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Understanding mechanisms of protein flexibility is of great importance to structural biology. The ability to detect similarities
between proteins and their patterns is vital in discovering new information about unknown protein functions. A Distance
Constraint Model (DCM) provides a means to generate a variety of flexibility measures based on a given protein structure.
Although information about mechanical properties of flexibility is critical for understanding protein function for a given protein,
the question of whether certain characteristics are shared across homologous proteins is difficult to assess. For a proper assessment,
a quantified measure of similarity is necessary. This paper begins to explore image processing techniques to quantify similarities in
signals and images that characterize protein flexibility. The dataset considered here consists of three different families of proteins,
with three proteins in each family. The similarities and differences found within flexibility measures across homologous proteins
do not align with sequence-based evolutionary methods.

1. Introduction

Proteins are complex biomolecules, combining the structure
of a long folded polypeptide chain with the underlying
dynamics that contribute to function. The relative rigidity
and flexibility along protein chains may provide insight
into evolutionary and regulatory mechanisms controlling
function. Besides traditional experimental measures that
can be attributed to flexibility, such as crystallographic B-
factors or NMR S2 order parameters, computer models
exist that attempt to quantify protein flexibility [1]. One
unique methodology, termed the Distance Constraint Model
(DCM) [2], considers various interactions, such as covalent
bonds, hydrogen bonds, and local residue conformational
states, and models these as a network of distance constraints.
A large number of Quantitative Stability and Flexibility
Relationships (QSFR) are output of a minimal DCM
(mDCM), where rigidity/flexibility properties of an underly-
ing distance constraint network are obtained through graph

rigidity algorithms that allow mechanical properties to be
calculated.

Proteins with high-sequence identity and high structural
similarity share a common evolutionary relationship and
have similar structure and function [3]. However, ortholo-
gous proteins may also have subtle yet important differences
due to changes in regulation, cellular environment, among
other factors. The DCM produces copious output measures
for each protein studied, which are typically analyzed
by graphing and then visualizing the data. Comparative
studies that quantify the similarity of proteins based on
flexibility measures using standard clustering methods have
demonstrated deviations from those obtained from sequence
alignments [4]. Despite differences that were found in
clustering methods, visual inspection shows many features
are qualitatively similar, while there are subtle differences in
localized regions. Since subtle differences can have a dramatic
effect on how a protein functions, it is necessary to analyze
the data across global and local scales in quantitative detail
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in order to accurately detect regions of protein similarities
and differences. In this regard, image recognition offers
a possible option toward such an analysis. For instance,
wavelets are capable of decomposing, displaying, and ana-
lyzing signal patterns in space and scale domains. Wavelets
allow exploring the relation between frequency and space
characteristics of a signal and are widely used to investigate
the near and far similarities in terms of location in sequence
[5].

In recent years, wavelet analysis and image processing
algorithms have been increasingly applied to bioinformatics.
Doolittle [6] described wavelet transform as an exceptional
tool for feature extraction and multiresolution signal analy-
sis. Image processing methods have been used for content-
based image retrieval, and image registration methods to
measure the dissimilarity of proteins [3]. In addition, discrete
wavelet transform has been employed to discover functional
similarity of proteins with low identity based on various
substitution models [7]. Given the successes that wavelets
have provided up to now, it is worthwhile to apply wavelet
analysis (for the first time) on the flexibility measures
generated by mDCM.

For this study, three proteins from thioredoxin (TRX)
calmodulin (CaM) and CheY (CHY) protein families were
selected as a representative dataset. On this data, wavelet
analysis is employed to explore the flexibility characteristics
of three proteins from each of the three families. In prior
work [8], the sequences were aligned using standard struc-
tural alignment methods. However, an applicable question is
whether one can use the flexibility characteristics as a deter-
minant for the alignment. It is possible that aligning proteins
using intrinsic flexibility properties will provide insight
into functional aspects tied to protein dynamics, rather
than structure. Therefore, an image registration method is
employed in this work to compute the similarities. A problem
that occurs when comparing sequences of different lengths
is the formation of gaps. The gaps are represented as large
values that are off scale.

The rest of the paper is organized as follows: the proposed
methodology is described in Section 2, starting with the
description of the dataset of study, proposed method, and
then, the steps of image registration. The results of the
proposed method are presented and discussed in Section 3.
Section 4 presents the conclusion and future work.

2. Methodology

2.1. Dataset. For the purpose of this study, the particular
selection of proteins is not important with respect to
biological function. Nevertheless, all proteins selected have
much relevance in biological function in humans and/or
other species. Here, nine proteins are considered, where
three proteins have been selected in three different families,
associated with thioredoxin (TRX), calmodulin (CaM) and
CheY (CHY).

The proteins in the thioredoxin family are essential
for vital functions in different organisms from mammals
to bacteria [9]. The TRX proteins are redox regulators to

maintain intracellular target proteins in a reduced state.
They are relatively small (∼110 amino acids) and are
well characterized structurally and have been studied to
considerable extent using the mDCM [4, 8]. The mDCM
parameters are generally determined by fitting calorimetry
data. In this case, the parameters were determined form E.
coli protein (PDB code 2TRX), and the same parameters
were used to generate QSFR for orthologous thioredoxins
from Anabaena species (1THX), Chlamydomonas reinhardtii
(1EP7), and Spinacia oleracea (1FB6). Further details of the
mDCM methodology and protein structure processing can
be found in [4, 8].

The proteins in the calmodulin family are essential for
regulation by intracellular signaling [10]. The family plays a
key component for modulating muscle physiology through
calcium binding, and it interacts with over 300 different
targets [11] that play a role in inflammation, apoptosis,
immune response, metabolism, and memory. Calmodulin
is a moderately small protein (∼150 amino acids) with
two domains connected by a linker region. The mDCM
parameters have been obtained by the usual method of fitting
to heat capacity data (to be published elsewhere).

The proteins in the CheY family have ∼130 amino acids.
CheY is part of the bacterial chemotaxis signal transduction
pathway [12]. CheY is phosphorylated (activated) by CheA,
which results in a 20-fold increase in affinity for the flagellar
switch protein FliM [13]. Upon CheY/FliM association, the
flagellum switches to a clockwise rotation which results in
random tumbles that reorient the bacterium. The mDCM
parameters were previously obtained by fitting to heat
capacity curves as usual, and by making a judicious selection
of parameters for some proteins without heat capacity data,
as described in [14].

The mDCM is an ensemble-based method, meaning
that in this method several distance constraint networks
are analyzed. The rigidity and flexibility properties change
depending on how distance constraints are distributed
within the network. Such network fluctuations occur because
various interactions such as hydrogen bonds form and break.
As such, it happens that certain sets of residues become
rigidly or flexibly correlated. The differences that are found
between realizations are in accordance to thermodynamic
equilibrium probability. Since a given residue may fall in a
region that is rigidly or flexibly correlated with certain proba-
bilities, the mDCM provides average values of quantities, and
for these quantities, the fluctuations occur over the ensemble
of realizations.

For each protein, wavelet analysis is applied to two differ-
ent flexibility metrics. The first flexibility metric considered
in this work quantifies the average number of independent
degrees of freedom found within the protein, and their loca-
tion along the backbone. This is a one-dimensional signal
that has the sharpest features of all flexibility metrics that the
mDCM calculates. An instance of such a metric is given in
Figure 1, comparing 2CHE with 3CHY. Observations show
that many regions are essentially identical, and other regions
have noticeable qualitative similarity, yet distinct features.
The idea for applying signal analysis will be to account for
these subtle details in differences and similarities.
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Figure 1: Example of two IDF signals without gaps.

The second metric, called the rigidity susceptibility, is a
symmetric two-dimensional image represented by a square
matrix that quantifies the propagation of rigidity and flexi-
bility fluctuations through the protein. When a contiguous
region is found to be rigid, all residues are mutually rigid
within this region and are defined as rigidly correlated to
one another. On the other hand, if a single flexible region
is determined to span across a group of residues that are
flexible, they are defined as being flexibly correlated. Note
that flexible regions contain rigid components. For example,
consider a chain necklace where each link is rigid, yet there
is flexibility between each link. A single flexible region
indicates that generic motion in one part of the region will
propagate throughout the identified region. The flexibly and
rigidly correlated residues are uniquely defined as described
thoroughly in a focused review [15].

A random variable, njk is introduced to indicate the
rigidity state between residues “ j” and “k”. If njk = −1,
both residues are part of the same rigid region. If njk = 1,
both residues are part of a flexibly correlated region. For
instance, if residue “ j” and residue “k” are mutually rigid,
the symmetric matrix elements at ( j, k) and (k, j) are njk =
nk j = −1. On the other hand, if both residues are flexibly
correlated, the matrix elements are assigned njk = nk j =
1. It is possible for a residue neither to be mutually rigid
with other residues nor to be flexibly correlated with other
residues (i.e., a residue can be flexible, but not correlated).
This situation always occurs within dangling ends, which are
not part of a loop. In that case, the assigned matrix elements
are set as njk = nk j = 0. The standard formula for variance of
a random variable: X jk =Xk j = 〈(nk j)2〉− 〈nk j〉2 is applied
to get the susceptibility in rigidity along the backbone
where 0 ≤ X jk ≤ 1, and the matrix elements maintain
all information about correlations in how the rigidity and
flexibility propagate through the protein. An illustration of
a rigidity susceptibility matrix is given in Figure 2.

For both types of flexibility metrics described above, the
idea of characterizing the state of a residue or comparing

Figure 2: Susceptibility (SUS) signal image for protein 1RFJ be-
longing to family CaM.

a pair of residues was implied. However, in the actual
calculations, the PSI and PHI angles are the elementary units
that are being characterized. These torsion angles along the
backbone are within each residue, flanking both sides of
the alpha-carbon atom. Hence, each residue has two values.
Meaning, a protein of 100 residues (i.e., amino acids), will
have 200 entries, associated with the PHI and PSI angles per
residue. Details are explained in prior works [1, 8, 15]. Many
different types of flexibility metrics output from the mDCM.
The main reason for selecting the metrics

(i) density of Independent Degrees of Freedom (IDF)

(ii) rigidity susceptibility (SUS)

is because they are both positive definite quantities which
make the signal processing easier, and, because of the
juxtaposition that these two quantities offer. Essentially the
IDF signal is a highly varying function, while the rigidity
susceptibility provides the weakest spatial variation among
the image-like quantities that are calculated. Furthermore,
the first measure is a signal, and the second measure is an
image.

2.2. Proposed Method. The schematic diagram shown in
Figure 3 outlines the methodology employed in this paper
to analyze the flexibility characteristics of nine proteins three
from each of the three protein families a total of: TRX, CaM,
and CHY. The generality of the method is not restricted by
this particular choice of flexibility metrics or proteins. It
is important to notice that for symmetric images, only the
upper half of the image needs to be processed, although the
entire image was processed in generating the results herein.

The proposed method incorporates Dynamic Time
Warping- (DTW-) derived alignment techniques; the Fourier
transform and 2D signal analysis in the form of image
registration. Image registration is performed with the aim of
achieving maximum similarity between a pair of 2D signals.
Initial images are not equal in size; therefore, resizing of
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Figure 3: Outline of the proposed method.

the image is performed prior to registration. Registration
is performed using our modified and customized version
of similarity registration method [16], implemented in
MATLAB. This algorithm is described in detail in Section 2.3.
Using this transformation ensures appropriate resizing of the
image without distorting the image elements. In particular,
straight lines are maintained and parallel lines remain
parallel.

2.3. Image Registration. Image registration is a method that
allows mapping of images through proper transformations.
Registered images then can be analyzed and compared
using computational methods. Image registration methods
have the capability to transform a set of information to
a corresponding set of information in identical coordinate
systems. In practice, image registration is essential for
comparison and integration of the data that are obtained
from different measurement methods. Image registration
methods are divided into two main categories: manual
image registration methods and automated image registra-
tion methods. Applications of automated image registration
methods are in areas such as medical scanning, astronomy
and mutual information shared by images.

As for manual image registration methods, manual land-
mark is the technique that is extensively used in commercial
proteome. The accuracy of registration is improved by auto-
mated feature selection; however, at the same time it results
in higher complexity of computations and time. To simplify
the computation and to reduce the time complexity of the
method, manual landmark was used in this study. Figure 2
depicts the susceptibility values for pairs of sequences. Since
the studied proteins have different amino acid sequence
lengths as well as varying high/low values of susceptibility,
image registration was applied for analysis and for discovery
of the similarities.

In this section, the main steps of the image registration
algorithm are described. First, in order to estimate the
values for the regions of discontinuity, the algorithm uses

interpolation by averaging the neighbors. The interpolation
translates into identifying the points with missing values
and assigning them the arithmetic mean value of their
nonmissing neighbors. In the resizing of images, bicubic
interpolation is involved. This type of interpolation exhibits
smoother transitions and the resampled images have few
interpolation artifacts.

Following that, images are transformed using similarity
transformation. In such a method, the unregistered image
is registered and resized to the dimensions of the base
image without introducing distortion in the registered image
elements–straight lines are maintained and parallelism is
kept. Then, the similarity measures are calculated as the
average of the distances between a point in the base image
and its corresponding point in the registered image. This
measurement is used for the positions in the image where
both the base image and the registered image have defined
values

d
(
imi, imj

)
=

x=m,y=m∑

x=1,y=1

(
imi
(
x, y

)− imj
(
x, y

))2

m2
, (1)

where imi and imj are signal images of dimension m ×
m, x and y are pixel coordinates in the image and
imi(x, y), imj(x, y) are the grey level values of the pixel
at coordinates (x, y) in image imi or imj , respectively. In
addition, a measure for the influence of gaps in alignment
is introduced and this measurement is the number of gap
values normalized by the size of the susceptibility image.

To summarize, in order to determine protein similarity
within the three proteins in each of the three families using
image analysis, the methodology is as follows: each of the
three susceptibility images is used as base and the other
two images are registered to it by selecting control points
and using automatic registration via the maximum similarity
method. Subsequently, two measures are calculated between
the original image, which served as base, and the other
two. As such, we will have six registered images within each
family and six sets of measures (between one of the three
base images and one of the two images that were registered
to it). The two measures are: Euclidean distance calculated
between the pixels in the image which have real values and a
normalized count of gap values for the image pixels in which
either the original image or the registered image contains a
gap value.

After calculating these two measures they are averaged for
one pair of images as follows: ifX andY are two susceptibility
images, first X serves as a base and Y is registered to it,
then the two measures of similarity are calculated. Following
that, the roles are inversed and another set of two similarity
measures is calculated. Finally, to obtain the measure of
similarity between images X and Y arithmetic mean for both
the Euclidean distances and normalized count of gap values
are computed.

2.4. 1D Signal Analysis. For the analysis of signals, Dynamic
Time Warping (DTW) method was used. DTW is a method
that is capable of measuring the similarity between sig-
nals/sequences with different lengths as well as aligning them.
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Finding an optimal match between two given sequence, the
method has numerous applications in processing of audio,
video, and graphics. Speech recognition is considered the
most common area of study related to DTW. DTW method
discovers a path that needs to be continuous and expand over
the entire length of the sequence. The recursive version for
calculating DTW follows

DTW
(
i, j
) = d

(
i, j
)

+ min
(
DTW

(
i, j − 1

)
,

DTW
(
i− 1, j − 1

)
,DTW

(
i− 1, j

))
,

(2)

where i = 1 · · ·n, j = 1 · · ·m and m, n are the dimensions
of the signals being measured, d(i, j) is the distance between
two points in the signals DTW is calculated for

d
(
i, j
) =

(
signal1(i)− signal2

(
j
))2

. (3)

Due to its recursive nature, the time complexity of the
method, when using the above mentioned formula, expo-
nentially increases with the length of the sequences that are
being analyzed. Since the lengths of the output measures
(2 per residue) of this study are larger than 200, a forward
version of the formula is implemented in this research. The
signals analyzed for each protein are the hydrophobicity
signals and the IDF signals. The hydrophobicity signals
are created by assigning a hydrophobicity value to each
amino acid in the order given by the protein sequence. This
hydrophobicity sequence/signal is then processed to extract
the patterns that might exhibit similarities and differences
among the proteins within a family. The hydrophobicity
values for each amino acid were taken from [17].

3. Results

The results of applying dynamic time warping method to
IDF sequences and hydrophobicity signals are shown in the
table below and are organized for the three different families.
Table 1 presents the distances calculated for one-dimensional
signals formed using IDF and hydrophobicity values.

Figures 4 and 5 illustrate samples of the registered images
between different proteins within the same family. Regis-
tration rescales and interpolates images with different sizes
making their sizes equal for direct comparison. Registration
puts the original image and the image to be registered on top
of each other, using appropriate control points and provides
a means to calculate a direct quantitative difference between
the two images. The black and white pixels/areas in the
registered images are interpreted in the same way as in the
original images, that is dark regions correspond to regions
lacking the property (e.g., susceptibility) and bright regions
display regions that have high degrees of that property.

When pairs of residues fall within a dark region, they
are not dynamic. Meaning, they remain mutually flexible
or rigid, with little fluctuations. Conversely, white areas are
regions that are unstable mechanically, transitioning from

Table 1: Distances calculated using IDF and hydrophobicity signals.

(a)

Aligned IDF signal distances

TRX

1EP7 1FB6 1THX

1EP7 ∗ 0.005253 0.007149

1FB6 0.005253 ∗ 0.009897

1THX 0.007149 0.009897 ∗
CheY

1TMY 2CHE 3CHY

1TMY ∗ 0.003924 0.008473

2CHE 0.003924 ∗ 0.011775

3CHY 0.008473 0.011775 ∗
CaM

1EXR 1NIW 1RFJ

1EXR ∗ 0.022749 0.028437

1NIW 0.022749 ∗ 0.024646

1RFJ 0.028437 0.024646 ∗
(b)

Aligned hydrophobicity signal distances

TRX

1EP7 1FB6 1THX

1EP7 ∗ 20731.11 18421.28

1FB6 20731.11 ∗ 17714.09

1THX 18421.28 17714.09 ∗
CheY

1TMY 2CHE 3CHY

1TMY ∗ 17146.56 0.222448

2CHE 0.108108 ∗ 0.108108

3CHY 0.222448 0.108108 ∗
CaM

1EXR 1NIW 1RFJ

1EXR ∗ 3846.10 4308.31

1NIW 3846.10 ∗ 3848.70

1RFJ 4308.31 3848.70 ∗

flexible to rigid, and vice versa. Regions in flux are expected
to be important to function because perturbations, such as
ligand binding, can drive these “confused” regions to settle
on being either rigid or flexible. In other words, these regions
are mechanically more susceptible to allostery.

As mentioned above, the registered images will allow
calculating distances between two proteins. Tables 2, 3, and 4
present these image-based distances, both the Euclidean that
presents mismatch information, and the gap measure, for all
proteins within the three family.

Figures 6, 7, and 8, illustrate the results of the last
three tables 2D scatter plots of Euclidean distances and gap
measures between registered susceptibility images. In other
words, for each family of proteins, the figures represent
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Figure 4: Registered image of 1TMY to 3CHY.

Figure 5: Registered image of 1FB6 to 1THX.

Table 2: Image-based distances for TRX family.

1EP7-1FB6 1EP7-1THX 1FB6-1THX

Euclidean distance 0.644481 0.449019 0.458533

Gap measure 0.28787 0.312717 0.394472

Table 3: Image-based distances for CheY family.

1TMY-2CHE 1TMY-3CHY 2CHE-3CHY

Euclidean distance 0.4751 0.318182 0.084265

Gap measure 0.22985 0.22985 0.108108

Table 4: Image-based distances for CaM family.

1EXR-1NIW 1EXR-1RFJ 1NIW-1RFJ

Euclidean distance 0.22816 0.090917 0.332156

Gap measure 0.212416 0.208319 0.292903

scatter plots of the two distance values calculated for each
protein pair within a family.
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Figure 6: Plot of susceptibility measures for the TRX family.
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Figure 7: Plot of susceptibility measures for the CheY family.

4. Conclusion and Future Work

Signal processing methods were applied in order to quantify
similarities and subtle differences that arise in flexibility
measures between different members of a protein family.
dynamic time warping, image registration, and the Fourier
transform interpolation were utilized in order to match
different protein signals to one another. The detailed Fourier
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decompositions and the registered images appear to provide
a wealth of quantitative information; however, whether these
results actually highlight distinctive attributes related to
protein function requires further research.

A much simpler question is to see whether the wavelet
analysis allows for distinguishing between different pairwise
protein comparisons. The joint measure that accounts for
both gap and Euclidean distances between protein pairs is
found to provide a sensitive measure. In previous works,
there has been difficulty in quantifying similarity content
contained in comparisons of pairwise protein flexibility char-
acteristics. The encouraging aspect of the results presented
here is that in all three comparative studies (one per family),
it is found that the images that “visually look similar but have
some distinct features” have been successfully decomposed
quantitatively. Consequently, the signal processing method
presented above is found to well-separate homologous
proteins quantitatively (as shown in Figures 6, 7, and 8).

Further research on this approach, we propose to design
a scaled-up version to facilitate an automated method for
registering protein images. Until this scaled-up version is
operational and applied to a large number of proteins
within a family, a definitive conclusion related to correlations
between protein function and/or evolution to flexibility
characteristics cannot be made. In particular, the biologi-
cal significance of finding high similarity with respect to
different alignments cannot be drawn. Nevertheless, this
work demonstrates that methods using image and signal
processing provide a sensitive characterization of similarity
with regard to flexibility measures that often show only subtle
differences. With further analysis, we plan to employ wavelet
techniques on additional flexibility measures in order to
extract additional information from the images and signals.
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