2009). This assumption is supported by
the sigmoidal curve characteristics of the TMS-motor evoked
potential (MEP) stimulus–response (SR) (Klomjai et al., 2015).
Here, it was assumed that a single pulse of TMS produces
excitation of the corticospinal neurons in the primary motor
cortex. Therefore, it is postulated based on the SSLC that
a decrease of cortical excitability (e.g., due to cathodal M1
tDCS) will reduce co-contraction while cortical excitability
enhancing anodal M1 tDCS will increase co-contraction (as
shown experimentally by Roche et al., 2011). Particularly, the
IN combines signals from RC, SM, and antagonist INs in an
excitatory (+) and inhibitory (-) summation based on the drive of
the transmitting neuron (node). Also, the IN cross-connections
between opposite/symmetric components are scaled by a gain,
G, so that the interactions between them (e.g., antagonist muscle
groups) can vary (Stefanovic and Galiana, 2014a). The SM
provides muscle stretch sensory information of the muscle model
in the form of musculotendon stretch length (MT) and stretch-
length velocity (MTv). The RC provide copies of efferent Mn
activity to the IN (Stefanovic and Galiana, 2014a, 2016). The
neuromuscular output is thus defined by the length-tension-
stimulus relationship of the muscle at a given instant in the
form of a predictive model (i.e., learned muscle response; Cheng
et al., 2000; Raphael et al., 2010), or as approximation of the
predicted SM output (e.g., MT or MTv; Lan and He, 2012).
Here, subject-specific TMS-MEP SR curves capturing cortical
excitability alterations were modeled by the input-output (I/O)
curve (Möller et al., 2009). The MEP response measured with
TMS represented transsynaptic activation of the pyramidal cells
evoking descending volleys in the pyramidal axons evoking a
motor-evoked potential (MEP) on EMG of the target muscle
(Klomjai et al., 2015).

For fitting baseline (pre-tDCS) VMT data in a closed-loop
condition, the SSLC will need visual feedback (Stefanovic and
Galiana, 2014a,b, 2016), as shown in Figure 2B. Here, visual
task-error signals drive motor commands to the spinal-like
centers, which in turn coordinate and execute motor neuron
activity. The projected cortical commands manifest as a sigmoid
function (called “motor urgency” Thobois et al., 2007) that scales
controller behavior (block S in Figure 2B). This sigmoid function
was determined by the TMS SR curve, that is widely used to
assess motor cortex excitability (Peri et al., 2016). Err is the
error drive (difference between cursor position from the target)
computed in block CR (in Figure 2B) that includes the cerebello-
thalamo-cortical circuit (Ide and Li, 2011). Also, cortical and
midbrain collicular areas project gain-fields that can scale a
movement temporally or spatially. The combined motor drive is
sent to the muscles that generate tension and movement. Each
component of the SSLC is organized as a block (see Figure 2B)
within a Simulink (Mathworks Inc., USA) framework based
on its functionality and neural topology as in earlier studies
(Stefanovic and Galiana, 2014a, 2016). Subject-specific pre-tDCS

and a post-tDCS Boltzmann sigmoidal functions experimentally
found by standard TMS methods (Kukke et al., 2014) will define
block S of the SSLC, as shown in Figure 2B. The controller has
been used in our previous studies to demonstrate contributions
of the spinal-like motor centers to movement execution and co-
ordination in complex tasks, as well as dynamics between cortical
and spinal-level motor control. As such, the SSLC can be used as a
tool to model changes in motor excitability due to tDCS and how
the effects manifest in the cortical-spinal-muscular controller.

In this particular study, we were interested in applying the
SSLC to control the lower limb in an isometric task. First, the
muscle model for the SSLC was developed using Virtual Muscle
4.0.1 (USC, USA) (Cheng et al., 2000), and muscle morphometry
data from the anterior tibial muscle (Helliwell et al., 1987).
The respective Matlab program generates a Simulink block that
emulates behavior and dynamics of muscles. Following this, the
biomechanics of the system was changed to reflect the isometric
experiment. Since isometric tasks do not include any motion,
the task is defined as relation between TA contraction (i.e.,
EMG) and CURSOR position. Using the TA EMG data from
the experiment, and the causal CURSOR movement, a respective
fit was generated in Matlab (Mathworks Inc., USA). The TA
contraction to CURSOR relation is approximated by a 0 gain
low-pass filter:

B =
1

1+ s
2π60

The remaining block components of the SSLC remain unchanged
as shown in Figure 2. However, as described, projected cortical
commands manifest as a sigmoid function (called “motor
urgency” Thobois et al., 2007) that scales controller behavior
(Block S). This sigmoid function was determined by TMS-MEP
SR curves, that are widely used to assess motor cortex excitability
by TMS (Peri et al., 2016). We used two sigmoids, a pre-tDCS
and a post-tDCS sigmoid identified by standard methods (Kukke
et al., 2014) and fitted these to a Boltzmann sigmoidal function:

S =
P1 +

P2−P1
P2

1+ e−P4(Err−P3/10)
+ P1/100

Err is the error drive defined by the cortical commands
(difference of CURSOR position to TARGET distance in block
CR). Respective P-values are found in the following table:

Spre−tDCS Spost−tDCS

P1 1.281 1.876
P2 4.606 5.207
P3 118.552 119.620
P4 0.117 0.122

Within the SSLC Simulink model, TARGET data are used
as the input, while the cursor position is computed from the
virtual muscle output and equation B. The cursor position
is provided as a feedback to the cortical block, where it is
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compared to the TARGET, and the Err is calculated for the
next iteration. The SSLC moves to the TARGET until it is
reset to the zero position, in which case Err becomes zero. The
process re-starts when the TARGET is presented again at a non-
zero position. The algorithm changes the gains in steps over
multiple iterations/loops and monitors the difference between
the expected value (i.e., measurement data) and the real value
(i.e., model output). Based on the direction of the calculated error
of the two signals, the gains change iteratively until the error no
longer changes, or is within a user-defined tolerance—typically
within 5%. Therefore, the SSLCmodel fits to subject-specific pre-
tDCS TMS-MEP SR curve and VMT data, which will be able to
predict post-tDCS VMT data based on the post-tDCS TMS-MEP
SR curve.

Statistical Analysis
EMG response latency was determined offline as the period from
the instant of the visual TARGET cue to the moment when
the rectified EMG in a sliding window of 500ms from the TA
muscle was more than three times of the standard deviation of
the resting value (before presentation of the TARGET cue, in the
READY state). The CURSOR response latency was determined
offline as the duration from the instant the visual TARGET
cue was provided for ballistic muscle contraction to the time
the CURSOR crossed the TARGET during VMT. CURSOR
response accuracy was computed as Root Mean Square Error
(RMSE) between the CURSOR and the TARGET signals during
the 5 s of TARGET cue presentation. We investigated post
tDCS differences in EMG response latency, RMSE, CURSOR
response latency, CMC peak, and CMC time delay from pre-
tDCS baseline values using a two-way (trial X tDCS/Sham)
ANOVA. In addition, post-tDCS changes in gain/phase margins
from pre-tDCS baseline values were identified by a two-way (trial
X tDCS/Sham) ANOVA. For post-hoc tests, Student’s t-tests were
applied.

RESULTS

ARX models using least squares with regularization were
estimated with the help of the system identification toolbox in
Matlab (Mathworks Inc., USA). The 20th order FIR model was
found to be suitable across subjects based on the AIC criterion.
Figure 4A shows an illustrative example. The blue line represents
the FIR model output fits (explained variance 98.65%), the
black line represents the experimental CURSOR data with the
TARGET serving as a step input. The autocorrelation of model
residuals shown in Figure 4B is within the confidence interval
(dashed line) for an uncorrelated signal, which shows that the
residuals pass the whiteness test. Also, the cross-correlation of
the model residuals with the model input shown in Figure 4C is
within the confidence interval (dashed line) for an uncorrelated
signal, which shows that the residuals pass the independence
test. The estimated ARX system model was analyzed based on
gain/phase margin. The two-way ANOVA results (see Figure 5)
show that the factor intervention group (tDCS/sham) had a
significant effect on the gain margin (p < 0.05), however not on
the phase margin (p= 0.143). The trial effects and the interaction

between trial and group were not significant for gain margin
(0.649 and 0.781, respectively) as well as phase margin (0.435 and
0.865, respectively). Also, gain margin (left panel of Figure 5B)
as well as the phase margin (right panel of Figure 5B) increased
after anodal tDCS when compared to sham tDCS. The increase
was significant for gainmargin (p< 0.05) however not significant
for phase margin (p= 0.143). In addition, there was a significant
main effect of group (tDCS/sham) on the EMG response latency,
CURSOR response latency as well as CMC time delay (p < 0.05).
However, the main effect of the factor group (tDCS/sham) on the
RMSE and the beta-range CMC peak was not significant.

Figure 6 shows the TARGET reaching modeled by the SSLC,
with TARGET input (dotted line), pre-tDCS TA EMG (red line),
and post-tDCS TA EMG (black line). Since pre-tDCS and post-
tDCS models are identical except for their sigmoidal functions
that scale controller behavior (Block S), any variance in model
outputs would be dependent on the cortical effects of tDCS
captured by the I-O input functions. Figure 6 demonstrates that
based on these changes, post-tDCS SSLC behavior shows a 17%
higher normalized EMG output of the TA muscle when moving
to the same target in relation to pre-tDCS SSLC behavior. Also,
the time offset due to the dynamics in the myoelectric visual
task shows a 70ms faster response in the SSLC based on the first
peak-times post-tDCS when compared to pre-tDCS. In addition,
simulated TA EMG output shows a 10% increase of oscillations
relative to the TARGET position post-tDCS when compared to
pre-tDCS response.

DISCUSSION

In this study, we demonstrated the adequacy of a black-box
system identification to capture ballistic myoelectric control for
modeling of lower-limb VMT performance in healthy subjects.
For the black-box modeling, the 20th order FIR modeled the
TARGET-CURSOR dynamics well; the residuals satisfied the
whiteness and independence tests. Satisfying the whiteness test
shows that the residuals are uncorrelated, and the independence
test shows that the residuals are uncorrelated with past inputs.
For determination of the impact of anodal tDCS on task
performance, the 20th order FIR model was investigated based
on gain/phase margin analysis. The systems analysis showed
a significant effect of anodal tDCS on the gain margin of
the VMT system. After anodal tDCS, a significant (p < 0.05)
increase in gain margin was found when compared to sham
tDCS (see Figure 5B), which can be attributed to the controller
behavior (Block S) in Figure 2B. In our related computational
modeling work (Dutta and Nitsche, 2013), it was suggested that
anodal tDCS modulates primarily the synaptic impulse response
function (sIRF) of the dendritic tree of excitatory pyramidal
neurons (ePN) in a cortical neural mass model (NMM). tDCS-
induced changes of the synaptically-driven I-O function of ePN
are modeled by the sigmoid function that scales controller
behavior (Block S in Figure 2B) in SSLC (Stefanovic and Galiana,
2014a). Therefore, the sigmoid function was fitted to the TMS-
MEP SR curve for gray-boxmodeling. Gray-boxmodeling results
demonstrated that the post-tDCS increase in the slope of the
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FIGURE 4 | (A) An illustrative example of the model output of the 20th order FIR model in a single VMT trial. Muscle contraction takes place from 6 to 11 s (Time axis

in sec). (B) Autocorrelation of the residuals plot shows that the residual autocorrelation function is in the range between the confidence intervals (dashed line) for

uncorrelated signals—whiteness test. (C) Cross-correlation of the residuals with the model input also falls within the confidence intervals for uncorrelated

signal—independence test.

sigmoidal function in block S of SSLC (see Figure 2B) due
to anodal M1 tDCS can increase muscle activation/force levels
(shown experimentally by Tanaka et al., 2009), and improve
response time of task performance—see Figure 6. Particularly,
based only on anodal M1 tDCS effects on the sigmoidal function
of the I/O curve (i.e., an increase of its slope; Lafon et al.,
2017), predicted SSLC response times improved by 70ms and
peak muscle output increased by 17%. Therefore, modeling of
an isolated cortical effect of tDCS at the M1 produced a good
qualitative fit to the experimental data.

Based on the computational modeling, we hypothesized that
anodal tDCS enhances the responsiveness of ePN to afferent
feedback (vision being one of them—see Figure 2B) in a non-
specific way and increases the coherence between thalamus,
cortex, andmuscle. In our prior work (Dutta et al., 2015), we have
found that surrogate measures of motor unit synchronization
(identified using recurrence quantification analysis of surface
EMG) were significantly higher in the tDCS group than in the

control group. Also, Power and colleagues have demonstrated
that increases in MEP size resulting from anodal tDCS of
the motor cortex were paralleled by increases of intermuscular
coherence in the EEG beta band (Power et al., 2006). Here, it can
be speculated that increased synchronization (possibly reflected
in the coherence measure) following anodal tDCS provides better
binding of the sensorimotor elements leading to gain margin
increase. Improved binding of the sensorimotor elements after
tDCS is suggested by the reduction of the CURSOR response
latency and CMC time delay after anodal tDCS, when compared
to sham tDCS. This result is in agreement with our prior
work (Dutta et al., 2014) that showed that offline M1 anodal
tDCS decreased the delay in initiation of TA contraction when
compared to sham tDCS. However, in that study, we did not
find a significant effect of anodal tDCS on the CMC peak during
muscle contraction in VMT, although a significant effect of
anodal tDCS on the CMC time delay was present. In another
study (Dutta and Chugh, 2012) with a larger sample size (N =
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FIGURE 5 | (A) Histograms of the residual of the ANOVA model for the response variables, “gain margin” (left panel) and “phase margin” (right panel). (B) Gain margin

(left panel) as well as the phase margin (right panel) increased after anodal tDCS when compared to sham tDCS. The increase was significant for gain margin (p <

0.05) however not significant for phase margin (p = 0.143).

FIGURE 6 | SSLC EMG Output for Pre and Post-tDCS Sigmoids. The SSLC model output is shown when performing the task to target (dotted line), as well as the

EMG output when reaching to target using the pre-tDCS sigmoid (red line) and post-tDCS sigmoid (black line).
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40), we found that anodal tDCS induced a statistically significant
CMC enhancement of the tibialis anterior muscle during quiet
standing with eyes closed, 45 and 60min after the end of tDCS.
Therefore, the effect of anodal tDCS on CMC needs further
investigation with larger sample sizes.

Based on the computational and experimental results of the
present study as well as earlier works (Dutta and Nitsche, 2013),
we suggest that the changes to the slope of the I-O curve of ePN,
e.g., an increase by anodal tDCS and a decrease by cathodal tDCS,
is reflected by the TMS-MEP SR curve (Nitsche et al., 2005).
Nitsche et al. (2005) suggested that the initial effects of tDCS
primarily depends on subthreshold resting membrane potential
changes, which are able to modulate the I-O curve, but not motor
thresholds. Such change in the I-O curve was simulated by the
SSLC by changing the sigmoid function that scales controller
behavior (Stefanovic and Galiana, 2014a). In accordance, the
results from the current study demonstrate that post-tDCS the
adapted I-O sigmoid, Spost−tDCS, increased muscle activation
levels (EMG amplitude) and improved response time (correlate
of CURSOR response latency) of task performance. This suggests
that the muscle response frequency (i.e., the bandwidth of
movement dynamics), as well as the gain of the urgency of the
respective movement increase (i.e., speed and force; Thobois
et al., 2007) increased post-tDCS. Our computational results
are qualitatively in accordance with the experimental results
showing that that anodal tDCS improved EMG response latency,
CURSOR response latency as well as CMC time delay (p <

0.05). No effects of tDCS on the spinal aspects of SSLC were
considered, as parametrized by interneurons (IN), Renshaw Cells
(RC), Motoneurons (Mn), and Spindles (SM), as shown in
Figure 2. Our adaptive SSLC approach separating the cortical
effects—in the “motor urgency” sigmoidal function of the SSLC
(Stefanovic and Galiana, 2014a)—from the spinal effects is novel
since tDCS aftereffects are usually lumped into corticospinal
excitability alterations based on neurophysiological testing by
TMS. Our novel adaptive cortico-spinal-like controller was fitted
to the neurophysiological test data to simulate the behavioral
VMT effects. Therefore, the results of the gray-box analysis show
that the cortical excitability alterations (captured with a TMS-
MEP SR curve) can explain the behavioral effects of anodal tDCS
during VMT (ballisticmyoelectric control) without any change of
spinal model parameters. Our modeling results showed an effect
of anodal tDCS on the “motor urgency” (Thobois et al., 2007).

Regarding clinical relevance of the computational results, the
change in the slope of the I-O curve of ePN may be able to
compensate for small changes in the signal conduction speeds
(e.g., due to demyelination, Wallerian degeneration) that needs
further investigation. We specifically modeled co-contraction in
the SSLC since Roche and colleagues showed that anodal tDCS
induces effects on spinal network excitability similar to those
observed during co-contraction, suggesting that anodal tDCS
activates descending corticospinal projections mainly involved
in co-contractions (Roche et al., 2011). In this study on healthy
individuals, the signal conduction delays are assumed to be
constant, and thus do not have dynamic effects on the control
output. Here, tDCS-facilitated stroke rehabilitation has been of
particular interest because stroke is a global health problem and

fourth leading cause of disability worldwide (Strong et al., 2007;
Sacco et al., 2013). Several small studies have shown beneficial
effects of tDCS on motor functions that mimic activities of
daily living in patients with chronic stroke and suggested that
tDCS may play an adjuvant role (Hummel et al., 2005; Galea
and Celnik, 2009). The most frequent stroke-related disability
(39–90%) is the impairment of walking (Weerdesteyn et al.,
2008), and therefore mechanisms of tDCS effects of leg motor
cortex representations (M1) are relevant, but not extensively
explored so far. Also, multiple sclerosis (MS) is one of the
most prevalent diseases of the central nervous system (CNS)
with recent prevalence estimates indicating that MS directly
affects 2.3 million people worldwide (Browne et al., 2014). MS
is an immune-mediated disease characterized by inflammatory
demyelination and neurodegeneration within the CNS. In MS,
falls continue to present as a common and serious health concern
that can be as high as 56% (Hayes et al., 2017). People with
MS with a history of falls report significantly poorer physical
and psychological health status compared with non-fallers with
MS therefore prevention of falls is critical for the quality of life
with MS. Here, anodal tDCS may change the input-output (I-
O) function of the primary pyramidal neurons (Lafon et al.,
2017) that constitutes the descending cortical command, thereby
improving muscle control. In order to understand the effects
of signal conduction speeds, we can analyse the SSLC model.
In SSLC, changes in the signal conduction speeds manifest as
signal delays, e−δs, between the cortical and spinal centers. Since
the value e−δs decays as time delay increases, the effect of the
cortical command decreases relative to the co-contraction level.
In other words, increased signal delay times causes higher levels
of spasticity, and spasticity has an association with the quality of
life (QOL). After severe demyelination, conduction speeds can
drastically reduce leading to significant signal delay times, where
e−δs approaches zero so that only the co-contraction remains:

UT(s) =
CUG(s)

1+MT(s)

UG(s) =
CUT(s)

1+MG(s)

Now, if both sides of the controller (see Figure 2B) are driven
only by the cross-connections of antagonist muscles without
cortical command, the antagonist muscle activation thresholds
would also be zero leaving both muscles flaccid. Our modeling
showed that increased signal delay times causes higher levels of
spasticity, and spasticity has an association with the quality of
life. In future clinical studies, our adaptive cortico-spinal-like
controller will be applied on stroke and MS subjects suffering
from lower limb spastic or flaccid paralysis to dissociate tDCS
effects into cortical vs. spinal effects that contribute to behavioral
results during VMT with tDCS when compared to sham tDCS.
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