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Humans exhibit an innate ability to synchronize their movements to music. The field of gait rehabilitation
has sought to capitalize on this phenomenon by invoking patients to walk in time to rhythmic auditory cues
with a view to improving pathological gait. However, the temporal structure of the auditory cue, and hence
the temporal structure of the target behavior has not been sufficiently explored. This study reveals the

plasticity of auditory-motor coupling in human walking in relation to ‘complex’ auditory cues. The authors
demonstrate that auditory-motor coupling can be driven by different coloured auditory noise signals (e.g.
white, brown), shifting the fractal temporal structure of gait dynamics towards the statistical properties of
the signals used. This adaptive capability observed in whole-body movement, could potentially be harnessed
for targeted neuromuscular rehabilitation in patient groups, depending on the specific treatment goal.

revious research investigating sensorimotor synchronization suggests that when rhythms are presented in

different modalities, there appears to be an auditory advantage over other sensory pathways. Sejdic et al.'

showed that, compared to visual and haptic rhythms, auditory rhythms have the strongest influence on a
person’s gait. An evolutionary reason for this advantage has been presented, suggesting that bipedal gait and the
associated sounds of locomotion influenced the evolution of human auditory-motor rhythmic abilities®.
Traditional finger-tapping paradigms have refined our understanding of the neural circuitry that underpins
auditory-motor coupling, however the mechanisms underlying this phenomenon in whole-body, functional
movements are not well understood. This is due to the practical limitations associated with brain imaging and
measurement techniques currently available for upright, whole body movements. However, despite these prac-
tical limitations that render investigations into neural circuitry somewhat elusive for whole body movement, there
is still a pressing need to capitalize on the potential that auditory-motor coupling offers the field of neuromuscular
rehabilitation. The authors describe a novel auditory-motor entrainment paradigm that could potentially be
implemented for the rehabilitation of gait, in cases of brain injury and neurodegenerative disease.

Synchronization of walking to rhythmic auditory cues has previously been investigated as a potential training
tool to support functional independence in individuals with pathological gait*~®. Parkinson’s disease and stroke, in
particular, have been the main focus of auditory cueing investigations, with evidence to suggest that walking to a
fixed tempo metronome may temporarily improve gait velocity, stride length, cadence and symmetry*”. However,
these studies have not taken the temporal dynamics of gait parameters into account, i.e. the sequencing of gait
parameters over time, which reflects the adaptive state of the neuromuscular system. Well-established motor
learning principles suggest that variability in practice and feedback is required for better learning outcomes®,
however this is largely absent from the field of auditory cueing for gait rehabilitation, which has focused
predominantly on fixed tempo metronomes as the auditory cue.

Gait variability can be defined as the natural stride-to-stride fluctuations that are inherent in normal, healthy
gait’. These stride-to-stride fluctuations are thought to arise from interconnected, nonlinear processes that enable
us to expand and maintain a large repertoire of movement strategies, allowing robust gait in dynamic, unpre-
dictable environments. Fractal patterns observed in biological signals such as heart rate'®, respiration'' and
walking strides'> measured over time, indicate that the time intervals between events are not equal, nor are they
independent. Rather, there is a relationship between these intervals that extends far forward and backward in
time; in other words, exhibiting long-range correlations in the time series, or fractal fluctuations. The presence of
these fractal processes in biological systems is theoretically referred to as “complexity”'®, which describes an
underlying order or pattern that is contained within a complex, variable system; a system that is capable of sudden
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Figure 1| Signal Flow of Experiment.

and marked change. The multi-scale fractal structure of the relation-
ships between gait events is therefore thought to be ordered and
stable, yet variable and flexible.

Complexity is recognized as an inherent attribute of healthy bio-
logical systems, whereas the loss of complexity with aging and disease
is thought to reduce the adaptive capabilities of the individual'>"*"".
A loss of complexity can refer to either an overly constrained, peri-
odic system, or an overly random, incoherent system®. Quantitative
measures of the temporal structure of human gait variability - such as
statistical persistence and the amount of information present within
the motor time series - provides us with a window into the organ-
ization of the neuromuscular system®'. Increasingly, abnormal gait
patterns can be characterized by the altered temporal structure of gait
variability, and have been associated with a variety of disorders ran-
ging from joint and skeletal problems* (lowest-level gait distur-
bances) to Huntington’s disease”, Parkinson’s disease*, higher
level gait disorders™ and falls**>°.

It follows, then, that if a healthy neuromuscular system exhibits an
optimal state of movement variability®, gait rehabilitation practices
should also embody this conceptual module into the auditory-motor
entrainment rehabilitation paradigm. Indeed, it has been empirically
demonstrated that our nervous systems can actively exploit motor
variability to facilitate motor learning, with increased rate of learning
in individuals who exhibit higher levels of behavioural variability™.
However, with the exception of a small number of recent studies that
have explored the use of complex auditory cues during walking®'~**,
most rhythmic auditory cueing gait research has focused on a fixed
tempo metronome. It is now quite clear from the literature that
walking in time to a fixed tempo metronome alters the natural
dynamics of human gait, shifting the structure away from the per-
sistent fractal structure towards more anti-correlated beha-
viour"*>*”. Advances in this field require a multidisciplinary
approach to devise an auditory cueing paradigm that could poten-
tially restore the complex dynamics that are known to exist in healthy
gait.

A review of evidence in finger tapping suggests that tapping to
rhythmic sequences of differing temporal structures recruits neural
circuitry differently®. Recent studies by the authors® and Marmelat
et al** have investigated to what extent human gait can be controlled
using complex auditory signals during treadmill walking. The results
of these studies suggest that auditory signals can potentially be opti-
mized for gait retraining using a complexity based approach. Here we
shift our focus to overground walking thus removing the potentially
confounding constraint of the treadmill***°. This study sought to
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systematically manipulate the nonlinear statistical properties of aud-
itory stimuli that were embedded into familiar music, in terms of
predictability and statistical persistence of inter-beat intervals. We
hypothesized that participants would exhibit differences in gait
dynamics that depended on which auditory signal they listened to
while walking. The premise of this study was as follows: if the aud-
itory-motor entrainment phenomenon proved to be sufficiently
adaptive in terms of mapping the global dynamics of a nonlinear
auditory system, this opens up an exciting new avenue for the re-
organization of the neuromuscular system in injury or disease.

Methods

Participants. Ten healthy participants (4F, 6M; 28.1 * 5.3 yrs; 175 + 11.4 cm; 72.3
*+ 16.2 kg) were recruited for this study. The study was approved by our University’s
Medical Center Institutional Review Board, and the study was carried out in
accordance with the approved guidelines. Each subject provided informed consent
prior to participation.

Experimental design. The goal of this study was to manipulate a person’s gait
dynamics using an individualized fractal rhythmic auditory stimulus (IFRAS). We
embedded three different levels of noise into a well-known melody by manipulating
the inter-beat interval (Fur Elise by Beethoven) - white noise (representing fully
random, unpredictable processes with no correlations in time), brown noise
(representing processes that are stable but unable to flexibly modify their activity
when rapid changes are required) and pink noise (or 1/f noise, representing fractal
processes that are both stable and flexible, as discussed above in relation to
‘complexity’). We asked the subjects to walk in time to the music, and analysed the
temporal structure of their resultant gait dynamics to determine the level of auditory-
motor entrainment with each IFRAS in terms of global statistical structure. A
schematic of the experimental design is presented in Figure 1.

Experimental protocol. Walking trials were conducted indoors around an 1/8" mile
oval track, clear of other users. Subjects wore a portable Stride Analyzer (Stride
Analyzer, B.L. Engineering, Santa Ana, CA) to collect heel strike times. Subjects wore
AKG K-55 over the ear headphones (AKG Acoustics, Vienna, Austria). Headphones
received the music signal played from an Olympus WS-600S digital voice recorder
(Olympus Corporation, Shinjuku, Tokyo, Japan). An initial data collection of
overground walking was conducted with no auditory stimulus to determine the
participants’ preferred cadence and the standard deviation of their step time. These
two parameters were used to create the IFRAS for the three types of music so that the
cadence and the distribution of the music matched the individual’s walking pattern.
Each participant then performed three subsequent walking trials in a randomized
order with 10 minutes between each condition, listening to the white noise music, the
pink noise music and brown noise music (supplementary material 1). Participants
walked on the indoor track for approximately 612 strides for each trial (this is
accomplished by using a trial time that is the step cadence of the individual subject
multiplied by 1224). At the beginning of each trial the researcher stated the following
instructions:

“This may be very difficult but I would like you to try your best to concentrate on the
task throughout the entire walking trial. Listen carefully to the music and also pay close
attention to when your heel hits the ground. I would like you to walk normally but think
about the note that is coming next and imagine that you are playing the notes with your
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Figure 2 | Sample entropy analysis of the auditory signal is shown on the right for illustration purposes. Sample entropy analysis of the stride time series
across the four different gait conditions for all subjects is shown on the left. Error bars are standard deviations.

heel strikes. Every time around the track, I will hold up a sign to remind you to
concentrate on playing the notes with your heel-strikes. When the trial is over I will tell
you.”

The instructions were given as such to facilitate synchrony between the subject and
the music by (1) asking them to anticipate the upcoming note of the song, and (2)
emphasizing the link between the note timing and the heel strike timing.

Data collection. Individualized fractal rhythmic auditory stimulus. In music, the
amount of time between two successive notes is the inter-beat interval. In gait, an
analogous quantity to the inter-beat interval is the step time (the amount of time
between successive heel-strikes of the contralateral feet). The IFRAS was generated by
taking a white noise, pink noise, or brown noise time series and embedding that
variable into the inter-beat interval of a piece of music. The first section of the song
Fur Elise by Beethoven was chosen both because it is widely familiar, and because it
can be played with identical inter-beat intervals between each note without gross
modification to the musical composition. Hearing familiar music conjures
anticipatory auditory imagery. This auditory imagery increases the accuracy of
auditory-motor synchronization when compared to a metronome*'. For the white
noise, a random time series was generated by the MATLAB rand() function. The
brown noise theoretical time series was created by integrating the white noise time
series. The pink noise time series was generated by filtering brown noise. A weighted
sum of first order filters was used so that the power drops off at —10 dB per decade. It
is accurate to within +/—0.05 dB. All the music was generated using Musical
Instrument Digital Interface files so that the onset of each note can be designed
precisely and the inter-beat interval dynamics can be controlled. For each participant,
the amplitude of the perturbation was individualized. The inter-beat interval was
stretched or compressed depending upon the dynamics of the corresponding
coloured noise time series. The amplitude was determined such that the standard
deviation of the inter-beat intervals matched the standard deviation of the step times
of the subject. Also, the tempo of the music was modified to match the preferred
cadence of each subject.

Gait parameters. Stride times were measured using a Stride Analyzer. This device
encodes on/off timing for multiple footswitches embedded in shoe insoles. It records
this timing information in a binary format. Custom MATLAB code was written to
decode the binary files and give the on/off timing of the heel switch.

Data analysis. All subjects walked at least 588 strides per trial. The first 50 strides of
each trial were discarded prior to analysis to mitigate any transient effects related to
the initiation of walking with the IFRAS auditory stimulus. The subsequent 512
strides were analyzed, in keeping with recommendations for short time series*. All
subjects and all trials were included in the analysis. Data were inspected for
differences between right and left legs. For all trials we collected the following
parameters:

Sample entropy of the stride-interval time series was calculated for each IFRAS
condition®. Entropy algorithms applied to stride times provide a quantification of the
uncertainty or the unpredictability of the stride-to-stride fluctuations over continu-
ous gait cycles. The fractal scaling exponent, a, of the stride-interval time series was
calculated using the Detrended Fluctuation Analysis (DFA) method (box sizes range:
2-32). This measure allowed comparisons of the resultant gait dynamics between no
music, white noise music, pink noise music and brown noise music, and gives partial
evidence of long-term dependencies within the observed stride-to-stride fluctuations.
Entropy and the fractal scaling exponent are nonlinear measures that have identified
differences in biological signals between healthy and pathological populations'*****.

Deterioration in these measures signify reduced connectivity in motor control pro-
cesses and appear to be important in diagnosing and characterizing pathological
gait23,26,46,47

Statistical analysis. Mean values for the dependent variables - o, fractal scaling
exponent and sample entropy of stride interval time series - were compared across
auditory stimulus and no music conditions with a one-way repeated measures
ANOVA. Mauchly’s test was implemented to test for sphericity. The alpha level was
set at 0.05. Post-hoc pairwise comparisons were performed, with an adjusted alpha
level for multiple comparisons. Trend analysis was performed across conditions when
ordered according to the statistical properties of the auditory stimuli e.g. increasing
scaling exponent from white noise, followed by pink noise, followed by brown noise.
Statistical analyses were performed in SPSS software (SPSS Inc., Chicago, IL). Omega
squared (w?) for a repeated measures design was used as an unbiased measure of effect
size suitable for small samples; effect size, , was used for pairwise comparisons.

Results

No differences were observed between the right and left legs. All
results are reported in relation to the right leg. Mean and standard
deviation of stride times across all subjects when walking without an
auditory stimulus was 1.07 (0.11) seconds and mean standard devi-
ation across all subjects was 0.02 seconds. Mauchly’s test indicated
that the assumption of sphericity had not been violated for either
outcome variable (sample entropy: x*(5) = 7.376, p = 0.197; DFA:
x*(5) = 2.515, p = 0.776). There was a significant effect of auditory
stimulus on the sample entropy of the stride interval time series
[F(1,9) = 4.465 p = 0.011], with an effect size ®* = 0.15. A significant
linear trend between auditory signal conditions was observed (p =
0.026), indicating that the brown noise walking condition yielded
lower sample entropy of stride times than the pink noise condition,
followed by the white noise walking condition, mirroring the sample
entropy trends inherent in the actual auditory signals themselves i.e.
brown noise lower than pink noise, lower than white noise (Figure 2).
Effect size calculations between conditions suggest that the brown
noise condition led to greatest changes in sample entropy of stride
times, with large effect sizes (r > 0.5*°) observed across all brown
noise comparisons (Table 1). Similarly, there was a significant effect
of auditory stimulus on the fractal scaling exponent of the stride
interval time series [F(1,9) = 3.179, p = 0.04], with an effect size
®® = 0.12. A significant linear trend between conditions was
observed (p = 0.004), indicating that the pink noise and brown noise
walking conditions yielded higher fractal scaling exponents - or
higher statistical persistence - than the white noise condition, mir-
roring the fractal scaling trends in the actual auditory signals them-
selves i.e. brown noise higher than pink noise, higher than white
noise (Figure 3). Effect size calculations between conditions suggest
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Table 1 | p-values and effect sizes for pairwise comparisons

Sample Entropy Scaling Exponent
Conditions p-value Effect Sizer p-valve Effect Size r
No Music v White Noise  0.52 0.22 0.015 0.71
No Music v Pink Noise 0.52 0.22 0.557 0.2
No Music v Brown Noise 0.017 0.7 0.974 0.01
White Noise v Pink Noise 0.1 0.52 0.048 0.61
White Noise v Brown 0.004* 0.79 0.023 0.67

Noise

Pink Noise v Brown Noise 0.048 0.61 0.51 0.22

*denotes significance at p < 0.008 (adjusted critical value for multiple comparison).

that the white noise condition led to greatest changes in the scaling
exponent of stride times, with large effect sizes observed across all
white noise comparisons (r > 0.5) (Table 1). In summary, an adapta-
tion occurred in gait dynamics as a result of listening to the auditory
stimuli. 12-15% of variance in the stride time dynamics is attrib-
utable to the structure of the stimulus. While the auditory stimulus
modified the fluctuation pattern of gait, these young, healthy indivi-
duals broadly tended to produce pink noise in their stride-to-stride
fluctuations across all conditions (i.e. scaling exponents between 0.75
(white noise condition) and 0.94 (brown noise condition)). However,
the modifications occurred in a predictable direction, depending on
the global statistical properties of the auditory stimulus. The brown
and white noise music stimuli appeared to elicit the greatest
adaptation.

Discussion

This study systematically altered the statistical structure of musical
auditory cues during overground walking, and quantified the statist-
ical structure of the resultant motor time series, both in terms of
statistical persistence and sample entropy. Our findings demonstrate
plasticity of the auditory-motor phenomenon during whole-body,
upright movement, as the trend across the structure of fluctuations in
the IFRAS is mirrored in the trend across the structure of fluctuations
in the gait time series. Our findings add to the existing body of
literature that demonstrates the fractal nature of stride interval time
series produced by healthy, young adults, and additionally illustrate
that this fractal structure is rather robust to auditory perturbation in
overground walking. While the white and brown noise music con-
ditions engendered an adaptation in gait dynamics towards the aud-
itory cue’s statistical structure, the absolute values of the scaling
exponent and sample entropy did not stray very far from what might
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be considered the “normal” range for this population (e.g. scaling
exponent between 0.7 and 1).

A recent study by Marmelat and colleagues® investigated stride
interval time series when listening to auditory stimuli with differing
fractal structures in 12 young, healthy adults. These participants
appear to have exhibited different levels of adaptation to the non-
isochronous auditory stimuli, compared to the participants in the
present study. For example, an auditory stimulus with a scaling
exponent of 0.5 — analogous to our white noise music condition -
produced a stride interval time series of scaling exponent 0.44 com-
pared to 0.75 in our study, and an auditory stimulus with a scaling
exponent of 0.9 - analogous to our pink noise music condition -
produced a stride interval time series of scaling exponent 0.64 com-
pared to 0.89 in our study. The reasons for these differences are not
immediately clear although the study protocols were quite different.
The current study focused on overground walking with musical aud-
itory stimuli, which, one might intuitively expect, would lead to
stronger entrainment between signals compared to Marmelat
et al.’s treadmill based protocol and non-musical stimulus, but this
was not borne out in the results. Nonetheless, our study did result
in predictable changes in statistical properties in terms of the dir-
ection of the changes in outcome measures, as opposed to their
absolute values. This finding lends itself to interpretation within
the ‘strong anticipation’ framework®*-*, i.e. the master-slave ana-
logy®*: a strongly anticipatory system is one where “slave” (e.g.,
organism) is not adapted to the states of the “master” (e.g., envir-
onment), but rather is adapted to its statistical structure. However,
given that the stride times and auditory signals were not precisely
synchronized in our study, we cannot examine this interpretation
appropriately.

In the interest of enquiry, we will discuss a number of future
research questions evoked by the findings of this study, and previous
work in this area. Our results showed differences in the way subjects
responded to the IFRAS. One possible explanation for this variability
within groups is previous musical training>. Within-group variabil-
ity could also result from physical or cognitive impairments. Our
subjects were healthy individuals, so the former explanation is more
likely in this case. However, future research should investigate the
ability to entrain to auditory cues with varying fractal fluctuations in
specific patient populations with physical and cognitive impair-
ments. This would lead to more targeted and successful interven-
tions, with particular auditory signal structures potentially being
more appropriate for particular deficits.

Previous work conducted by the authors® studied a group of older
adults, along with a group of younger adults to investigate the idea of

1.6 Auditory Signal Scaling Exponent
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Figure 3 | Detrended Fluctuation Analysis of the auditory signal is shown on the right for illustration purposes. Detrended Fluctuation Analysis of the
stride time series across the four different walking conditions, for all subjects, is shown on the left. Error bars are standard deviations.
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using variable auditory stimuli to drive gait dynamics. This study
showed that older adults tended to entrain to the variable auditory
stimuli more readily than the younger adults. The robust fractal
structure observed across conditions in the present study in young,
healthy adults further substantiates this finding. We would therefore
be reluctant to generalize the findings of this study to older or
infirmed cohorts. We have begun new studies applying the method
reported here to older adults, and our preliminary data (see supple-
mentary material 2) suggest that older adults may indeed dem-
onstrate greater modifications to gait structure when listening to
fractal auditory stimuli, due in part to an altered baseline level of
fractal scaling in the motor time series.

The potential of rhythmic auditory cueing in motor rehabilitation
is well recognized. However, complex auditory cues with varying
statistical properties represents a novel development in the field.
There are many unanswered questions, for example: 1) which type
of complex signal is most likely to improve pathological gait in an
uncued condition? 2) which type of complex signal is most likely to
lead to improved function while performing activities of daily living?
West et al.>* suggested that that information exchange is maximal
when systems share the same complexity, and especially 1/f scaling.
Given that dynamics similar to pink noise, i.e. 1/f scaling, is char-
acteristic of healthy human walking, it seems logical that an auditory
stimulus for gait rehabilitation should be based on this presumably
optimal structure®’. For robust motor control we need to quickly
instigate a successful strategy from an unexpected state. In biological
systems, this seems to require continual exploration, even after the
point of movement mastery. Maintaining robust control of walking
in the event of a perturbation that drives the system from a highly
probable state to a less probable one e.g. encountering slopes, steps,
stairs, rough terrain, slippery surfaces, negotiating static, moving and
unexpected obstacles requires a rich repertoire of movement strat-
egies. It is important that humans continue to invoke a structured
variability that enables us to explore and experience the less probable
states in order to maintain a robust control strategy. The diverging
and folding nature of complex systems produces deterministic vari-
ability which may allow us to safely explore a larger region of state
space around our walking attractor. The use of an auditory stimulus
such as the pink noise music stimulus presented here is likely to drive
a particular learning process in which the parameters governing the
temporal structure of gait variability are explored until the system
self-organizes to produce a matching fractal structure. This is likely
to result in more stable yet flexible walking in an uncued condition,
developing functional, adaptive capabilities for successful navigation
of a real-world, dynamic environment. There is a pressing need for
future work to test these hypotheses so that older adults and neuro-
logically impaired patients can benefit from the enormous potential
this theoretical framework has to offer the field of rehabilitation
science.

While this study and previous studies’** quantify changes in stat-
istical properties of time series due to external cueing, it is more than
a little challenging to attempt to interpret the clinical significance of
these changes. The magnitude of the main effects reported here for
the repeated measures Anova (i.e. @* = 0.12 for scaling exponent and
@* = 0.15 for sample entropy) could arbitrarily be interpreted as
medium to large, however there is currently no empirical framework
on which to authenticate this interpretation. In order for this field of
research to be translated into operational rehabilitation models, ran-
domized control studies are required that enable meaningful and
consistent interpretation of changes in entropy and fractal measures
induced by interventions such as the one presented here.

Advances in technology should enable the design and deployment
of a bi-directional adaptive dynamical system as a rehabilitation tool.
Recent studies have shown that an interactive, bi-directional
approach strengthens the effect of the entrainment®-*. Future stud-
ies will seek to close the loop on the signal flow in which footswitches

32,33

create sounds that play notes along with the music that the person
hears, leading to significantly greater entrainment as it includes a
participatory element in the rhythmic auditory stimulus as well as a
feedback signal (in addition to the proprioceptive feedback already
present). This feedback signal combined with the music would act as
an error signal to facilitate accelerated learning.

It is accepted that entropy and fractal based approaches of time
series analysis are data-hungry techniques, yet the practical chal-
lenges of capturing an adequately long gait time series for rigorous
investigations of the above questions in elderly or infirmed cohorts
are not trivial. Recent studies®>* have highlighted potential problems
when using DFA for the quantification of persistence in time series.
Bryce et al.® demonstrates that DFA systematically underestimates
dispersion and that this bias is sample size dependent. Schaefer et al*
highlighted the inherent limitations of common methods used to
quantify scale invariant processes and similarly reported that analysis
of time series of n < 100 using DFA can return inaccurate results.
The authors have also previously reported on the perils of utilizing
entropy measures for short time series*’. While the time series cap-
tured in this study was of length n = 512, we are still mindful of the
methodological limitations of these widely used techniques and
recommend caution for the reader also. Development of more appro-
priate techniques for the analysis of motor time series is beyond the
scope of the current study, but it is predicted that this field will see
further advancements in the near future. Equally, the use of complex
auditory signals as a rehabilitation tool to restore biological complex-
ity to the locomotor system is an area ripe for progression along the
translational research spectrum. The research questions discussed
here may serve to guide these advancements.
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