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ABSTRACT: Liquid biopsy is the process of sampling and analyzing body fluids, which enables non-invasive monitoring of complex biolog-
ical systems in vivo. Liquid biopsy has myriad applications in health and disease as a wide variety of components, ranging from circulating
cells to cell-free nucleic acid molecules, can be analyzed. Here, we review different components of liquid biopsy, survey state-of-the-art,
non-invasive methods for detecting those components, demonstrate their clinical applications and discuss ethical considerations.
Furthermore, we emphasize the importance of artificial intelligence in analyzing liquid biopsy data with the aim of developing ethically-
responsible non-invasive technologies that can enhance individualized healthcare. While previous reviews have mainly focused on cancer,
this review primarily highlights applications of liquid biopsy in reproductive medicine.

Key words: liquid biopsy / circulating cells / cell-free DNA / ART / IVF / spent embryo culture medium / non-invasive prenatal testing /
preimplantation genetic testing / next generation sequencing / artificial intelligence

Introduction
Traditionally, studying pathogenesis commences with the sampling of a
tissue or cytological specimen from the affected site of the human body.
Such sampling usually requires invasive procedures, posing possible
serious complications to the patient. Additionally, these procedures are
inherently prone to incomplete representation of the affected tissue or
cells (Gerlinger et al., 2012) and require prior knowledge of the anatom-
ical site of disease presentation. A promising alternative to invasive sam-
pling are liquid biopsy techniques, which make use of circulating
components in the body. Due to their non-invasive nature and repre-
sentation of the tissue of origin, these emerging techniques offer a prom-
ising alternative to detect health- and disease-specific markers (Fig. 1).

Not all circulating components are equally abundant in body fluids,
nor are they equivalent with respect to their size and biological prop-
erties. They range from rare, large circulating cells, e.g. circulating

tumor cells (CTCs) and circulating trophoblastic cells, to more abun-
dant, short cell-free nucleic acids (cfNAs), such as cell-free DNA
(cfDNA), cell-free RNA (cfRNA) and circulating microRNA (miRNA).
Furthermore, cfNAs do not only circulate in isolation, they can also be
associated with protective protein complexes or encapsulated within
extracellular vesicles (EVs). The accurate detection and characteriza-
tion of low abundant circulating components in liquid biopsy still poses
a challenge, especially as they are often dispersed among material orig-
inating from multiple tissues (Sun et al., 2015). Therefore, sufficient
sampling and sophisticated computational approaches are required to
generate reliable results for clinical reports.

While previous reviews about liquid biopsy have primarily focused
on cancer, here we highlight its importance and potential in reproduc-
tive medicine by: describing past liquid biopsy component discoveries;
summarizing technological advances in the field; showcasing potential
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applications of those technologies in reproductive medicine; highlighting
the importance of artificial intelligence (AI); and discussing the ethical
principles that these novel possibilities may engender.

Detection of different liquid
biopsy components

Circulating cells
CTCs, which were first described 151 years ago (Ashworth, 1869)
(Fig. 2), can be characterized based on their size and cell-surface
marker expression using size-based membrane filters and cell-sorting
techniques, such as CellSearch (Adams et al., 2015), the size of epithe-
lial tumor cells (ISET) method (Mazzini et al., 2014), CellSieve (Adams
et al., 2015), ScreenCell (Freidin et al., 2014) and other microfluidic
systems (Fig. 3, Table I). In principle, microfluidic systems perform
electric charge-, density-, or size-based separation (Warkiani et al.,
2016). For instance, size-sorting microfluidic chips are designed to
capture CTCs, which are larger (�17–52 lm) than leukocytes
(�7–15 lm) and erythrocytes (�6–8 lm) (Neoh et al., 2018).
Similarly, circulating fetal trophoblastic cells, which were first discov-
ered in the maternal circulation in 1893 (Schmorl, 1893), can be
isolated by the ISET method, differentiating cytotrophoblast-like cells
(�14.3–30 lm) and syncytiotrophoblast-like cells (�44–60 lm) (Vona
et al., 2002). In addition, other circulating fetal cells (CFCs) such as

fetal erythroblasts, lymphocytes and granulocytes have been found in
maternal blood (Zipursky et al., 1959; Krabchi et al., 2001). Efficient
isolation of CFCs from maternal blood can be achieved by their en-
richment using a panel of selective cell expression markers (Fig. 3Fi),
such as CD105 and CD141 (Hatt et al., 2014) or GB17, GB21 and
GB25 (Bruch et al., 1991), or by depleting their trophoblast-marker
negative maternal counterparts (Fig. 3Fii). CFCs can be used for cell-
based non-invasive prenatal testing (NIPT) (Vossaert et al., 2019).
Upon isolation, these cells provide a pure source of fetal genomic
DNA. However, the main challenge is that CFCs are exceedingly rare,
approximately 1–2 cell(s) per ml of maternal blood (Krabchi et al.,
2001), requiring a large volume of the maternal blood to perform this
test. Even though cell-based NIPT enables enrichment of fetal cells
and pure fetal copy number variation (CNV) detection (Breman et al.,
2016; Kølvraa et al., 2016; Vossaert et al., 2019), the extracted DNA
from those fetal cells should be whole-genome amplified before ge-
nome sequencing; a process that introduces many artifacts, including
allelic drop out and preferential amplification (see Sequencing section).
Nevertheless, single-cell sequencing methods could alleviate this prob-
lem and are now validated for clinical use (Vossaert et al., 2019).

Circulating cell-free nucleic acids
cfNAs, including cfDNA and RNA, were first described in 1948
(Mandel and Metais, 1948). They originate from cultivated cells, non-
malignant somatic tissues, tumors and embryos or fetuses and are
released when cells undergo necrosis or apoptosis. cfNAs can be
characterized based on their length, physical size, surface molecules,
electric charge and density (Fig. 3).

Cell-free DNA
In 1997, the presence of cell-free fetal DNA (cffDNA), originating
from the placental trophoblast (Alberry et al., 2007), was reported in
the maternal circulation (Lo et al., 1997). cffDNA that are released by
apoptotic trophoblast cells within the fetal compartment of the
placenta can be used for nucleic acid-based NIPT (Tjoa et al., 2006),
representing the fetus but not completely. This is due to confined pla-
centa mosaicism (CPM), i.e. the presence of chromosomally abnormal
cells in the placenta but not in the fetus. CPM can lead to false-
positive cfDNA-based NIPT, which is now widely used. In contrast to
pure fetal DNA from CFCs, cffDNA is fragmented and mixed with
maternal DNA, which makes it even more challenging to identify true
submicroscopic CNVs. A recent study showed that >70% of large
CNVs (>10 kb) are confined to the placenta (Zamani Esteki et al.,
2019), this is well below the detection limit of cfDNA-based
approaches and may be misinterpreted with maternal CNVs
(Kotsopoulou et al., 2015), including malignancies (see Application sec-
tion). The size distribution of maternal serum cfDNA can be used for
size- and origin-based diagnostic approaches (Fig. 3G), as maternal
cfDNA fragments are, on average, longer (166 bp) than cffDNA frag-
ments (143 bp) (Lo et al., 2010). cfDNA is also detectable in blasto-
coel fluid (BF) of human embryos and in spent IVF culture medium,
enabling minimally- and non-invasive genetic testing, respectively
(Assou et al., 2014). Furthermore, the presence of mitochondrial
DNA (mtDNA) in the embryo’s culture medium has been associated
with fragmentation of the embryo caused by apoptosis or necrosis
(Stigliani et al., 2013) (see Application section).

Liquid
Biopsy

Circulating
cells

tumor cells

endothelial cells

fetal cells

Extracellular
vesicles

 apoptotic bodies

exosomes

 microvesicles

cfNAs

cfDNA

cfRNA

cf-miRNA

Complexes

nucleosomes

virtosomes

Normal Tissue Tumour

Figure 1. Dissecting the liquid biopsy. Analysis of circulating
components within body fluids can be used for non-invasive disease
detection and monitoring in several medical disciplines including car-
diology, oncology, transplant and reproductive medicine. Different
circulating components, such as cells, cell-free nucleic acids (cfNAs)
and extracellular vesicles (EVs), are utilized for different tests.
cfDNA, cell-free DNA; cfRNA, cell-free RNA; cf-miRNA, cell-free
micro RNA.

Liquid biopsy in reproductive medicine and beyond 2825



1972

2009

1967

2013

2004

1893

1869

1948

1997

2000

2001

1981

2016

2008

circulating tumor cells detected in blood

(Ashworth)

(Mandel and Metais)

cell-free fetal DNA in maternal plasma

(Lo et al.)

cell-free fetal RNA in maternal plasma

(Poon et al.)

circulating nucleosomes in serum

(Holdenrieder et al.)

seminal plasma PIWI protein-interacting RNAs in male infertility

(Hong et al.)

(Trams et al.)

circulating fetal cells in maternal circulation

(Schmorl)

CTC

CFC

cfNA

nucleosome

exosome

cffDNA

cffRNA

cff-miRNA

cff-mtDNA

1972

2009

1967

2013

2004

1893

1869

1948

1997

2000

2001

1981

2016

2008

piRNA

cell-free fetal placental miRNA in maternal plasma

(Chim et al.)

FNE
fetal neural exosomes in maternal blood

(Goetzl et al.)

mtDNA in in embryo culture medium

(Stigliani et al.)

placental exosome
trophoblast cells secretion of Fas ligand in exosomes

(Abrahams et al.)

nucleosome
footprint

cfDNA comprises in vivo nucleosome footprint 

(Snyder et al.)

cfsRNA
cell-free seminal RNA in healthy individuals

(Huang et al.)

small secreted vesicles from chondrocytes
(Bonucci)

EV

(Kerr et al.)
Ab

circulating cells 

cell-free nucleic acids 

complexes 

cell-free nucleic acids

apoptotic bodies

exosomes

Figure 2. A timeline capturing the discovery of liquid biopsy components. About a century after the discovery of circulating cells (green),
cell-free nucleic acids (cfNAs) (purple) were observed. Their clinical application was not established until decades later but sparked many further
discoveries relating to cfNAs, as well as extracellular vesicles (EVs) and other complexes (blue) that can carry them, in rapid succession. CTC,
circulating tumor cells; CFC, circulating fetal cells; Ab, apoptotic bodies; cffDNA, cell-free fetal DNA; cffRNA, cell-free fetal RNA; cff-miRNA,
cell-free fetal micro RNA; cfsRNA, cell-free seminal RNA; cff-mtDNA, cell-free fetal mitochondrial DNA; piRNA, PIWI-interacting RNA; FNE, fetal
neural exosomes.
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Liquid biopsy component enrichment
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Figure 3. Enrichment of liquid biopsy components. To isolate a component of interest from the mixed liquid biopsy suspension, a variety of
techniques are employed. Methods used to enrich for specific cell populations, such as epithelial, tumor, or fetal cells, are based on either, or both,
physical or biological characteristics of the cells of interest. Enrichment of cells of interest or depletion of unwanted cells using physical properties is
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.Cell-free RNA
Since the detection of cell-free fetal RNAs in the blood stream of
pregnant women in 2000 (Poon et al., 2000), most studies have
focused on placental small non-coding RNAs, such as miRNAs
(Chim et al., 2008) and especially those contained within protective

exosomes (Huang et al., 2013). This is because of their relatively
greater stability and abundance as compared with mRNA. Placental
miRNAs can serve as potential biomarkers for pregnancy complica-
tions such as preeclampsia and intra-uterine growth retardation, by
influencing gene expression levels related to placental development

Figure 3. Continued
achieved by size-based microfiltration, using membranes (Ai) or packed beads (Aii), size- and deformity-based microfiltration (B), density gra-
dient centrifugation (C), inertial sorting, based on cell size and hydrodynamics (D), or dielectrophoresis (E). Other common enrichment
methods use cell-specific markers to separate cells based on their biological properties (Fi). By negative selection, a sample can be depleted
of unwanted cells using the same approach (Fii). These capture agents can, for instance, be bound by magnetic particles or located on micro-
chips (Fiii). The characteristics of cffDNA are used to enable enrichment for cffDNA before sequencing or determination of the fetal fraction
after the maternal blood sample has been sequenced. Pre-sequencing (NGS library preparation), cfDNA fragment sizes can be used for size
selection to discriminate cffDNA from the maternal cfDNA (G). Fetal-specific marks can also be used for affinity-based enrichment (H). Post-
sequencing, the proportion of cffDNA sized fragments, nucleosome positioning (I) and methylation patterns (J) are correlated with the fetal
fraction. Additionally, using parental genotype information, fetal specific alleles can be detected and used for the estimation of the fetal fraction
(K and L). NGS; next generation sequencing, SNP; single nucleotide polymorphism.

............................................................................................................................................................................................................................

Table I Methods used in liquid biopsy processing.

Component Enumeration Genomics Transcriptomics Epigenomics Single cell

Cells CTC þ þ þ þ þ
CFC þ þ þ þ þ

cfNAs cfDNA – þ – þ –

cffDNA – þ – þ –

cfRNA – þ þ – –

cffRNA – þ þ – –

miRNA – þ þ þ –

Extracellular vesicles
and other complexes

Exosome – þ þ – –

Small vesicles – þ – – –

ABs – – – – –

Nucleosomes – – – þ –

Methods CellSearch ddPCR qRT-PCR RRBS MALBAC

(Adams et al., 2015) (Chen et al., 2013) (Byron et al., 2016) (Laird, 2010) (Hou et al., 2013;
Huang et al., 2014)

ISET BEAMing Microarray Targeted BS MDA

(Mazzini et al., 2014) (Chen et al., 2013) (Byron et al., 2016) (Laird, 2010) (Huang et al., 2015)

CellSieve
(Adams et al., 2015)

Tam-Seq
(Forshew et al., 2012)

RNA-seq
(Max et al., 2018)

WGBS
(Laird, 2010)

DOP-PCR
(Chappell et al., 2018)

ScreenCell WGS DR-seq

(Freidin et al., 2014) (Leary et al., 2012) (Dey et al., 2015)

G&T-seq
(Macaulay et al., 2015)

scNMT-seq

(Clark et al., 2018)

scCOOL-seq

(Li et al., 2018)

AB, apoptotic bodies; BEAMing, bead, emulsion, amplification and magnetics; CFC, circulating fetal cell; cfDNA, cell-free DNA; cffDNA, cell-free fetal DNA; cffRNA, cell-free fetal RNA;
cfRNA, cell-free RNA; CTC, circulating tumor cell; ddPCR, droplet digital PCR; DOP-PCR, degenerate oligonucleotide-primed PCR; DR-seq, gDNA and mRNA sequencing; G&T-seq, genome
and transcriptome sequencing; MALBAC, multiple annealing and looping-based amplification cycles; MDA, multiple displacement amplification; miRNA, microRNA; qRT-PCR, quantitative
reverse transcription PCR; RRBS, reduced representation bisulfite sequencing; scCOOL, single cell chromatin overall omic-scale landscape sequencing; scNMT, single cell nucleosome, methyla-
tion and transcription sequencing; Tam-Seq, tagged-amplicon deep sequencing; WGBS, whole-genome bisulfite sequencing; WGS, whole genome sequencing.
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(Awamleh et al., 2019). However, characterizing miRNAs is challenging
due to their short length (�22 nucleotides) and high level of homol-
ogy, which complicates the use of primers. This obstacle has been
overcome by the detection of several recognition elements that can
be employed in electrochemical- or optical-based miRNA detection
(Tian et al., 2015). To characterize male-factor infertility, cfRNA
(Huang et al., 2009) and piwi-interacting RNA (Hong et al., 2016) can
be isolated from semen.

Extracellular vesicles and other complexes
In 1967, small secreted vesicles were first reported (Bonucci, 1967).
EVs, such as apoptotic bodies (ABs) and exosomes, can be distin-
guished by their distinct characteristics. For example, exosomes
(Trams et al., 1981), which arise upon fusion of internal multivesicular
endosomes with the plasma membrane, are the smallest EVs
(�30–200 nm diameter) (Pegtel and Gould, 2019). Placental-derived
exosomes (Abrahams et al., 2004) identified in maternal plasma could
serve as biomarkers for the diagnosis and prognosis of preeclampsia as
they are elevated in pre-symptomatic pregnancies, which subsequently
may develop preeclampsia. Recently, specific fetal neural exosomes
(FNEs) have been isolated from maternal plasma during pregnancy
(Goetzl et al., 2016). FNEs can potentially be used as a diagnostic tool
to detect early signs of fetal neurological disease and are correlated
with fetal exposure to alcohol (Goetzl et al., 2019).

ABs (Kerr et al., 1972), containing degraded DNA, generated during
apoptosis, are the largest EVs (4000–5000 nm diameter) (Tixeira et al.,
2017). Alternatively, cfNAs can circulate in association with protective
protein complexes, such as nucleosomes (Holdenrieder et al., 2001).
Importantly, from the exact spacing of nucleosomes, the tissue of ori-
gin of a cfNA fragment can be determined (Snyder et al., 2016). For
instance, maternal cfDNA is predominantly cleaved with the linker re-
gion intact while cffDNA is cleaved at the border with or within the
nucleosome (Shi et al., 2020) (Fig. 3I). Different EV types can be
detected by centrifugation, (agglutination-)precipitation, or ultracentri-
fugation after size-exclusion. Exosomes can also be captured by
immunoaffinity-beads and microfluidic chip methods and can be
enriched using antibody-based label or label-free exosome arrays (Ko
et al., 2016).

Sequencing of liquid biopsy
components

Sequencing cell-free nucleic acids
The introduction of next-generation sequencing (NGS) has enabled
the detection of genomic variants, such as point mutations, CNVs and
structural aberrations (Goodwin et al., 2016) across the fetal genome.
Furthermore, NGS offers a reliable platform for multi-faceted analysis
of cfNAs, including exome (Butler et al., 2015), (epi)genome (Laird,
2010; Leary et al., 2012) and transcriptome (Max et al., 2018) analyses
(Table I).

One NGS approach, to detect mutant alleles that are present in at
least 2% of circulating tumor DNA fragments, is tagged-amplicon deep
sequencing (Forshew et al., 2012), which is based on targeted rese-
quencing of a panel of specific low-frequency mutations. Rarer mutant

alleles can be detected with other targeted approaches, such as drop-
let digital PCR or parallel beads, emulsion, amplification and magnetics
PCR (Chen et al., 2013).

A challenge in NGS data analysis is tackling background error noise,
which can occur when ‘jackpot’ mutations arise after errors in the first
PCR cycle and by preferential amplification. This can be solved by
computational approaches that correct for GC content or by assuming
a diploid genome as a baseline, e.g. GC and median corrections, re-
spectively (Bayindir et al., 2015). Molecular barcoding, unique molecu-
lar identifiers (UMIs) and circle sequencing can also reduce these
errors. For instance, UMIs facilitate the grouping of sequence reads
according to DNA molecule, thereby distinguishing between true var-
iants and artifacts. Similarly, circle sequencing reduces sequencing error
rates by circularization of single-stranded DNA fragments, followed by
inverse PCR or rolling circle amplification (Lou et al., 2013). Thus,
both robust computational pipelines and wet-lab protocols are key to
produce accurate results.

NGS-based methods can also be applied to study the epigenome of
cfNAs and to characterize cfRNAs. The epigenome, and specifically
DNA methylation, can be used to ascertain the tissue-of-origin of
cfDNA (Chim et al., 2005). DNA methylation is most commonly ex-
amined using bisulfite treatment of DNA, which converts unmethy-
lated cytosine residues to uracil. Subsequent methylome profiling can
be performed in three forms (Laird, 2010): (i) reduced representation
bisulfite sequencing, which is untargeted but enriches for CpG-rich
fragments; (ii) targeted capture of bisulfite-converted DNA, either by
array or padlock capture; and (iii) whole-genome bisulphite sequencing
(WGBS). WGBS, for instance, has been used on cfDNA to uncover
placenta hypomethylation, which might aid in cffDNA enrichment
(Jensen et al., 2015). The transcriptome can be profiled by technolo-
gies such as quantitative reverse transcription-PCR, microarray and
RNA sequencing (Byron et al., 2016). Improved NGS techniques have
facilitated the isolation of nanogram quantities of cfRNA from serum
and plasma. Plasma- and serum-specific profiles can then be discerned
by probing different RNA forms, such as miRNAs, mRNA and tRNAs
(Max et al., 2018).

Sequencing circulating (single) cells
Advances in cell isolation, whole-genome amplification (WGA) and
NGS have contributed to the emergence of single-cell genomics. DNA
sequencing of scarce circulating cells requires WGA as they only pos-
sess a small amount of DNA (�7 picogram). Multiple annealing and
looping-based amplification cycles, multiple displacement amplification
and degenerate oligonucleotide-primed PCR are the most commonly
used WGA methods (Huang et al., 2015). Recently, techniques for si-
multaneous analysis of multiple omic layers in single cells, e.g. genomic
DNA and mRNA in DR-seq (Dey et al., 2015), the genome and tran-
scriptome in G&T-seq (Macaulay et al., 2015), single-cell Nucleosome,
Methylation and Transcription in scNMT-seq (Clark et al., 2018) and
(improved) single-cell Chromatin Overall Omic-scale Landscape
Sequencing in (i)scCOOL-seq (Gu et al., 2019) that can detect chro-
matin state, nucleosome positioning, methylation, CNV and ploidy,
have emerged. Such bi- or multi-layer omic assays are of paramount
importance to establish the interplay and connectivity (a.k.a. molecular
circuitry) between different molecular layers by facilitating their direct
side-by-side comparison.

Liquid biopsy in reproductive medicine and beyond 2829
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Robust analysis of any single-cell omic-layer requires highly efficient

capture and enrichment techniques to reduce technical artifacts.
Specifically, WGA is prone to technical errors, such as non-linear am-
plification and insufficient coverage (Navin, 2015). Analysis of the
single-cell transcriptome further introduces the challenge of recovering
the full-length cDNA, quantification of translational activity and sense
and antisense transcript discrimination (Tang et al., 2011).

Applications of liquid biopsy in
reproductive medicine
Liquid biopsy has potential and already realized applications in different
fields. It is now evident that cfDNA is highly representative of genomic
DNA as it shares many of its features (Beck et al., 2009; van der Vaart
et al., 2009). Interestingly, cfDNA has a short half-life (4 min to 2.5 h),
as it is rapidly filtered out of the circulation by the liver, spleen and kid-
ney (Khier and Lohan, 2018). Caution is warranted using quantitative
analysis methods as suboptimal extraction processes can affect the
quantity of isolated cfDNA. Serum contains a relatively high concentra-
tion of cfDNA, but is less informative, as a greater proportion of se-
rum cfDNA originates from leucocyte lysis. For this reason, DNA is
preferentially extracted from plasma (Lee et al., 2001). Importantly,
cfNAs can be traced to their tissue of origin, which makes them infor-
mative biomarkers for assisted reproductive technology (ART) (Wu
et al., 2015; Snyder et al., 2016; Liu et al., 2017).

Assisted reproductive technology
In-vitro fertilization
Embryo selection procedures in IVF aim to identify good quality
embryos with the highest implantation potential. Follicular fluid (FF),
which influences maturation of follicles and oocyte growth in vivo, con-
tains cfDNA of apoptotic granulosa cells and is sampled as part of the
IVF oocyte retrieval process. Low levels of cfDNA in FF samples are
significantly correlated with low embryo fragmentation rate and are in-
dicative of high-quality embryos (Scalici et al., 2014). FF also contains
cell-free mitochondrial DNA (cf-mtDNA), which can be quantified to
predict embryo viability (Stigliani et al., 2014). Cumulus cells (CCs),
surrounding the oocyte during its development, have been shown to
increase the quantities of cf-mtDNA in the IVF culture medium if
mitochondrial dysfunction is present (Kansaku et al., 2018). The effect
of mitochondrial dysfunction is being studied with the hope of gaining
further insights into embryo quality and being able to predict the de-
velopmental competence and implantation potential of the embryo.
CC gene expression is also a valid biomarker of oocyte quality, as the
expression of specific genes in CCs correlates with embryo potential
and pregnancy outcome (Assou et al., 2008). In addition, a novel
non-invasive metabolomics approach for embryo selection has been
established, which identified 60 metabolomic biomarkers of euploidy
and aneuploidy in spent IVF culture medium (SCM) (Cabello-Pinedo
et al., 2020), demonstrating the power of metabolomics in IVF as a
non-invasive selection approach.

Male infertility
Presence of higher levels of cell-free seminal DNA (cfs-DNA) is associ-
ated with azoospermia (Li et al., 2009), i.e. absence of sperm in the

semen. In these cases, testicular sperm can be utilized for ICSI during
IVF. cfs-DNA is detectable in both normal and azoospermic semen
samples. Epigenetic analysis of the same cfs-DNA also identifies differ-
ences, such as hypermethylation, that are associated with hyposperma-
togenesis (Wu et al., 2013). Additionally, cf-RNA can be isolated from
semen (Huang et al., 2009), such that analysis of cfs-mRNA accurately
distinguishes between non-obstructive and obstructive azoospermia (Li
et al., 2012).

Preimplantation genetic testing
Preimplantation genetic testing (PGT) is an ART that prevents trans-
mission of genetic disorders to the offspring (Handyside et al., 1990).
Currently, testing is primarily either conducted on a single blastomere
taken from a cleavage-stage embryo, or on a few trophectoderm (TE)
cells taken from a blastocyst, both of which are obtained through inva-
sive biopsy methods that may be harmful to the embryo (Kuliev and
Rechitsky, 2017). PGT is offered for monogenic disorders (Wu et al.,
2015; Liu et al., 2017), structural rearrangements and aneuploidies
(PGT-A) (Kuliev and Rechitsky, 2017; Liu et al., 2017). However, the
clinical utility of PGT-A in its current form, i.e. only determining the
number of chromosomes, is still under debate (Mastenbroek and
Repping, 2014; Vermeesch et al., 2016).

Minimally and non-invasive preimplantation genetic testing
Following in vitro culture, the transfer of embryos can be postponed by
cryopreservation using vitrification (Zhu et al., 2011), a process that
requires collapse of the expanded blastocyst. If not occurring sponta-
neously, artificial shrinkage can be induced by BF microsuction (Chen
et al., 2005). A BF biopsy is a minimally invasive procedure as it does
not involve removal of cells from the embryo and thus should be less
harmful to the embryo as compared with standard cell-biopsy-based
PGT methods. The non-invasive alternative would be embryonic-
derived cfDNA in SCM (Galluzzi et al., 2015; Shamonki et al., 2016;
Xu et al., 2016; Feichtinger et al., 2017). cfDNA shed into the blasto-
cyst cavity and SCM has been proposed to be derived from apoptotic
cells (Palini et al., 2013; Gianaroli et al., 2014). However, current stud-
ies suggest that other mechanisms, besides apoptosis and necrosis,
may be involved in DNA release from the inner cell mass and TE in
BF and SCM. Recently, it was demonstrated that the amount of
cffDNA in BF and SCM or the concordance rates of NGS results were
similar for both moderate/low and good quality blastocysts
(Kuznyetsov et al., 2020). Nevertheless, current media-based non-inva-
sive PGT methods remain inferior to standard cell-biopsy-based inva-
sive PGT methods, reaching a maximum of 80–90% concordances
between non-invasive PGT and standard PGT (Lane et al., 2017; Ho
et al., 2018), thus leaving �10% of samples of which no informative
results could be given. Recently, the combination of cffDNA from BF
and SCM was shown to reach an overall concordance rate of 88/90
(97.8%) for euploidy/aneuploidy status between minimally invasive
PGT-A and TE biopsy samples (Kuznyetsov et al., 2020). This implies
that the combination of BF and SCM shows promise for the clinical ap-
plication of minimally invasive PGT. One of the remaining challenges is
maternal cfDNA contamination in the culture medium that arises from
the presence of, for instance, maternal CCs (Hammond et al., 2017;
Vera-Rodriguez et al., 2018). It has been suggested that maternal con-
tamination can be minimized by omitting the cell lysis step recom-
mended in the procedure of WGA (Kuznyetsov et al., 2020).
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.Next-generation preimplantation genetic testing
Traditional PGT methods are based on targeted multiplex PCR or
fluorescent in situ hybridization (Sermon et al., 2004). However, high
throughput genomic technologies, such as single-nucleotide polymor-
phism (SNP)-array and NGS-based haplotyping, are revolutionizing
PGT (Handyside et al., 2010; Natesan et al., 2014; Zamani Esteki
et al., 2015; Backenroth et al., 2019; Masset et al., 2019). The addition
of parental haplotyping can offer further valuable insights for PGT-A
(Zamani Esteki et al., 2015). A haplotype represents consecutive alleles
that are inherited together on a stretch of DNA, indicating which parts
of homologous parental chromosomes are transmitted to the embryo.
As such, the mechanistic origin of aneuploidies, i.e. meiotic or mitotic,
can be determined. This is vital information, because aneuploidies orig-
inating during meiosis are likely to affect all the cells of an embryo, and
hence the fetus, leading to the aneuploidy-associated phenotype or
miscarriage. On the other hand, aneuploidies with a mitotic origin are
only present in a fraction of embryonic cells and can therefore be out-
grown by euploid cells, leading to successful pregnancies with geneti-
cally normal infants (Zamani Esteki et al., 2019). Such mitotic
aneuploidies may arise because of chromosome instability, which is
commonly seen in preimplantation human embryos (Vanneste et al.,
2009; Zamani Esteki et al., 2015).

Prenatal genetic testing
Traditionally, prenatal genetic testing involves invasive chorionic villus
or amniotic fluid sampling. However, the non-negligible risk of preg-
nancy loss associated with these techniques urged the need for non-
invasive alternatives. Although plasma levels of cffDNA increase during
pregnancy, its isolation remains challenging due to its relative low
abundance (Lo et al., 1998). The presence of fetal DNA can be con-
firmed by Y-chromosome markers (Lo et al., 1999) (Fig. 3K).
However, this is only the case in pregnancies with male fetuses and is
unreliable due to false negatives caused by insufficient sampling.
Alternatively, cffDNA can be recognized by the presence of paternally
inherited short tandem repeats (Pertl et al., 2000) (Fig. 3L).
Furthermore, distinct DNA methylation patterns of placental and ma-
ternal genes can be used to establish the cellular origin of cfDNA frag-
ments (Chim et al., 2005) (Fig. 3J). Stable mRNA transcripts from
placenta-expressed genes have also been used as markers to detect
pregnancy pathologies and for non-invasive fetal sex determination
(Mersy et al., 2015).

Despite challenges relating to isolation and characterization of
cffDNA from the maternal circulation, NIPT has been introduced into
clinical practice (Bianchi et al., 2014; Vermeesch et al., 2016), not just
for high-risk pregnancies but also as part of a screening program for all
pregnancies (van der Meij et al., 2019). Currently, three forms of NIPT
can be carried out, including NIPT for aneuploidy, structural rearrange-
ments and monogenic disorders (NIPT-M) (Lam et al., 2012; Lv et al.,
2015; Yin et al., 2018; Zhang et al., 2019). Initially, the median increase
of fetal DNA concentration was used as a marker of trisomy 21 (Lo
et al., 1999). Subsequently, chromosome-specific markers have been
introduced, allowing the detection of chromosomal anomalies using ei-
ther the allelic ratios from SNP genotyping (Lo et al., 2007a), e.g.
CNV detection in alpha-thalassemia (Ge et al., 2013), or the transcrip-
tome unique to the fetus (Lo et al., 2007b). Advances in the technol-
ogy even permit the detection of fetal single-gene defects from

maternal plasma. In most instances, NIPT-M involves targeted se-
quencing of genes of interest (Zhang et al., 2019). For example, tar-
geted enrichment by solution-based hybridization followed by
sequencing and haplotyping of the b-globin gene region can detect
mutations and diagnose b-thalassemia (Lam et al., 2012), and targeted
massively parallel sequencing provides early prenatal diagnosis of
fetuses at risk for congenital adrenal hyperplasia (New et al., 2014).
Further improvements have come from the introduction of single-
molecule amplification and resequencing technology (Lv et al., 2015)
and new algorithmic methods (Yin et al., 2018; Rabinowitz et al.,
2019) in combination with isolating circulating cells.

NIPT samples are typically processed using shallow sequencing pro-
tocols, such as WISECONDOR (Straver et al., 2014; Bayindir et al.,
2015; Raman et al., 2019), which can detect aneuploidies and large
CNVs using inter-chromosomal read count comparison. While these
methods have high analytical accuracy, detected chromosomal abnor-
malities still need to be confirmed by invasive testing (Bianchi et al.,
2014; Bayindir et al., 2015; van der Meij et al., 2019). This is a biologi-
cal rather than a technical problem, as CPM is observed in 1–2% of
pregnancies (Kalousek and Vekemans, 1996). Besides CPM-related
false positive trisomies of autosomes, NIPT has limited utilities for sex
chromosome aneuploidies, for instance low-level mosaicism of chro-
mosome X that is due to age-related loss of chromosome X in
women (Russell et al., 2007) can lead to false positive Turner syn-
drome (45, X) diagnoses (Wang et al., 2020). Thus, the use of CFCs
can solve misdiagnoses that are caused by fetal (e.g. CPM) or maternal
(e.g. loss of chromosome X) mosaicisms. For NIPT-M, haplotyping-
based analysis methods, e.g. relative haplotype dosage analysis (Lo
et al., 2010), have been implemented to trace allelic inheritance.
However, current haplotyping methods require high-coverage NGS,
and necessitate parental samples to define heterozygous parental
SNPs whose relative representation can be sought in the fetal genome
(Fan et al., 2012). Haplarithmisis is a more sophisticated genome-wide
haplotyping method that makes use of continuous B-allele fractions, in-
stead of error-prone discrete SNP genotypes, to determine copy num-
ber states (Zamani Esteki et al., 2015) alongside the parental and
segregation origin of genomic alterations in cffDNA (Che et al., 2020).

It is now evident that NIPT has the potential to detect maternal ma-
lignancies. cfDNA from malignant cells can be shed into the blood
stream (Bianchi, 2018). As such, it provided proof-of-principle of liquid
biopsy for cancer screening in large populations (Lenaerts et al., 2021).
Given the fact that the population screened in NIPT is relatively young,
the incidence of maternal malignancies is low. Large cohort studies es-
timate the frequency with which malignancies can be detected with
the current NIPT protocol is in the range of about 1:10 000 (Bianchi
et al., 2015; Dharajiya et al., 2018; van der Meij et al., 2019). The ma-
lignancies in NIPT as reported in literature include (amongst others)
leukemia or lymphoma, breast and cervical carcinoma (Ji et al., 2018).
However, it may be difficult to pinpoint where a putative tumor may
be located based solely on genomic aberrations. Furthermore, a sub-
stantial number of suspicious NIPT findings are not confirmed by sub-
sequent diagnostic tests or physical examinations. This may be due to
occult malignancies or benign proliferations that are below the level of
detection of current diagnostic techniques or due to placenta abnor-
malities. In addition, the aberrant NIPT signals may be derived from
benign clonal proliferations, e.g. leiomyoma (Dharajiya et al., 2018) for
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which it is questionable whether detection during pregnancy is benefi-
cial (Bianchi, 2018).

As data are scarce, there are currently no evidence-based guidelines
for counseling and clinical follow-up after a NIPT result putatively indi-
cating a malignancy. A multidisciplinary collaboration that includes ge-
netic counselors, oncologists, clinical laboratory geneticists and
gynecologists is deemed crucial for accurate patient management
(Giles et al., 2017; Smith et al., 2017; Bianchi, 2018). Although studies
thus far look promising, they did not investigate the assumed clinical
benefits of earlier detection versus the burden that a NIPT finding may
impose on the woman, and there has been no follow-up of women
screened negative (Bianchi, 2018). As with all screening programs, the
question that remains is whether earlier detection of malignancy in a
pregnant population ultimately leads to better clinical outcomes for
both mother and child.

Future directions

Diagnostic, prognostic and therapeutic
values
Liquid biopsy is an emerging field with numerous important applica-
tions (Table II). In particular, these techniques are invaluable for
screening practices. For example, NIPT can be used in place of con-
ventional invasive testing procedures that are associated with a risk of
miscarriage (van Schendel et al., 2017). Additionally, liquid biopsies can
be used for risk-free screening of asymptomatic individuals, promising
reduced morbidity and mortality associated with conditions where
treatment success diminishes with disease progression. For instance,
earlier diagnosis and more accurate monitoring of preeclampsia
(Wahid et al., 2018) and other pregnancy-related pathologies
(Pernemalm et al., 2019) may be possible using liquid biopsies, thereby
facilitating the timely initiation of appropriate treatment and a reduc-
tion of complications. Liquid biopsy may also be implemented to pre-
dict progression in other diseases, as is the case in heart failure where
the circulating long non-coding RNA LIPCAR can be used to predict
survival (Kumarswamy et al., 2014). Similarly, treatment response
could be assessed using cfDNA monitoring as already illustrated in
transplantation medicine (Burnham et al., 2017). Circulating compo-
nents have even shown promise for therapeutic applications. For in-
stance, EVs have been developed as highly biocompatible, stable,
tissue-targeted drug delivery systems (Meng et al., 2020).

Artificial intelligence
Emerging (ultra-)sensitive technologies and their introduction in health-
care systems generate extensive datasets, necessitating standardization
of the produced data and development of secure data sharing plat-
forms. Subsequently, sophisticated AI-based analysis methods can be
used on different data sources that are being collected along the con-
tinuum of early development, from newly emerging preconception car-
rier testing (Sallevelt et al., 2021) to preimplantation and prenatal
testing. AI can then avoid potential human errors and shorten long
waiting lists, e.g. for PGT. The use of machine learning (ML), which is
a branch of AI, in medicine offers an exciting prospect for disease diag-
nosis, monitoring and therapy. ML algorithms range from simple

methods, e.g. regression and clustering, to more sophisticated
approaches, e.g. artificial neural networks and deep learning. ML algo-
rithms can be categorized into supervised or unsupervised learning.
Classification is a supervised learning approach which requires labeled
data, e.g. classification of PGT or NIPT results that are well annotated
by specialists previously. While unsupervised learning primarily looks
for patterns, e.g. clustering. The real-life example that makes use of
ML in medicine more prominent is semi-supervised learning, where
the clinical data are partly labeled. Semi-supervised ML systems would
save enormous time and energy. ML systems that are based on multi-
ple data sources (e.g. genomic and radiomic data) can be trained via
deep learning. Deep learning is an approach that builds upon a cascade
of several (i.e. deep) complex information layers to obtain prediction
or classification models. Each layer uses the output of the preceding
layer as its input, before applying different transformations to the input
(Eraslan et al., 2019). These cascades of data processing are trained
with labeled test data to optimize (hyper-) parameters of the model,
eventually leading to the most accurate model possible (Eraslan et al.,
2019). Well-trained deep-learning algorithms could, for instance, be
used to identify very low abundance genetically aberrant cells and link
them to their tissue of origin using WGS of cfDNA (Wan et al.,
2018). The process of embryo ranking during IVF treatment is another
potential application that could benefit from these techniques.
However, more data collection, technology development and valida-
tion are required before robust, diagnostically valuable techniques can
be brought from bench to bedside (Topol, 2019). Nonetheless, it is
clear that AI has the potential to enhance the decision-making of
healthcare professionals by allowing them to harness the power of
vast data resources generated and stored by all healthcare systems.

Ethical exploration
Ethical aspects of applying liquid biopsy in the context of (reproduc-
tive) screening, where screening is defined as the unsolicited offer of
testing to asymptomatic individuals, need to be scrutinized. Here, we
discuss two criteria for sound screening, namely proportionality and
respect for autonomy (Netherlands Health Council, 2008). The princi-
ple of proportionality requires that the possible benefits of screening
clearly outweigh any potential risks. The autonomy requirement
underlines the importance of informed and voluntary consent. The
proportionality and autonomy requirements raise complex issues in
the context of different types of reproductive screening, including the
rapidly evolving NIPT and PGT procedures.

Given that the aim of NIPT is to facilitate well-informed, personal
decision making of prospective parents about possible serious repro-
ductive risks, the question is how to achieve this. This challenge is
compounded by the prospect of whole fetal genome sequencing and
analysis that could easily result in information overload. Furthermore,
such broad-scope prenatal screening could violate future children’s
right to informational self-determination. Moreover, the morality of fu-
ture NIPT-linked (research on) ‘fetal personalized medicine’ requires
ongoing scrutiny (Dondorp et al., 2015).

In principle, non-invasive PGT to predict embryo viability would be
welcome. However, as stressed in comments critical toward PGT
(Mastenbroek and Repping, 2014), an important prerequisite for intro-
ducing a new test is a strong evidence base demonstrating its effective-
ness and reliability. Difficult normative issues could arise if non-invasive
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PGT also endeavors to generate information about genetic risk factors
for disorders, alone or in combination with invasive PGT methods.
How then, to balance, higher/lower scores for viability and risk factors
for (often complex) genetic characteristics with a lower positive pre-
dictive value? Furthermore, this may cause tension between the
decision-making authority of prospective parents on one hand and of
reproductive doctors on the other hand when it comes to the selec-
tion of ‘the best embryo’ for transfer (Wert, 2009).

Finally, even though ML may help to integrate the huge amount of
data generated by multiparametric assays, the implicit morality of the
algorithms involved require the development of ethics frameworks
bridging AI and assisted reproduction. Clearly, the prospects of and
progress in liquid biopsy-based reproductive screening require multidis-
ciplinary research and reflection for responsible innovation.

Conclusions
Here, we described different circulating components, state-of-the-art
methods to detect them, and their implications in health and disease.
Specifically, we reviewed how liquid biopsy can be used to monitor
patients as a whole, because the sampled components themselves are
informative for their type and origin. Advanced computational
methods and single-cell multi-omics will ultimately overcome some of
the challenges that are associated with liquid biopsy, including the low-
frequency and fragmentation of circulating components, background
error rates and haplotyping phasing following NGS. AI-based interpre-
tation of liquid biopsy profiles paves the way for individualized medi-
cine and a much greater repertoire of non-invasive tests, which will
greatly benefit patient care.

............................................................................................................................................................................................................................

Table II The clinical utilities of liquid biopsy in reproductive genetics.

Clinical utility

C
o

m
p

o
n

e
n

t

O
ri

gi
n

Biomarker function

T
e

ch
n

iq
u

e

T
ar

ge
t

R
e

fe
re

n
ce

s

NIPT-A Prediction of fetal trisomy 21 (Lo et al., 1999)

NIPT-A Prenatal detection of pathogenic CNVs in alpha thalassemia (Ge et al., 2013)

NIPT-A Detection of fetal chromosomal aneuploidy (Lo et al., 2007b)

NIPT-A Detection of fetal chromosomal aneuploidy (Lo et al., 2007a)

NIPT-M Prenatal detection of pathogenic mutations (Yin et al., 2018)

NIPT-M Prenatal diagnosis of monogenic diseases (Lv et al., 2015)

NIPT-M Prenatal diagnosis of monogenic diseases (Lam et al., 2012)

NIPT-M Prenatal diagnosis of congenital adrenal hyperplasia (New et al., 2014)

PGT-M Preimplantation diagnosis of a-thalassemia (Wu et al., 2015)

PGT-A/M Preimplantation diagnosis of aneuploidy and beta thalassemia (Liu et al., 2017)

Embryo quality Prediction of embryo quality (Scalici et al., 2014)

Embryo quality Prediction of implantation rate (Stigliani et al., 2014)

Male infertility Identification the presence of germ cells or complete
obstruction in azoospermia

(Li et al., 2012)

Male infertility Assessing diseases of semen secreting organs (Li et al., 2009)

Male infertility Prediction of successful testicular sperm retrieval in
non-obstructive azoospermia patients

(Wu et al., 2013)

Fetal neurodevelopment Non-invasive prenatal diagnosis of fetal central
nervous system insult

(Goetzl et al., 2019)

cfDNA Blood qPCR Quantification

cfRNA Semen NGS Methylation

cf-mtDNA ff ddPCR Expression profile

Cells Medium array SNP detect/quantify

Exosomes PCR Amplicon detect/quantify

ELISA

cf-mtDNA, cell-free mitochondrial DNA; ddPCR, droplet digital PCR; ELISA, enzyme-linked immuno sorbent assay; ff, follicular fluid; NGS, next-generation sequencing; NIPT-A,
non-invasive prenatal testing for aneuploidies; NIPT-M, non-invasive testing for monogenic disorders; PCR, polymerase chain reaction; PGT, prenatal genetic testing; qPCR, quantitative
polymerase chain reaction; SNP, single-nucleotide polymorphism.
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