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A B S T R A C T

Background: The ongoing SARS-CoV-2 pandemic presents a unique challenge for diagnostic laboratories around
the world. Automation of workflows in molecular diagnostics is instrumental for coping with the large number of
tests ordered by clinicians, as well as providing fast-tracked rapid testing for highly urgent cases. In this study we
evaluated a SARS-CoV-2 LDT for the NeuMoDx 96 system, a fully automated device performing extraction and
real-time PCR.
Methods: A publicly available SARS-CoV-2 RT-PCR assay was adapted for the automated system. Analytical
performance was evaluated using in-vitro transcribed RNA and clinical performance was compared to the cobas
6800-based reference assay within the lab.
Results: The Envelope (E) Gene-LDT displayed good analytical performance with an LoD of 95.55 cp/mL and no
false positives during evaluation of cross-reactivity. A total of 176 patient samples were tested with both the E-
Gene-LDT and the reference assay. Positive and negative agreement were 100 % and 99.2 % respectively.
Invalid-rate was 6.3 %.
Conclusion: The E-Gene-LDT showed analytical and clinical performance comparable to the cobas6800-based
reference assay. Due to its random-access workflow concept and rapid time-to-result of about 80min, the system
is very well suited for providing fast-tracked SARS-CoV-2 diagnostics for urgent clinical samples in the hospital
setting.

1. Introduction

In early January 2020, SARS-CoV-2 was first identified as the likely
causative agent of a cluster of cases of viral pneumonia in the city of
Wuhan, China [1]. The novel virus is situated in the ‘sarbecovirus’
subgenus along with its genetically distinct relative, the original SARS-
coronavirus [2]. SARS-CoV-2 saw rapid spread worldwide eventually
prompting the WHO to declare a ‘global health emergency’ by the end
of January [3].

Outbreak scenarios present a unique challenge for diagnostic la-
boratories. Particularly in the case of respiratory viruses such as SARS-
CoV-2, clinical symptoms can be largely indistinguishable from other
common respiratory pathogens such as e.g. Influenza [4] and poly-
merase chain reaction (PCR) assays are necessary to confirm or rule out

the novel virus [5]. A variety of suitable assays were made available
early on during the outbreak, notably by Corman et al. [6] and the CDC,
which were swiftly adopted by many labs in Europe and around the
world. However, their overall testing capacity remained limited [7]. We
and others have previously demonstrated how automation in molecular
diagnostics enables easy scaling of testing capacity by substantially
cutting back hands-on time for PCR-assays [8,9].

For the assay presented in this study, we used a fully automated
random-access platform for molecular diagnostics, handling everything
from extraction, amplification, signal detection to reporting of results
[10]. For RNA targets, the time-to-result is approximately 80min, given
optimal conditions. The availability of an open mode allows for the
rapid implementation of lab developed tests (LDT). The aim of this
study was to adapt and evaluate a previously published SARS-CoV-2
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PCR assay (by Corman et al. (6)) for the NeuModx 96 system.

2. Materials and methods

2.1. Envelope (E) Gene-LDT assay setup (NeuMoDx 96 system)

Primers (fwd: 5´-ACAGGTACGTTAATAGTTAATAGCmGT-3´, rev 5´-
ATATTGCAGCAGTACGCACAmCA-3´) and probe (5´-Fam-ACACTA
GCC/ZEN/ATCCTTACTGCGCTTCG-Iowa Black FQ-3′) used for the
Envelope (E) Gene-LDT were custom made and purchased from IDT
DNA Technologies (Coralville, USA). Both primers were modified with
2′-O-methyl bases in their penultimate base to prevent formation of
primer dimers (mG or mC). A double-quenched probe was used in order
to reduce background fluorescence.

In accordance with instructions issued by the manufacturer, a 6x
Primer/Probe mix was prepared and 5 μL of the mix were loaded into
the LDT-Strip well by well for each reaction (e.g. 400 nM primers,
75 nM probe per reaction). For a complete run protocol see the test-
summary displayed in Table 1. Reagents and materials for extraction
and PCR were from NeuMoDx inc. (Ann Arbor, USA; distributed by
QIAGEN) and used according to instructions by the manufacturer.

2.2. Assessment of Limit of detection and intra-/inter-run variability

For analytical evaluation, in-vitro transcribed RNA (IVT-RNA) of the
viral E-gene was generated as described previously [6] using the fol-
lowing primers: 5´- TACTAATACGACTCACTATAGATACAGGTACGTT
AATAGTTAATAGCGT-3´ and 5´-ttttttttgtatacATATTGCAGCAGTACGC
ACACA-3´. IVT-RNA was adjusted for copy-numbers to a predefined
RNA standard obtained from “European virus archive” (EVA), (https://
www.european-virus-archive.com).

A total of 4 different concentrations (400, 100, 40 and 10 copies/
mL) and negative control, 8 replicates each, were used to determine
Limit of detection (LoD) by probit-analysis (MedCalc, MedCalc
Software Ltd). Inter-run and intra-run variability were evaluated using
spiked swab samples containing IVT-RNA at approximately 5× and
10× LoD, running 5 repeats each on two different days.

2.3. Evaluation of cross-reactivity

In order to rule out potential cross-reactivity with other organisms
present in respiratory swabs, a set of predetermined clinical samples
containing a variety of respiratory pathogens and external quality as-
sessment panel samples (INSTAND e.V., Germany) were selected and
subjected to the E-Gene-LDT.

2.4. Comparing of clinical performance

Clinical specimens used for this study were oropharyngeal and na-
sopharyngeal swabs (E-Swab collection kits, Copan, Italy). Prior to
analysis, 1 mL Roche cobas PCR medium (≤ 40 % guanidine hydro-
chloride in Tris-HCL buffer) was added to the sample for pre-lysis and
inactivation. Samples were then briefly vortexed before being loaded
into the instrument. A total of 176 clinical were prepared, split into
aliquots and tested in parallel on both systems. Samples that did not
yield valid results on the NeuMoDx system are reported as “Invalid”.

3. Results

3.1. Assessment of analytical performance

Limit of detection was determined as 95.55 cp/mL at 95 % prob-
ability of detection (CI 63.56 cp/mL – 241.46 cp/mL). Intra-/inter-run
variability yielded median Ct values of 27.045 (+/- 0.695 ct) and
27.640 (+/- 1.14 ct) for 10× LoD and 5× LoD respectively. This is in
line with previously published data for comparable assays [11].

There were no false positive results in cross-reactivity experiments
indicating solid specificity, see Table 2.

3.2. Comparing clinical performance

Clinical performance of the assay was analyzed by comparing the E-
Gene-LDT to the reference method within the lab, the cobas6800-based
“SARS-CoV-2 UCT” assay [11]. Inhibition rate was 6.3 % (11/176
samples, all of which were tested negative in the reference assay). Po-
sitive agreement was 100 % (35/35) and negative agreement was 99.2
% (129/130), see Table 3. Median ct of clinical samples was 25.15 (IQR
20.87–27.04) for the NeuMoDx E-Gene-LDT and 28.16 (IQR

Table 1
NeuMoDx-Software run-protocol summary displaying settings and PCR pro-
tocol.

NeuMoDx software setup:

Ct Calling Algorithm: Second Derivative
Result Type: Qualitative
Speciment Type: TransportMedium
Specimen Aspirate Volume (μL): 400
Lysis: 600 s. (Lysis Buffer 4)

Target: SPC2, Speciment Type: TransportMedium
(Internal Control)
Reporter: Yellow (530/555)
Peak Minimum Cycle: 25
Peak Maximum Cycle: 40
Minimum End Point Fluorescence: 1000
Minimum Peak Height: 10

Target: FAM (Sarbeco-E), Speciment Type: TransportMedium
Reporter: Green (470/510)
Peak Minimum Cycle: 25
Peak Maximum Cycle: 40
Minimum End Point Fluorescence: 1000
Minimum Peak Height: 10

PCR Stage: RT (Hold, 900 s, 50 °C)
PCR Stage: InActivation (Hold, 240 s, 95 °C)
PCR Stage: Cycle (Cycle, 50 Cycles)
Step Denature: 6 s, at 95 °C, No Detect
Step Anneal: 19 s, at 60 °C, Detect

Table 2
Clinical samples and external quality control samples (provided by INSTAND
e.V., Düsseldorf, Germany) were tested for potential cross-reactivity with the E-
Gene-LDT.

Positive clinical samples Number Result

hCoV 229E 2 Negative
hCoV HKU1 2 Negative
Influenza A 3 Negative
Influenza A H1N1 2 Negative
Influenza B 2 Negative
RSV 3 Negative
Rhino-/Enterovirus 2 Negative
Human Metapneumovirus 2 Negative
Parainfluenzavirus 3 1 Negative
Adenovirus 1 Negative
Boca-virus 2 Negative
Mycoplasma pneumoniae 1 Negative
Chlamydophila pneumoniae 1 Negative
Pneumocystis jirovecii 1 Negative
External quality assessment panels (INSTAND)
MERS Coronavirus 2 Negative
hCoV NL63 1 Negative
hCoV 229E 1 Negative
hCoV OC43 1 Negative
Parainfluenzavirus 2 1 Negative
Parainfluenzavirus 3 1 Negative
Total number tested: 32

D. Nörz, et al. Journal of Clinical Virology 128 (2020) 104390

2

https://www.european-virus-archive.com
https://www.european-virus-archive.com


24.36–31.66) for the cobas6800 SARS-CoV-2 UCT. A single discrepant
sample occurred, returning positive on the NeuMoDx system (ct 28.73,
close to LoD) and negative on the cobas6800. Root cause investigation
revealed that this patient had previously been diagnosed with COVID-
19 elsewhere.

4. Discussion

Reliance on manual PCR setups is one of the fundamental limita-
tions in molecular diagnostics when it comes to scalability and speed
during outbreak scenarios such as the current SARS-CoV-2 situation. A
study by Reusken et al. reported readiness to test for the novel
Coronavirus by the end of January 2020 in almost all countries of the
European union, but with a capacity of 250 tests per week or less for the
vast majority of them [7]. Similar issues were reported early on in
China, where testing could not be performed for all suspected cases due
to limitations in capacity [12].

In a recent study we demonstrated that a previously published
TaqMan based SARS-CoV-2 RT-PCR assay, endorsed by ECDC and
WHO, can be adapted to run on an automated batch-based high-
throughput system, the cobas6800 [11]. Incidentally, Roche recently
released their own SARS-CoV-2 assay for this system under “Emergency
Use Authorization” by the FDA [13]. However, taking into considera-
tion sample registration, pretreatment, preparation of batches, and
generating reports, it usually takes more than 5 h before results can be
made available to clinicians [14]. Consequently, alternative workflows
are required to enable fast-tracking of high-priority samples.

The NeuMoDx 96 system is a fully automated RT-PCR platform,
performing extraction, amplification and signal detection without re-
quiring any human interaction. it provides random-access capabilities,
turn-around times of 80min for RNA targets and a throughput of 144
samples/8 h [15]. In this study we have adapted the SARS-CoV-2 RT-
PCR assay by Corman et al. [6] for use on the NeuMoDx 96 automated
system. Analytical and clinical performance was comparable to the
cobas6800-based reference assay [11], showing an LoD of approxi-
mately 100 copies/mL and positive and negative agreement of 100 %
and 99.2 % respectively. The relatively high inhibition rate of 6.3 %
suggests that sample preparation procedures can be further optimized.

During the preparation of this manuscript, several commercial as-
says were released offering rapid random-access testing (< 80min),
including Xpert Xpress (Cepheid), QIAstat-Dx (QIAGEN) and ID NOW
COVID-19 (Abbott) [16,17], however clinical evaluation of these assays
is not yet available in peer-reviewed literature.

5. Conclusion

In this study we have adapted a publicly available SARS-CoV-2
screening assay for use on the open mode of the NeuMoDx 96 system.

The assay demonstrates comparable analytical and clinical performance
to established LDTs currently in use for SARS-CoV-2 diagnostics. Due to
its random-access capabilities and short turn-around times (80min), the
system is well suited for automating medium-throughput routine SARS-
CoV-2 testing, or as an addition to high-throughput systems to allow
fast-tracking for highly urgent clinical samples.
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Results of clinical samples were compared between the novel E-Gene-LDT and
the routine assay (SARS-CoV UCT on the cobas6800 system).

SARS-CoV UCT cobas6800

Positive Negative

E-Gene-LDT NeuMoDx 96 Positive 35 1
Negative 0 129
Invalid 0 11

Total number: 176
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