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Abstract The rise of high- throughput experiments has transformed how scientists approach 
biological questions. The ubiquity of large- scale assays that can test thousands of samples in a day 
has necessitated the development of new computational approaches to interpret this data. Among 
these tools, machine learning approaches are increasingly being utilized due to their ability to 
infer complex nonlinear patterns from high- dimensional data. Despite their effectiveness, machine 
learning (and in particular deep learning) approaches are not always accessible or easy to implement 
for those with limited computational expertise. Here we present PARROT, a general framework for 
training and applying deep learning- based predictors on large protein datasets. Using an internal 
recurrent neural network architecture, PARROT is capable of tackling both classification and regres-
sion tasks while only requiring raw protein sequences as input. We showcase the potential uses 
of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting 
transcriptional activation function of peptides generated by high- throughput reporter assays, and 
predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scan-
ning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably 
to state- of- the- art computational tools, and is applicable for a wide array of biological problems.

Introduction
The past decade has seen an exponential increase in the rate at which biological data is generated 
(Marx, 2013). Technological advances coupled with the falling costs of DNA synthesis and sequencing 
have made conducting high- throughput experiments accessible to most research labs (Hughes and 
Ellington, 2017). The affordability of being able to sequence massive quantities of DNA is trans-
forming how molecular biologists approach research. Protein functional assays and screens are seeing 
increasing library sizes, which allows researchers to investigate many different sequences and variants 
in a single experiment. In recently published studies, it is not uncommon to find deep mutational 
scanning (DMS) experiments that achieve nearly complete sequence coverage or assays that test tens 
of thousands of peptides (Arnold et al., 2018; Bolognesi et al., 2019; Erijman et al., 2020; Jones 
et al., 2020; Livesey and Marsh, 2020; Seuma et al., 2021; Sanborn et al., 2021; Schmiedel and 
Lehner, 2019). This abundance of data being generated has the potential to answer important biolog-
ical questions; however, at the same time, it also significantly complicates experimental analysis.

Coinciding with the explosion of high- throughput omics experiments has been the development 
of computational methods for analyzing the resulting high- dimensional biological data. In partic-
ular, machine learning approaches have emerged as popular strategies in a wide range of biological 
applications (Xu and Jackson, 2019; Eraslan, 2019; Moses, 2017). In general, machine learning 
approaches are effective at identifying patterns in complex datasets and extrapolating these learned 

TOOLS AND RESOURCES

*For correspondence: 
 alex. holehouse@ wustl. edu

Competing interest: See page 
14

Funding: See page 14

Received: 21 May 2021
Preprinted: 23 May 2021
Accepted: 06 September 2021
Published: 17 September 2021

Reviewing Editor: Volker 
Dötsch, Goethe University, 
Germany

   Copyright Griffith and 
Holehouse. This article is 
distributed under the terms 
of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.70576
mailto:alex.holehouse@wustl.edu
https://doi.org/10.1101/2021.05.21.445045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Tools and resources      Computational and Systems Biology

Griffith and Holehouse. eLife 2021;10:e70576. DOI: https:// doi. org/ 10. 7554/ eLife. 70576  2 of 17

patterns to make predictions on previously untested samples. Deep learning approaches, as opposed 
to ‘shallow’ machine learning approaches, such as logistic regression, are particularly well- suited for 
biological applications as they can implicitly capture relevant features in order to model complex, 
nonlinear, biological relationships (Min et  al., 2017; Raimondi et  al., 2019; Xu et  al., 2020). In 
the context of protein datasets, deep learning approaches offer the attractive quality of allowing 
researchers to simply input raw protein sequences into the model, rather than requiring an interme-
diate step where proteins are reduced into simplified representations (e.g., amino acid content or 
biophysical properties; Raimondi et al., 2019).

However, despite their advantages over simpler models, deep learning approaches are still a rela-
tively specialized form of data analysis. As a result, in many domains of biological sciences, there 
remains a technical and conceptual barrier for labs to apply deep learning approaches to their data. In 
some cases, this could be reasonably attributed to preference for more interpretable simple models, 
rather than more accurate, but often cryptic, deep learning models (Rudin, 2019; Murdoch et al., 
2019). In other cases, this lack of adoption could be due to a general unfamiliarity and inexperience 
with deep learning. Indeed, the field of deep learning can appear daunting for those without exten-
sive computational backgrounds. For an untrained scientist with amenable high- throughput data-
sets, it may be infeasible or too time- consuming to implement deep learning models into an analysis 
workflow.

Here, we aim to make cutting- edge deep learning accessible to a broad audience of biological 
researchers through our package PARROT (Protein Analysis using RecuRrent neural networks On 
Training data). PARROT is designed to be a general framework for training machine learning networks 
on large protein datasets, then using the trained network to make predictions on new protein 
sequences. The user side of PARROT is an easy- to- use command line tool that is flexible enough to 
handle a variety of data formats and machine learning tasks. In its implementation, PARROT carries out 
the computational heavy lifting through implementation of a recurrent neural network (RNN). RNNs 
are a class of deep learning architecture originally designed for language processing applications, but 
have since been employed with remarkable success in biology (Rumelhart et al., 1986; Lipton et al., 
2021; Hanson et al., 2017; Heffernan et al., 2017; Almagro Armenteros et al., 2017; Li et al., 
2017; Angermueller et al., 2017; Alley et al., 2019). Compared to other deep learning approaches, 
RNNs are unique in that they are designed to handle variable length sequences, which makes them 
well- suited for applications involving proteins. Using only raw protein sequences as input, RNNs can 
learn the relevant positional dependencies of amino acids needed to associate each sequence with 
a corresponding functional value or values. Through this architecture, PARROT is able to capture 
intrinsic patterns in large protein datasets in order to construct highly accurate predictive models.

In this paper, we introduce the underlying RNN architecture of PARROT and demonstrate its appli-
cation to three different biological problems. First, we show that PARROT performs at a near state- 
of- the- art level on phosphorylation site prediction tasks, a well- characterized bioinformatics problem. 
Second, we use PARROT to train a predictor of transcriptional activation activity using the exten-
sive peptide library from Erijman et al., 2020. Third, we demonstrate how PARROT can be used in 
conjunction with DMS assays, using the amyloid beta- based dataset from Seuma et al., 2021. Ulti-
mately, we show that PARROT is an effective, generalizable, and easy- to- use machine learning tool 
that is applicable to a range of different protein datasets.

Results
PARROT is a general RNN framework
Our motivation behind PARROT was to develop a powerful deep learning tool that is easy to imple-
ment into any large- scale protein analysis workflows (>1000s  of sequences; Figure 1A). The general 
workflow involves the following steps. A user starts with a set of sequences of interest where each 
sequence (or each residue in each sequence) has some label associated with it, either a discrete class 
or a continuous value. PARROT uses this initial dataset to train, validate, and test a deep learning 
model. Training, validation, and testing are all performed automatically within PARROT using standard 
best practices for machine learning model generation. Once a model is built, the user can use that 
model to make predictions on new sequences for which there is no data associated.

https://doi.org/10.7554/eLife.70576
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We used the PyTorch platform to implement the core RNN framework of PARROT (Paszke, 2021). 
The serialized architecture of RNNs and their ability to handle variable length inputs makes them well- 
suited for learning information from protein sequences. In the context of protein analysis, each cell in 
an RNN integrates information from a particular amino acid with the output (‘hidden state vector’) of 
the preceding cell in the network. However, there are two main drawbacks of using the standard RNN 
architecture for protein analysis. First, standard RNNs require that information is propagated through 
the network in a single direction, which imposes an arbitrary constraint on the ability of a network 
to learn from protein sequences. Second, standard RNNs are susceptible to the ‘vanishing gradient 
problem,’ which arises due to the multiplication of many small values and can limit the ability of a 
network to learn long- range dependencies in the data (Bengio et al., 1994). PARROT implements two 
common variants of RNN architecture in order to mitigate these factors (Figure 1B). To address the 
first, the RNN implementation of PARROT is bidirectional, such that there are two parallel RNNs that 
propagate information from the protein sequence in opposite directions (N- to- C and C- to- N) simulta-
neously (Schuster and Paliwal, 1997). To address the issue of vanishing gradients, PARROT employs 
long short- term memory (LSTM) cells, which have been shown to capture long- range dependencies 
in sequences more efficiently than standard RNNs (Hochreiter and Schmidhuber, 1997). Combining 
bidirectionality with LSTM cells has been previously demonstrated to be effective at learning from 
biological sequences (Hanson et al., 2017; Heffernan et al., 2017; Almagro Armenteros et al., 
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Figure 1. PARROT overview. (A) A standard workflow that incorporates PARROT. Quantitative protein data is either obtained computationally or 
generated through experiment, then formatted such that each protein sequence or residue is linked to a particular value. PARROT allows users to train 
a predictor on this dataset. The trained network can then be applied on new sequences to make predictions. (B) The internal architecture of PARROT 
is a bidirectional long short- term memory (LSTM) network. (Top) Series of cells propagate information along the length of a protein sequence in both 
N- to- C and C- to- N directions and the final output is integrated from the deepest layers in each direction. (Bottom) A diagram of the LSTM cells used in 
PARROT. (C) Example data formats for the four kinds of machine learning problems PARROT can carry out on proteins: classification or regression tasks 
using per- sequence or per- residue output.
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2017; Li et al., 2017; Alley et al., 2019). Taken together, PARROT’s underlying network architecture 
is specifically optimized for working with protein datasets.

PARROT was designed to conceal the inner workings of this RNN, such that only a limited set of 
information is required from the user. For the most basic usage, the user only needs to provide their 
data and specify the kind of machine learning task for which they are training the network (classifica-
tion or regression, described below). User datasets are input as basic whitespace- delimited text files 
with each protein sequence and its corresponding data contained on a single line. This file can be 
prepared in any spreadsheet program (e.g., Excel) and saved as a tab- separated variable file. More 
detailed instructions for file preparation are provided in the PARROT documentation. One of the 
consequences of PARROT’s internal RNN is that the provided input sequences are not required to 
be the same length. Before training a PARROT network, users must specify whether their application 
qualifies as a classification or regression task. In classification tasks, the network is trained to assign 
discrete class labels to each input. For example, if one had a set of proteins where each protein 
localized to a specific organelle, this would lend itself to a classification task for predicting subcellular 
localization. For regression, the network outputs a continuous, real- number value for each input. For 
example, if one had a set of peptides where each sequence had an aggregation score between 0 
and 1, this would lend itself to a regression task for predicting quantitative peptide aggregation. In 
addition to these two categories, users must also specify whether they want the PARROT network to 
produce per- sequence or per- residue output. Example data formats for each of these four categories 
are depicted in Figure 1C. Beyond this core usage, advanced users may optionally specify network 
hyperparameters such as the number of layers in the network, size of the hidden state vectors, learning 
rate, batch size, number of training epochs, and various other optional arguments (see Materials and 
methods).

In the remaining sections, we demonstrate the effectiveness of PARROT in the context of three 
distinct protein applications. Our goal here is to illustrate the diverse types of biological questions 
PARROT is capable of interrogating and to inspire readers to apply PARROT in their own research.

PARROT predicts phosphosites on par with established methods
We first benchmarked the performance of PARROT- derived networks on a commonly studied bioin-
formatics task: predicting phosphorylation sites in a protein sequence. We used the Phospho.
ELM (P.ELM) version 9.0 (Diella et al., 2007) and PhosPhAt (PPA) version 3.0 (Heazlewood et al., 
2008; Durek et al., 2010) datasets for training and independent validation, similar to Dou et al., 
2014. P.ELM consists of literature- derived animal phosphorylation sites, and PPA consists of mass 
spectrometry- validated phosphosites in Arabidopsis thaliana. For both of these datasets, we extracted 
all 19- residue windows centered around serine, threonine, and tyrosine and divided each of these 
into phosphorylation- positive and -negative sets. After filtering out similar sequences with CD- HIT 
(Fu et al., 2012), we then downsampled the larger phosphorylation- negative sets in order to create 
balanced datasets with identical numbers of phosphorylation- positive and phosphorylation- negative 
windows. Separate PARROT networks were trained on the serine, threonine, and tyrosine windows 
from the P.ELM dataset (Figure 2A).

We first tested our PARROT phosphosite predictors for each of the three residues on the P.ELM 
dataset using 10- fold cross- validation. This involved randomly splitting each residue- specific dataset 
into 10 even subsets, then training on 9/10 of the data and testing on the held out 1/10 for each of 
the subsets. As a benchmark, we compared the performance of our PARROT networks against three 
established phosphosite predictors, PhosphoSVM, MusiteDeep, and PHOSFER, which each rely upon 
different methodologies (Dou et al., 2014; Trost and Kusalik, 2013; Wang et al., 2017). As this was a 
binary classification problem, we focused our analysis on sensitivity, specificity, and Matthew’s correla-
tion coefficient (MCC) as performance metrics. We chose MCC as a performance metric because it has 
been shown to be more informative for binary classification tasks than the more commonly used F1 
score or accuracy (Chicco and Jurman, 2020). Overall, the PARROT networks performed better than 
PhosphoSVM, and at a comparable level to PHOSFER and MusiteDeep (Figure 2B, Supplementary 
file 1). Interestingly, there was variation in the relative performance of the top three methods across 
the three residue types, with PARROT performing best on pSer, second best on pThr, and third best 
on pTyr. This performance trend corresponds with the size of the training dataset available for each 
residue. The P.ELM cross- validation analysis also illuminated particular biases in each of the predictors. 

https://doi.org/10.7554/eLife.70576


 Tools and resources      Computational and Systems Biology

Griffith and Holehouse. eLife 2021;10:e70576. DOI: https:// doi. org/ 10. 7554/ eLife. 70576  5 of 17

Notably, PHOSFER and MusiteDeep tended to predict with high sensitivity and low specificity, Phos-
phoSVM predicted with low sensitivity and high specificity (Figure 2C and D). However, PARROT’s 
predictions tended to be the most balanced, with comparable sensitivity and specificity across the 
three different residue types.

Overfitting to training data is a common problem in the field of machine learning, so to test for 
this we assessed the performance of our PARROT predictors on an independent test dataset. For 
each of the three residue types, we trained a PARROT predictor on the full P.ELM dataset and made 
predictions on Ser, Thr, and Tyr residues in the PPA dataset. Unsurprisingly, all of the PARROT predic-
tors performed worse on the PPA data than they did on the P.ELM cross- validation analysis; however, 
the PARROT predictors still performed comparably or better than the three established phosphory-
lation site predictors (Figure 2B–D, Supplementary file 2). PARROT’s comparable performance to 
PHOSFER on the PPA dataset is particularly notable because PHOSFER was specifically designed for 
the prediction of plant phosphorylation sites (Trost and Kusalik, 2013).

Ultimately, our intention behind these analyses is not to assert that our PARROT- based predictors 
are inherently superior to all other existing phosphorylation site predictors. Rather it is to demonstrate 
that PARROT, despite being a general framework for any type of protein analysis, can perform equiv-
alently to methods that are specifically developed for a particular task. In doing so, we establish that 
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Figure 2. PARROT’s performance on a phosphosite prediction task. (A) Workflow for training PARROT networks for phosphosite prediction. Full- length, 
annotated sequences from the Phospho.ELM (P.ELM) dataset were split into phospho- positive and phospho- negative 19aa windows (11aa windows 
used in figure for clarity). PARROT predictors trained on these sequence windows and were used to make predictions on held out sequences and 
the PhosPhAt (PPA) dataset. (B) Matthew’s correlation coefficient (MCC), (C) sensitivity (D), and specificity scores for the PARROT predictors and three 
external predictors on the task of phosphosite prediction on the P.ELM and PPA datasets.
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PARROT- trained networks perform at a high level and that PARROT can confidently be extended to 
other less well- characterized protein applications.

PARROT can integrate into high-throughput experiment workflows
Having established that predictors trained with PARROT can accurately learn patterns in large data-
sets, we next focused on showcasing PARROT’s ability to integrate into a typical high- throughput 
experiment workflow. To accomplish this, we turned to the data generated by Erijman et al., 2020, 
in which the authors developed a high- throughput fluorescence assay for testing 30- mer peptides for 
activation domain (AD) function in yeast. Their assay measured ~37,000 sequences with AD function 
and ~1 million without, allowing them to train a convolutional neural network to predict AD function 
from sequence and secondary structure information (ADpred). This general workflow of (1) gener-
ating massive quantities of data using a high- throughput assay and (2) developing a computational 
predictor based on the assay data is becoming increasingly common in molecular biology. While 
ultimately the approach taken by Erijman et al. was computationally rigorous and successful, here 
we demonstrate that PARROT could readily be implemented in such a workflow without sacrificing 
performance (Figure 3A). Using PARROT in cases like this could save researchers valuable time from 
having to develop their own machine learning predictors from scratch.

Using 10- fold cross- validation, we trained PARROT networks on this AD dataset (see Materials 
and methods) and evaluated their performance and generalizability. First, we tested how well each 
of the networks predicted AD function on the held- out test set. PARROT networks predicted AD 
function with an accuracy of 93.1%   (standard error ±0.1%) and an area under the precision- recall 
curve (AUPRC) of 0.973 (± 0.001), which were not significantly different from ADpred’s reported accu-
racy and AUPRC of 93.2%   (± 0.1%) and 0.975 (± 0.001), respectively (Figure  3B). However, the 
PARROT- based predictors did significantly outperform the simple logistic regression model also used 
in Erijman et al., 2020, which had an accuracy of 89.1%  (± 0.4%) and AUPRC of 0.942 (± 0.002). 
We also assessed the generalizability of the PARROT predictors through a similar approach as in the 
ADpred paper. Each cross- validation- trained network was also applied to an independent yeast AD 
dataset from Staller et al., 2018. We found good correlation between our predicted AD values and 
the independent data with an average Pearson’s R = 0.586 (± 0.005), which was slightly higher than 
the reported performance of ADpred of R = 0.57 (Figure 3C).

To assess how the PARROT networks performed with fewer sequences to train on, we repeated 
both of these analyses on reduced datasets. Sampling from the complete dataset containing 75,846 
30- mer peptides (50%  displaying AD function), we created new 70K , 60K , 50K , 40K , 30K , 20K , 
10K , and 5K  peptide datasets. AUPRC began to plateau around 40K  peptides, and generalizability 
to the Staller et al. data plateaued at around 30 K, indicating that PARROT can robustly capture mean-
ingful patterns in reduced datasets (Figure 3D).

Although all of the peptides studied in this analysis were 30 residues in length, one of the benefits 
of PARROT over other deep learning approaches is that it is not limited to fixed length sequences. In 
theory, one could train a predictor with PARROT using the combined results from multiple indepen-
dent assays that test for similar phenotypes. As a proof of concept for this idea, we combined the 
data from Erijman et al. with the results from a similar AD functional assay that tested 5–20 residue 
peptides (Ravarani et al., 2018), trained new PARROT predictors on a variety of dataset sizes, and 
repeated the analyses described above. We found that 10- fold cross- validation accuracy and AUPRC 
slightly decreased using the combined datasets, possibly due to greater intra- dataset variance. 
However, performance on the independent test dataset was not significantly different (Figure 3—
figure supplement 1). Despite the modest dip in performance for this particular case, we posit that 
PARROT’s flexibility to incorporate multiple datasets while training could be useful in other contexts 
where a single, comprehensive dataset is not available.

As a final set of analyses, we compared our PARROT predictor to a recently published deep 
learning- based method for activation domain prediction, called PADDLE, developed by Sanborn 
et al., 2021. Similar to ADpred, PADDLE is a deep convolutional neural network and was trained 
on data derived from a quantitative, high- throughput assay. When applying our PARROT predictor 
trained on the Erijman et al. data to the Sanborn et al. data., we obtained relatively poor predic-
tive power (Figure 3—figure supplement 2). However, since ADpred had also been shown to be 
ineffective at predicting the data obtained by Sanborn et al., 2021, we suspected that PARROT’s 

https://doi.org/10.7554/eLife.70576
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underperformance may reflect inherent system- specific limitations in transferability between the two 
datasets. To test this, we leveraged PARROT’s flexibility and trained a new predictor using the same 
training data as PADDLE. This new predictor saw substantially improved performance and was able to 
predict activation domain function comparably to PADDLE.
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Figure 3. PARROT predicts functional yeast activation domains. (A) Diagram of activation domain workflow. A 
PARROT network was trained on the yeast fluorescence activation assay data from Erijman et al. and used to 
make predictions on new protein sequences. (B) PARROT’s 10- fold cross- validation accuracy and area under the 
precision- recall curve (AUPRC) on the Erijman et al. dataset compared to the reported scores for two approaches 
employed in that paper: ADpred and a logistic regression based method. (C) Representative example of the 
correlation between PARROT’s predictions and the true activation scores of an independent yeast activation 
domain dataset. (D) PARROT’s performance on the tasks in (B) (top) and (C) (bottom) as a function of dataset size. 
For each specified dataset size, the actual number of sequences used for training and validation was 90% of the 
indicated value since networks were trained using 10- fold cross- validation. The dashed line is a hyperbola best- fit 
line. The reported performance of ADpred is shown for reference in gray.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Performance of PARROT networks trained on a multi- study dataset on the activation 
domain prediction task.

Figure supplement 2. Analysis of PARROT networks on the test set data of Sanborn et al.

https://doi.org/10.7554/eLife.70576
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PARROT can complement DMS experiments
For our final analysis, we demonstrate a unique usage for PARROT in tandem with DMS experiments. 
We conducted our training and testing of PARROT networks using a recent DMS dataset investi-
gating amyloid beta (Aß42), a 42- residue peptide that can form plaques implicated in Alzheimer’s 
disease (Seuma et al., 2021; Findeis, 2007). In work by Seuma et al., the authors tested >450 single 
and >14,000 double mutants of Aß42 in an assay that measured each variant’s propensity to nucleate 
amyloid fibrils. Each of the variants they tested was assigned a log- ratio score (normalized to WT) with 
positive values indicating that that variant was nucleation- prone. While this scale of this experiment 
was massive, the sheer combinatorics of DMS makes it infeasible to truly capture all possible single 
and double mutations for a peptide of this size in a single assay. In our analysis, we show that PARROT 
can be employed to ‘fill in the gaps’ of a DMS experiment by training on the experimental variants and 
applying the network to predict the experimental outcome for variants that were not directly assayed.

We first validated PARROT’s ability to predict nucleation scores from DMS data. Unlike the previous 
applications, the peptides obtained from DMS experiments occupy a relatively limited region of 
sequence space given that each sequence differs by only a few point mutations. It was not initially 
clear to us if PARROT would be able to learn the general, underlying patterns within this more focused 
dataset rather than overfitting on specific observations. To test this, we set out to rigorously evaluate 
our PARROT networks by developing and applying a method of residue- wise cross- validation. For 
each cross- validation fold, the held- out test set consisted of the data of all variants (single and double) 
linked to a particular residue in the sequence, while the training set consisted of all other variants. 
For example, during the round of cross- validation for the fourth position of Aß42 (Phe- 4), variants like 
F4G, F4S, F4S- H13N, etc., would be excluded from the training data and held in the test set. While 
this approach to training might seem excessive, it avoids the issue of overfitting that would arise using 
conventional cross- validation training. For example, if we were to naively divide our DMS data into 
10 random subsets, we could have cases where the training set consists of double mutants like F4S- 
H13N and F4S- V36M while the single mutant F4S is in the held- out test set. In this kind of situation, 
our predictions would be more accurate, but this would be improperly overestimating PARROT’s 
performance.

Using residue- wise cross- validation, we trained and tested PARROT networks for all 42 posi-
tions of Aß42, taking the average predictions of double mutants since they were represented in the 
two separate test sets. Across all of the single and double mutants in the dataset, we see good 
correlation between PARROT’s predictions and the true assay scores (R2 = 0.593; Figure  4B). To 
provide context for this value, between multiple biological replicates of the DMS experiments an 
R2 of 0.72 was obtained, indicating to us that PARROT is effectively capturing much of the variation 
between sequences that are not due to biological noise (Seuma et al., 2021). Within our entire set 
of predictions, the correlation was tighter among the double mutants in the dataset than the single 
mutants, likely due to the limited information that PARROT sees for the single mutants during training 
(Figure 4—figure supplement 1).

We next sought to see if the PARROT networks could capture epistatic relationships between Aß42 
residues in the set of double mutants. In assays that measure complex phenotypes such as the nucle-
ation of amyloid fibrils, it is not clear a priori if independent mutations will work synergistically or antag-
onistically when combined. For this analysis, we were interested in how well PARROT could predict 
the impact of double mutations in the DMS dataset relative to simpler estimations, such as summing 
the assay score of the two single mutations. Looking at only the double mutants in our dataset for 
which both point mutations were represented in the set of single mutants, we found that PARROT’s 
predictions significantly outperformed this simple summing approach (p<0.01; Figure 4C). We also 
tested PARROT against other approaches for predicting double mutants: averaging the single mutant 
scores, taking the minimum score, or taking the maximum score, and similarly found that PARROT’s 
predictions had significantly tighter correlation to the true values (Figure 4—figure supplement 2). 
While the effect size was relatively small, it is important to note that the PARROT networks making 
these epistatic predictions are training without key positional information due to the residue- wise 
cross- validation process. PARROT is not simply integrating information from the two single mutants, 
but rather it is making predictions based on general patterns it has learned from other variants.

Lastly, we wanted to see if PARROT was an effective tool for prioritizing untested candidate vari-
ants for follow- up study. Since it is infeasible for DMS experiments to test all possible point mutations 
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in the protein sequence, we reasoned that PARROT might be an effective tool for making predictions 
on the mutants not covered by the assay. To test this idea, we assessed how effectively PARROT prior-
itized a set of 12 Aß42 variants linked to familial Alzheimer’s disease (fAD) within the entire collection 
of single mutants. This analysis was analogous to what was performed by Seuma and colleagues in 
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Figure 4. PARROT can ‘fill in the gaps’ of deep mutational scanning experiments. (A) Depiction of the residue- wise 
cross- validation workflow for predicting fibril nucleation scores using the Aß42 deep mutational scanning (DMS) 
assay from Seuma et al. (B) Correlation between the true assay scores and predictions made by PARROT networks 
trained using residue- wise cross- validation for >14,000 single and double mutant variants. (C) Measurement of 
epistasis within the nucleation assay. (Left) Correlation between the nucleation scores of double mutants and the 
sum of nucleation scores of their composite single mutants. (Right) Correlation between the same double mutant 
nucleation scores and the predictions made by PARROT. (D) Receiver operator characteristic (ROC) curves for 12 
familial Alzheimer’s disease (fAD) mutants versus all other single mutant variants in the dataset. Area under the 
curve (AUC) values are reported in the legend.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Related to Figure 4B, correlation between Aß42 nucleation scores and PARROT 
predictions divided into (A) single mutants and (B) double mutants.

Figure supplement 2. Related to Figure 4C, measured epistasis between Aß42 double mutant nucleation scores 
and the average (top), maximum (middle), and minimum (bottom) of their composite single mutant scores.
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the original DMS study (Seuma et al., 2021). In addition to the predictions made by our residue- wise 
cross- validation networks (PARROT_ResCV), we trained an additional network using PARROT on the 
entire DMS dataset minus the 12 fAD- linked single mutants and all double mutants containing one or 
both of these mutations (PARROT_nofAD). We calculated area under the ROC curve (AUROC) to eval-
uate the predictions of these PARROT networks and compared PARROT’s performance to the original 
DMS assay and to TANGO (Fernandez- Escamilla et al., 2004) and CADD (Rentzsch et al., 2019), 
which are computational predictors of aggregation and variant effect, respectively (Figure 4D). With 
the exception of the assay’s scores (which PARROT trained on), PARROT_nofAD and PARROT_ResCV 
outperformed all other predictors. In particular, the success of the PARROT_nofAD predictor demon-
strates that PARROT can effectively ‘fill in the gaps’ of DMS experiments and help prioritize candidate 
variants for follow- up study. Essentially, researchers can use PARROT to construct their own variant 
effect predictor that is specific to their assay and protein of interest.

Discussion
When designing PARROT, we set out to develop a machine learning tool that effectively extracts 
patterns from protein sequence data, is generalizable to a wide array of regression and classification 
tasks, and is easy to use. There are a number of tools in recent years that satisfy some of these criteria, 
but not all three. For instance, deep learning- based predictors are becoming widely used in protein 
analysis, but these implementations tend to be designed for a single specific application rather than 
general use (Heffernan et al., 2017; Almagro Armenteros et al., 2017; Alipanahi et al., 2015). 
Although general protein analysis tools do exist, these typically implement simpler techniques like 
linear or logistic regression, support vector machines or decision trees, and are not necessarily able 
to identify complex, nonlinear patterns in datasets (Brandes et  al., 2016; Liu, 2019). Meanwhile, 
open- source software packages like PyTorch, Keras, and TensorFlow make general deep learning 
frameworks freely available, but implementing these requires significant computational expertise and 
time investment. PARROT offers a freely available deep learning tool that satisfies all three of these 
criteria. By creating a tool that is sufficiently flexible, straightforward, and computationally rigorous, 
we aim to make the advantages of deep learning accessible to all biologists.

Importantly, we have demonstrated that predictors built using PARROT perform comparably to 
existing machine learning predictors across multiple contexts. In the case of phosphorylation site 
prediction, PHOSFER, PhosphoSVM, and MusiteDeep have all been specifically designed for this 
task, while PARROT was not. Nonetheless, PARROT still predicts phosphorylation sites approximately 
equivalently to each of these methods. Likewise, PARROT also performs comparably to both ADpred 
and PADDLE after training on the same dataset as either of these predictors. In our analysis of Aß42, 
we saw that PARROT networks trained on the DMS dataset were more effective at identifying patho-
genic, fibril forming variants than computational tools like TANGO or CADD. Collectively, these results 
demonstrate that PARROT’s flexibility across datasets does not come at the expense of performance. 
Moreover, while there has been a previous focus on the application of deep learning to understand 
folded protein stability, PARROT is demonstrably well- suited for working with intrinsically disordered 
protein sequences (Alley et  al., 2019; Cao et  al., 2019; Hoie et  al., 2021; Lindorff- Larsen and 
Kragelund, 2021).

The three specific applications we used to showcase PARROT outline broader use cases in which 
it can be effective. For starters, PARROT can be used to create predictors from existing bioinformatic 
datasets; for example, we trained networks to predict phosphosites using the existing P.ELM dataset. 
Second, PARROT can easily be incorporated into the workflows of high- throughput protein experi-
ments, as shown with the yeast activation domain predictor we created from Erijman et al.’s fluores-
cence assay data. DMS experiments are a special subset of this kind of usage. Our third example 
demonstrated how PARROT can train on DMS data and extrapolate predictions on variants that were 
not experimentally tested. In all three cases, PARROT can save researchers valuable time by elimi-
nating the need to develop machine learning predictors de novo.

Beyond these applications, there are several other features built into PARROT that may increase its 
appeal to a wider scientific audience. Trained PARROT networks are fully portable into Python, which 
allows them to be easily integrated into stand- alone software tools, entirely independent of PARROT. 
As an example, we recently used PARROT to train a predictor of per- residue intrinsic disorder or 
predicted structure that offers a number of advantages in terms of performance and ease of use 
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compared to the state of the art (Emenecker et al., 2021). Additionally, while PARROT uses one- hot 
encoding to transform amino acid sequences into machine- readable numeric vectors by default, it can 
readily adopt other user- specified encoding schemes such as describing amino acids by their biophys-
ical properties. As a consequence of this fact, PARROT is not specific to the canonical amino acid 
alphabet and can even be applied to nucleotide sequences. All of these features, and much more, are 
described in detail in the PARROT documentation.

As a final point, we would like to emphasize to prospective users of PARROT, or any similar tool, 
that predictions made by machine learning models should be interpreted with caution. Although deep 
learning methods are powerful at detecting patterns in data, this power also comes with increased 
susceptibility to overfitting and biased datasets. Proper data processing, not specific model archi-
tecture, is arguably the most critical factor for ensuring that deep learning is utilized accurately and 
meaningfully. While deep learning- based predictions can be instrumental in generating follow- up 
candidates and developing hypotheses, it is important to remember that these predictions do not 
replace the need for direct experimental validation.

Materials and methods
LSTM implementation
PARROT’s underlying bidirectional LSTM network is implemented using the PyTorch library in Python. 
Input protein sequences are converted to one- hot vectors and grouped into batches (default: 32 
sequences per batch), then fed into both the first forward layer and first reverse layer of LSTM cells. 
By default, PARROT networks consist of two layers of LSTM cells, though this hyperparameter can be 
manually specified by the user. Information is propagated between adjacent LSTM cells and between 
layers through hidden state vectors, which can also have a manually specified size (default 10). Hidden 
state vectors from the final layer of LSTM cells are converted to the final output via a fully connected 
linear or softmax neuron (Figure 1C). PARROT uses either a many- to- one or many- to- many architec-
ture depending on whether the machine learning task at hand involves mapping protein sequences 
to single values (or class labels) or mapping each residue to a value/class label. The key implementa-
tion difference between these two architectures is in which hidden state vectors of the final layer of 
LSTM cells are input into the fully connected layer. For residue mapping, the hidden state vectors of 
the final forward and reverse cells at each position in the sequence are integrated into their own final 
connected layer (Figure 1C, gray). In contrast for sequence mapping, only the hidden state vectors 
from the final forward and final reverse cells are integrated into the fully connected layer (Figure 1C, 
green). For classification tasks, the fully connected layer outputs a vector with a size corresponding to 
the number of class labels. For regression tasks, this layer outputs a single value.

During training, weights in PARROT networks are updated using the Adam optimizer (Kingma 
and Ba, 2014). By default, the initial learning rate is set at 0.001. Classification tasks employ a cross- 
entropy loss function, while regression tasks use L1 and L2 loss functions for sequence mapping and 
residue mapping tasks, respectively. PARROT splits input datasets 70- 15- 15 into training, validation, 
and testing datasets by default; however, these proportions can be manually specified via the ‘--set- 
fractions’ argument. The validation set is not trained on, but used to assess network performance 
after each epoch of training. The test set is completely held out until after training has concluded in 
order to give an estimate for how generalizable the trained network is on unseen data. Approximate 
training times for different hyperparameters and dataset sizes are listed in Supplementary file 3. 
Further implementation details and information on additional run- time arguments can be found in the 
PARROT documentation.

Evaluation metrics
In binary classification problems, each prediction falls into one of four cases: true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN). We compared our PARROT networks to 
other predictors using a variety of performance metrics that describe distribution of predictions across 
each of these categories. These metrics are calculated in the following ways:

 Accuracy = TP + FP
TP + FP + TN + FN   (1)
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 Sensitivity = TP
TP + FN   (2)

 Specificity = TN
TN + FP  (3)

 Precision = TP
TP + FP  (4)

 
F1 Score = TP

TP + 0.5 ∗
(

FN + FP
)
  (5)

 
MCC = TP ∗ TN − FP ∗ FN√(

TP + FP
)(

TP + FN
)(

TN + FP
)(

TN + FN
)
  

(6)

Alternatively, performance on classification tasks can be evaluated using precision- recall or receiver 
operator characteristic (ROC) curves. Instead of assigning each predicted sequence a discrete class 
label, sequences are assigned a continuous real number value corresponding to the confidence that 
it belongs to a particular class. We generated these non- discrete predictions using the optional 
‘--probabilistic- classification’ command- line argument and calculated AUPRC and AUROC using the 
Python package scikit- learn (Pedregosa et al., 2011).

Phosphosite prediction
The same P.ELM and PPA datasets were used as by Dou et  al., 2014, each split into separate 
phospho- serine, -threonine, and -tyrosine subsets. Initially, sequences with  >30% similarity within 
each subset were removed using CD- HIT with default arguments (Fu et al., 2012). We next extracted 
all 19- residue windows centered around all serine, threonine, and tyrosine residues in each of the 
respective datasets, dividing these into phosphorylation- positive and phosphorylation- negative sets. 
A subsequent round of filtering was performed and sequences within these subsets with >20% simi-
larity were removed. We then randomly downsampled the phosphorylation- negative sequences so 
that their number equaled the phosphorylation- positives and merged the two datasets into a single 
file for training by PARROT.

Our analysis proceeded by training and evaluating the networks on the P.ELM dataset using 10- fold 
cross- validation. The pSer, pThr, and pTyr datasets were each split randomly into 10 equal subsets. 
The PARROT script parrot- cvsplit facilitates this process of splitting a dataset into cross- validation 
subsets. Using the ‘--split’ flag, PARROT networks were subsequently trained on nine of these sets 
and the resulting network made predictions for the sequences in the held out test set. These networks 
were trained using the following arguments: two hidden layers; hidden vector size of 10; learning 
rate of 0.0001; batch size of 64; 500 training epochs. The reported performance metrics in Figure 2 
and Supplementary files 1 and 2 denote the average scores across the 10 cross- validation test sets. 
Predictions were also made by PHOSFER and MusiteDeep through their online web server on each 
of the cross- validation test sets and performance metrics were averaged. However, we opted not to 
test PhosphoSVM in this manner since this predictor was originally trained on the same P.ELM data 
and we wanted to avoid overfitting. Instead, we report the performance metrics taken directly from 
Dou et al. since these were calculated using a similar strategy of 10- fold cross- validation on the P.ELM 
dataset (Dou et al., 2014).

Using the same training arguments, additional networks were trained on the full P.ELM dataset 
(separately for pSer, pThr, and pTyr) and used to make predictions on the PPA dataset. Predictions 
were also made by PHOSFER, MusiteDeep on the same PPA data, and performance metrics were 
calculated for each of these sets of predictions. As with the P.ELM data, the performance metrics of 
PhosphoSVM on the PPA data were taken directly from Dou et al.

Activation domain function prediction
The quantitative fluorescence assay data of Erijman et al. was collected and processed in a manner 
identical to its source paper (Erijman et al., 2020). Briefly, each 30- mer was assigned a real number 
score based on its distribution of reads across four fluorescence expression bins. These sequences 
were split into AD- positive and AD- negative sets and the negative set was sampled such that there 
were equal numbers of positive and negative sequences in the final dataset. This sampling process 
was repeated five times for the ‘full’ dataset (75,846 sequences), as well as for each of the reduced 
datasets (70K  sequences, 60K  sequences, etc.) in order to generate additional replicates.

Each dataset was split randomly into 10 cross- validation subsets, and PARROT networks were 
subsequently trained on nine and tested on the held- out subset. PARROT networks were trained 
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using the following hyperparameters: two hidden layers; hidden vector size of 10; learning rate of 
0.0005; batch size of 64; 300 training epochs. Although our input data was set up as a classification 
task, by using the ‘--probabilistic- classification’ argument, all of our predictions were output as real 
numbers between 0 and 1, which allowed us to conduct precision- recall curve analysis. In addition to 
assessing the performance on the held- out test set, each network was also used to make predictions 
on an independent dataset. This independent dataset was obtained from a similar yeast AD quantita-
tive fluorescence assay from Staller et al., 2018. We calculated the normalized expression value for 
each sequence in this dataset by dividing the raw AD activity (GFP) by the protein expression level 
(mCherry), and log- normalizing the data around the WT sequence. The performance metrics reported 
in Figure 3 are the averages of 50 total replicates (five replicate datasets with 10- fold cross- validation 
for each).

We also created a combined training dataset using the results from a similar AD functional assay 
in Ravarani et al., 2018. We extracted all sequences from this assay that were at least five residues in 
length and split into positive and negative sets as described using a cutoff of –0.14. These AD- positive 
and -negative sequences were then merged with the full Erijman et al. dataset, and PARROT networks 
were trained and evaluated in the same manner as before.

To perform comparisons against PADDLE (Sanborn et al., 2021), we extracted the activation assay 
data from Sanborn et al. and split into training and test sets as specified by the ‘PADDLE split’ column. 
A PARROT regressive model was trained on the full training set using the following hyperparameters: 
two hidden layers; hidden vector size of twenty; learning rate of 0.001; batch size of 64; 300 training 
epochs. Predictions were made on all of the test set sequences with this new network, as well as with 
the PARROT predictor that trained on the Erijman et al. data. Sequences in the test set that belonged 
to the transcription factor tiling, scramble mutant, and Pdr1 variant subsets were split and graphed 
separately.

Aß42 nucleation prediction
Data linking Aß42 nucleation propensity to sequence was obtained from Seuma et al., 2021. Each 
single or double mutant variant was assigned a log- normalized (relative to WT) score with positive 
values reflecting that a variant is more prone to nucleating amyloid fibrils. For simplicity, we removed 
all nonsense variants from the dataset prior to training. The remaining variants were split into 42 
different training- test set pairs, based on the position of the mutation(s) in that variant. Each test set 
contained all variants with mutations associated with a single residue, while the training sets consisted 
of all remaining variants. Accordingly, each double mutant was withheld in two separate test sets. 
Individual PARROT networks were trained on each of these unique training sets and the resulting 
network was used to make predictions on the corresponding test set. Networks were trained using 
the following hyperparameters: 3 hidden layers, hidden vector of size 8; learning rate of 0.0005; batch 
size of 64; and 250 training epochs. Predictions from the 42 test sets were combined, averaged (in the 
case of double mutants), and then analyzed.

We assessed the ability of PARROT to detect ‘epistasis’ by comparing the network’s prediction 
of double mutants to simpler approaches that estimated mutant effect by integrating nucleation 
scores of the associative single mutations. We determined statistical significance between correla-
tions derived from these different approaches through bootstrapping. All data points were resampled 
with replacement 10,000 times, calculating Pearson’s R for each iteration, and the 99%  confidence 
intervals were used as a threshold for significance (p<0.01).

The 12 fAD- linked variants that we analyzed were H6R, D7N, D7H, E11K, K16N, A21G, E22G, 
E22K, E22Q, D23N, L34V, and A42T. PARROT_ResCV and PARROT_nofAD predictions for all single 
mutants were ordered in order to create ROC curves. The CADD and TANGO predictions used for 
ROC analysis were also obtained from Seuma et al. as they performed an identical analysis on this set 
of 12 variants.

Implementation
The complete PARROT implementation consists of four command- line commands: parrot- train, parrot- 
predict, parrot- optimize and parrot- cvsplit. For the analysis described here, parrot- train was used to 
train the RNN predictors given a properly formatted dataset and parrot- predict was used to make 
predictions on new sequences using an existing trained network. We did not use parrot- optimize in 
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these analyses, but can be used to automatically select network hyperparameters through Gaussian 
process optimization. parrot- cvsplit allows users to automatically split their datasets into k- folds for 
cross- validation. More details can be found in the PARROT documentation: https:// idptools- parrot. 
readthedocs. io/. PARROT is optimized to run in a Mac or Linux environment, but can also work using 
Windows.
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Data availability
All code is fully open source and available here: https:// github. com/ idptools/ parrot. Documenta-
tion is available here: https:// idptools- parrot. readthedocs. io/. Additional supporting data available 
here: https:// github. com/ holehouse- lab/ supportingdata/ tree/ master/ 2021/ griffith_ parrot_ 2021 (copy 
archived at https:// archive. softwareheritage. org/ swh: 1: rev: 4bb4 8369 891d c441 6b6b 1760 4684 6091 
d8cd9ddb). PhosPhat was taken from http:// phosphat. uni- hohenheim. de (specifically  Phosphat_ 
20200624. csv), while data for PhosphoElm where taken from http:// phospho. elm. eu. org/. In both 
cases the entire dataset available at the time of analysis was used.
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