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Abstract

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular

disease. Although some genes and miRNAs related with HCM have been studied,

the molecular regulatory mechanisms between miRNAs and transcription factors

(TFs) in HCM have not been systematically elucidated. In this study, we proposed a

novel method for identifying dysregulated miRNA‐TF feed‐forward loops (FFLs) by

integrating sample matched miRNA and gene expression profiles and experimentally

verified interactions of TF‐target gene and miRNA‐target gene. We identified 316

dysregulated miRNA‐TF FFLs in HCM, which were confirmed to be closely related

with HCM from various perspectives. Subpathway enrichment analysis demon-

strated that the method was outperformed by the existing method. Furthermore,

we systematically analysed the global architecture and feature of gene regulation by

miRNAs and TFs in HCM, and the FFL composed of hsa‐miR‐17‐5p, FASN and

STAT3 was inferred to play critical roles in HCM. Additionally, we identified two

panels of biomarkers defined by three TFs (CEBPB, HIF1A, and STAT3) and four

miRNAs (hsa‐miR‐155‐5p, hsa‐miR‐17‐5p, hsa‐miR‐20a‐5p, and hsa‐miR‐181a‐5p) in
a discovery cohort of 126 samples, which could differentiate HCM patients from

healthy controls with better performance. Our work provides HCM‐related dysregu-

lated miRNA‐TF FFLs for further experimental study, and provides candidate

biomarkers for HCM diagnosis and treatment.
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1 | INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is the most common genetic

cardiovascular disease and is a leading cause of disability and death
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in patients of all ages, especially sudden and unexpected cardiac

death in young people.1 From encoding protein RNAs to non‐coding
RNAs, our understanding about HCM has improved dramatically

both clinically and pathophysiologically. However, the potential

molecular mechanisms underlying the pathology of HCM have not

been fully understood.

Amongst many genetic factors, miRNAs and transcription factors

(TFs) are two types of key gene regulators, and they both participate

in many important cellular processes, including cell differentiation,

proliferation, and apoptosis.2 MiRNAs mainly regulate gene expres-

sion at the post‐transcriptional level, while TFs modulate gene tran-

scription at the transcriptional level. Researchers have demonstrated

that miRNAs and TFs may synergistically regulate the same target

genes, and they may mutually regulate one another; hence forming

feed‐forward loops (FFLs), which have been reported to form recur-

rent network motifs and play important roles in the mammalian gene

regulatory network.2,3 Thus, dysregulated miRNA‐TF FFLs will lead

to a series of diseases, and deciphering the interplay between miR-

NAs and TFs by means of FFLs will yield new mechanistic insights

into specific biological events.

Currently available biological databases have integrated different

types of molecular interactions, which made it possible to identify

miRNA‐TF FFLs. For instance, TarBase,4 miRTarBase,5 and miRe-

cords6 collected experimentally verified miRNA‐gene regulatory rela-

tionships for different organisms, while TargetScan7 predicted

biological targets for miRNAs. TRED8 and Transfac9 offered experi-

mentally confirmed TF‐gene regulatory relationships, while JASPAR10

predicted TF targets. TransmiR database11 recruited experimentally

verified TF‐miRNA regulatory pairs. Additionally, large amount of

genome‐wide data such as microarray data and next‐generation
sequencing data also provide us more valuable information to inves-

tigate dysregulated FFLs implicated with specific cellular processes

and diseases.

Much efforts have been devoted to detect miRNA‐TF FFLs,

which were used to dissect potential regulatory mechanisms under-

lying human diseases.12,13 On the one hand, started from disease‐
related molecules and different regulatory relationships amongst

miRNAs, genes and TFs, Ye et al14 revealed that miR‐19 inhibited

CYLD through the identified disrupted FFLs in T‐cell acute lym-

phoblastic leukaemia. Qin et al15 constructed gene regulatory net-

works involved in miRNA‐TF FFLs for three subtypes of breast

cancer, and investigated their distinct and common characteristics. In

addition, 4‐node FFLs were proposed and identified by Sun et al16 in

glioblastoma, from which critical miRNAs and subnetworks were

detected. Recently, Zhang et al12 and Arora et al13 have reviewed

miRNA and TF FFLs involved in various biological processes and dis-

eases. On the other hand, computational methods have been devel-

oped for identifying dysregulated miRNA and TF FFLs based on

sample matched mRNA and miRNA expression profiles.17,18 For

example, Yan et al17 proposed a method, dChip‐GemiNI, for identify-

ing significant miRNA‐TF FFLs associated with five cancers. Subse-

quently, Jiang et al18 developed an algorithm to dissect dysregulated

miRNA‐TF FFLs across 13 tumor types, and identified 26 pan‐cancer

FFLs. Therefore, using FFLs to decipher the pathological and physio-

logical mechanisms underlying diseases will provide new clues for

understanding disease initiation and progression.

In this study, we presented a method for systematically identify-

ing dysregulated miRNA‐TF FFLs in HCM, and 316 dysregulated

FFLs were obtained. We found that these dysregulated FFLs were

significantly enriched in significantly differentially expressed mole-

cules and the known HCM‐related molecules. Functional analysis

also demonstrated that the FFLs were closely associated with HCM.

We further investigated the global architecture and feature of

regulation between miRNAs and TFs in HCM by constructing a dys-

regulated miRNA‐TF regulatory network, from which a FFL (hsa‐miR‐
17‐5p, STAT3 and FASN) might play important roles in HCM and

two panels of diagnostic biomarkers defined by three TFs and four

miRNAs were identified.

2 | MATERIALS AND METHODS

2.1 | Obtaining and preprocessing of miRNA, gene
and TF expression profiles

The HCM related sample‐mathed gene expression profiles and

miRNA expression profiles (GSE36961 and GSE36946) were down-

loaded from the Gene Expression Omnibus database. This expression

profiles were obtained by measuring human cardiac tissues from 106

HCM patients and 20 control donors. Protein‐coding genes were

retained and miRNA names were manually mapped to standard

mature miRNA names based on miRBase database (release 21). If

multiple probes corresponded to one gene, the expression values

were averaged. A list of human TFs were acquired from a previous

study19 and TF expression profiles were extracted from gene expres-

sion data. Finally, 23 601 mRNAs, 805 miRNAs, 1369 TFs and their

corresponding expression profiles were obtained.

2.2 | Regulatory relationships amongst miRNAs,
genes, and TFs

Experimentally verified regulatory relationships amongst miRNAs,

genes, and TFs were used. Firstly, experimentally confirmed miRNA‐
gene interactions were collected from TarBase (version 6.0),4 miRTar-

Base (version7.0),5 and miRecords (version 4)6 databases. Secondly,

using TFs obtained above, the miRNA‐TF regulatory relationships

were determined from miRNA‐gene interactions. Thirdly, experimen-

tally confirmed TF‐gene interactions were collected from TRED8 and

Transfac,9 and experimentally verified TF‐miRNA regulatory relations

were retrieved from TransmiR (version 1.2)11 database.

2.3 | Candidate miRNA‐TF FFLs

In this study, we focused on three‐node miRNA‐TF FFLs, which

included a gene, a miRNA, and a TF. According to the main regula-

tor, miRNA‐TF FFLs can be typically classified into three types12,13:

miRNA‐FFL, TF‐FFL, and composite FFL (Figure S1). In a miRNA‐FFL,
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miRNA is the main regulator, which controls the expression of a TF

and their common target gene, while in a TF‐FFL, TF is the primary

regulator. In a composite‐FFL, a miRNA regulates the expression of a

TF and a target gene. Simultaneously, the TF dominates the expres-

sion of the miRNA and the target gene. By integrating expression

profile data and the interactions between miRNAs, TFs, and genes,

we identified 6,809 candidate miRNA‐TF FFLs (Figure 1A), which

comprised of 5549 miRNA‐FFLs (81.49%), 851 TF‐FFLs (12.50%)

and 409 composite FFLs (6.01%). These candidate FFLs included

434 miRNAs, 1253 genes, and 223 TFs.

2.4 | Identification of dysregulated miRNA‐TF FFLs
in HCM

The dysregulated miRNA‐TF FFLs in HCM were identified using

sample matched expression profile data. Firstly, each node was

scored according to the extent of differential expression18,20 using

the formulas (1) and (2):

Snode ¼ φ�1ð1� 2� ð1� φðDiffnodeÞÞÞ (1)

Diffnode ¼ ð� log10 pÞ � j log2 FCj (2)

where φ−1 is the inverse normal cumulative distribution function. p

is the P‐value which indicates the significance of differential expres-

sion computed by the R “limma” package. FC is the fold change of

this gene expression.

Secondly, each edge was scored according to the change of gene

co‐expression between HCM case samples and control samples using

the following equations18,21,22:

Sedge ¼ φ�1ð1� 2� ð1� φðjXjÞÞÞ (3)

X ¼ FðrcaseÞ � ð� log10 pcaseÞ � FðrcontrolÞ � ð� log10 pcontrolÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:06

ncase�3 þ 1:06
ncontrol�3

q (4)

FðxÞ ¼ 1
2
ðln 1þ x

1� x
Þ (5)

where rcase and rcontrol are the Spearman correlation coefficient of

gene expression in case and control samples, respectively. While ncase

and ncontrol represent the samples size, respectively. Function of F is

Fisher transformation, which have been shown that applying it could

improve the power of identifying differentially rewired genes.23

Subsequently, the score of a candidate miRNA‐TF FFL was cal-

culated by combining the node score and the edge score as fol-

lows:

SFFL ¼ α
∑node∈FFLSnodeffiffiffiffiffiffiffiffiffiffiffi

nnode
p þ ð1� αÞ∑edge∈FFLSedgeffiffiffiffiffiffiffiffiffiffi

nedge
p (6)

where nnode and nedge denote the number of nodes and edges in the

miRNA‐TF FFL. The parameter α∈(0,1) is used to control the weight

of node score and edge score. Here, we considered the node and

edge score were weighted equally, and selected α as 0.5.

Finally, a P‐value was computed to reflect the significance of a

miRNA‐TF FFL. We constructed a random miRNA‐TF FFL by ran-

domly selecting a miRNA, a gene, and a TF, and then calculated the

score of this FFL through the above procedure. This process

repeated 10 000 times. The empirical P‐value was defined as the

proportion of randomly obtained FFL scores larger than the real FFL

score as below:

p-value ¼ ðNumber of Srandom>SÞ=10000 (7)

In this article, the FFL with P‐value <0.01 were selected as dys-

regulated FFLs.

2.5 | Collection of genes and miRNAs related to
HCM

Genes related to HCM were compiled from a comprehensive human

gene‐disease association database, DisGeNET (V5.0),24 which inte-

grated many currently widely used gene‐disease databases, such as

the Online Mendelian Inheritance in Man database,25 the Compara-

tive Toxicogenomics Database,26 the Genetic Association Data-

base,27 the Mouse Genome Database,28 PubMed and Uniprot.29

After removing repeating gene‐disease entries, 300 unique genes

associated with HCM were obtained.

HCM‐related miRNAs were collected by performing a compre-

hensive literature review. We searched three manually curated and

experimentally confirmed human miRNA‐disease association data-

bases: HMDD (version 2.0),30 miR2Disease,31 and PhenomiR (Febru-

ary 2011),32 and found that none of these databases contained

miRNAs related to HCM, although HMDD and miR2Disease included

miRNAs associated with cardiac hypertrophy. Therefore, we inquired

PubMed using the phrase “hypertrophic cardiomyopathy AND

microRNA.” Each article was manually searched for miRNAs with

F IGURE 1 Statistical result of miRNA‐
TF FFLs in HCM. (A) The distribution of
three types of FFLs in candidate miRNA‐
TF FFLs. (B) The distribution of three types
of FFLs in dysregulated miRNA‐TF FFLs
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aberrant expression in HCM. The miRNAs were then mapped to

standard mature miRNA names from miRBase database (release

21),33 and 54 unique mature miRNAs were ultimately selected.

2.6 | Subpathway enrichment analysis

Existing researches have shown that type‐specific biological func-

tions tend to be located in local areas of the pathway (subpathway)

instead of the entire pathway, and thus subpathway may provide

more detailed explanations for pathogenesis.34,35 KEGG subpathway

(local area of the entire biological pathway) enrichment analysis was

performed by the R “SubpathwayMiner” package.34 Significantly

enriched subpathways were identified with a P < 0.05. To show the

results more clearly, we retained the subpathway with the minimum

P‐value if multiple significantly enriched subpathways corresponded

to an entire pathway.

2.7 | Identification of potential diagnostic
biomarkers in HCM

Potential biomarkers for distinguishing HCM patients from controls

were identified using a classification model based on support vector

machine (SVM), which was performed using the R “e1071” package.

The performance was evaluated by classification accuracy and the

area under the receiving operating curve (AUC) using 5-fold cross‐
validation.

The optimal biomarkers in HCM diagnosis were selected using Li

et al's method.36 We computed classification accuracy for all combi-

nations by applying SVM, and the optimal biomarkers were selected

considering a balance between classification accuracy and the num-

ber of biomarkers.

3 | RESULTS

3.1 | Dysregulated miRNA‐TF FFLs in HCM

We identified 316 dysregulated miRNA‐TF FFLs in HCM using our

method (Figure 1B and Table S1). These dysregulated FFLs included

265 miRNA‐FFLs (83.86%), 39 TF‐FFLs (12.34%), and 12 composite

FFLs (3.80%). Merging these FFLs 118 miRNAs, 102 genes and 53

TFs were obtained. The number of nodes and links in the FFLs was

shown in Table 1.

3.2 | Validation of dysregulated miRNA‐TF FFLs for
their roles in HCM

We searched for experimentally confirmed miRNA‐TF FFLs in HCM

by performing a comprehensive literature review, but no result

obtained. Therefore, we validated the dysregulated FFLs from sev-

eral other perspectives in the absence of gold standard set of FFLs

in HCM and compared the method with Jiang et al's method.18

We investigated significantly differentially expressed (SDE) miR-

NAs, genes and TFs in dysregulated FFLs. The R “limma” package

with P < 0.01 and fold change >1.2 were used to select SDE mole-

cules. As shown in Figure S2, The proportion of SDE molecules was

significantly higher than that of candidate FFLs (hypergeometric test,

P < 0.001). Amongst these SDE molecules, most were down‐regu-
lated. Meanwhile, the proportion of HCM‐related molecules in dys-

regulated FFLs was significantly higher than candidate FFLs

(hypergeometric test, P < 0.001). Additionally, SDE molecules and

HCM‐related molecules in top 5%, 10%, 20%, 30%, 40%, 50% dys-

regulated FFLs were examined (Figure 2A and B, Table S2). We

observed that the top 5% dysregulated FFLs contained the largest

proportion of molecules that were SDE (62.50%) and related to

HCM (21.88%). By comparison, the FFLs obtained by Jiang et al's

method didn't show this phenomenon.

Biological pathways implicated with dysregulated FFLs were also

studied. SubpathwayMiner34 was performed to identify significantly

enriched KEGG subpathways, and 89 significant subpathways were

obtained (P < 0.05, Table S3). It is noteworthy that current version

of KEGG included five pathways in cardiovascular diseases, and

three pathways were significantly enriched: viral myocarditis

(P = 7.76 × 10−3), hypertrophic cardiomyopathy (P = 1.55 × 10−2),

and dilated cardiomyopathy (P = 1.55 × 10−2). Simultaneously, several

other pathways closely related with HCM were identified, including

signal transduction‐related PI3K‐Akt and MAPK signalling pathway,

inflammation, and immune‐related leucocyte transendothelial migra-

tion and T cell receptor signalling pathway, heart function signalling‐
related focal adhesion, and axon guidance. We also explored signifi-

cantly enriched subpathways of top 5%, 10%, 20%, 30%, 40%, 50%

dysregulated FFLs. Consequently, they all significantly enriched in the

above three cardiovascular diseases pathways, and P‐values of the

top 5% dysregulated FFLs were the smallest (Figure 2C, Table S3).

Compared to Jiang et al's method,18 we found that they were not sig-

nificantly enriched in any cardiovascular diseases pathway, while all

TABLE 1 Summary of three types of dysregulated miRNA‐TF FFLs in HCM

Motif
Number
of FFLs

Number of nodes Number of links

Genes miRNAs TFs Total
miRNA‐
gene

miRNA‐
TF

TF‐
gene

TF‐
miRNA Total

miRNA‐FFL 265 98 101 53 252 232 181 151 – 564

TF‐FFL 39 17 29 11 57 38 – 22 30 90

Composite‐
FFL

12 9 5 5 19 10 7 11 7 35

Total 316 102 118 53 273 268 188 171 37 664
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F IGURE 2 Comparison of our method
and Jiang et al.'s method in top 5%, 10%,
20%, 30%, 40%, 50% dysregulated FFLs.
(A) The distribution of SDE molecules. (B)
The distribution of HCM‐related molecules.
(C and D) The distribution of significantly
enriched subpathways
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    Type          miRNA           Gene           TF
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Subpathway ID Pathway name
miRNA-FFL hsa-miR-197-3p ACTG1 E2F4
miRNA-FFL hsa-let-7c-5p BCL2L1 CEBPB
miRNA-FFL hsa-let-7c-5p TNFRSF10B CEBPB
miRNA-FFL hsa-miR-140-5p NDUFA2 CEBPD
miRNA-FFL hsa-miR-18a-5p ERRFI1 HIF1A
miRNA-FFL hsa-miR-124-3p CCL2 STAT3
miRNA-FFL hsa-miR-155-5p CCL2 STAT3
miRNA-FFL hsa-miR-155-5p CCL2 CEBPB
TF-FFL hsa-miR-143-3p SERPINE1 CEBPB
miRNA-FFL hsa-miR-338-3p ALOX5AP HIF1A
miRNA-FFL hsa-miR-17-5p PTTG1 KLF6
miRNA-FFL hsa-miR-138-5p SERPINE1 FOS
miRNA-FFL hsa-miR-493-5p MT2A FOS
miRNA-FFL hsa-miR-17-5p MCL1 STAT3
miRNA-FFL hsa-miR-20a-5p DLC1 STAT3
miRNA-FFL hsa-miR-17-5p FASN STAT3
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F IGURE 3 The top 5% dysregulated FFLs and their functional analysis. (A) The top 5% dysregulated FFLs. The red coloured FFLs denote
the FFLs mentioned later. (B) Significantly enriched KEGG subpathways. The red coloured pathways denote that they belong to cardiovascular
disease pathways in KEGG. (C) Significantly enriched GO terms. The similar GO terms are labelled in the same color
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the dysregulated FFLs were only enriched in viral myocarditis (Fig-

ure 2D, Table S4). All the results demonstrated that the dysregulated

FFLs we identified played key roles in HCM, and the more significant

the dysregulated FFLs, the more valuable information they will pro-

vide for HCM. Additionally, when we limited miRNAs, genes and TFs

to be SDE, 19 dysregulated FFLs were obtained. But none of cardio-

vascular disease pathways was significantly enriched (Table S5), sug-

gesting that the initiation and progression of diseases was caused by

not only the expression change of one single gene, but more impor-

tantly the inter‐gene interaction.

We paid close attention to the top 5% dysregulated FFLs (Fig-

ure 3A). These FFLs included 32 molecules, of which 20 were SDE,

seven were the known HCM‐related molecules and the remaining 25

molecules were all verified to be implicated with cardiac develop-

ment or cardiovascular disorders (Table 2 and Table S6). The sub-

pathways enrichment analysis showed that the three cardiovascular

disease pathways were all ranked at the top positions (Figure 3B).

GO analysis revealed that the genes in top 5% dysregulated FFLs

tended to be significantly enriched in three GO terms (Biological

Process, P < 0.05) functional clusters using Cytoscape plug‐in
ClueGO, and these clusters mainly included apoptotic. The known

researches showed that apoptosis was involved in the development

of myocardial fibrosis in familiar HCM37 and apoptosis constituted a

major biological phenomenon in the development of HCM.38 Inter-

estingly, the FFL formed by hsa‐miR‐17‐5p, MCL1, and STAT3 has

been confirmed in a recent report.39 Kumar et al showed that miR‐
17‐5p regulated autophagy in murine mycobacterium tuberculosis‐
infected macrophages by targeting MCL1 and STAT3, and STAT3

silencing suppressed MCL1 levels.39 Simultaneously, Xiang et al

reported that STAT3 up‐regulated expression of anti‐apoptotic
MCL1 in neonatal rat cardiomyocytes.40

3.3 | The global architecture and feature of
regulation between miRNAs and TFs in HCM

To investigate the global architecture and feature of gene regulation

by miRNAs and TFs in HCM, we constructed dysregulated miRNA‐
TF regulatory network (DmiR_TF_Net) via merging three types of

dysregulated FFLs identified above. As shown in Figure 4A, the net-

work included 273 nodes (118 miRNAs, 102 genes and 53 TFs) and

664 edges. Amongst these edges, 268 belonged to miRNA‐gene
pairs, 188 belonged to miRNA‐TF pairs, 171 belonged to TF‐gene
pairs, and 37 belonged to TF‐miRNA pairs.

To examine the global view of the DmiR_TF_Net, we calculated

degree and their distribution. Like many other biological networks,

degree distribution of this network displayed a power law with a

slope of −2.45 and an R2 of 0.99, indicating that the network was

scale‐free (Figure 4B). Therefore, we observed that most nodes

degree was low and only a few nodes highly connected with other

nodes. Additionally, the individual degree distribution of miRNAs,

genes and TFs also demonstrated the same features. The average

node degree of miRNAs, genes, and TFs was 4.18 (range 2‐31), 4.30
(range 2‐33), and 7.47 (range 2‐53), respectively (Figure 4B).

We further investigated degree and betweenness centrality (BC)

of the known HCM‐related nodes and nodes in top 5% dysregulated

FFLs. As shown in Figure 5A‐D, HCM‐related nodes and top 5% dys-

regulated FFLs nodes have significantly higher degree and BC than

other nodes (Wilcoxon rank sum test). The nodes with highly con-

nected features (hubs) and high BC are usually considered to play

critical roles in maintaining the overall connectivity of the network.

We selected hub nodes using the method proposed by Yu et al,41

and four hub miRNAs (hsa‐miR‐155‐5p, hsa‐miR‐17‐5p, hsa‐miR‐34a‐
5p, and hsa‐miR‐20a‐5p), four hub genes (CCND2, FASN, SERPINE1,

LDLR) and four hub TFs (STAT3, HIF1A, FOS, and CEBPB) were

identified (Table 3). The top 5% miRNAs and TFs with the highest

BC were six miRNAs (hsa‐miR‐182‐5p, hsa‐miR‐155‐3p, hsa‐miR‐
124‐3p, hsa‐miR‐34a‐5p, hsa‐miR‐17‐5p, and hsa‐miR‐181a‐5p), five
genes (PDK4, CCND2, FASN, SERPINE1, and SCD) and three TFs

(STAT3, HIF1A, and FOS) (Table 4). Additionally, we observed that

the hub nodes and the nodes with high BC were both significantly

enriched in nodes related with HCM and nodes within top 5% dys-

regulated FFLs (Hypergeometric test, Figure 5E and F). All the obser-

vations demonstrated that the nodes with high degree and BC might

play critical roles in HCM.

Amongst these hub nodes and high BC nodes, we found that

hsa‐miR‐17‐5p, FASN, and STAT3 formed a FFL, and this FFL was

within the top 5% dysregulated FFLs (Figure 3). Hsa‐miR‐17‐5p and

FASN were both known HCM‐related genes. While increased levels

of phosphorylated STAT3 were observed in a double‐mutation

mouse model of familial HCM, and corresponded with the occur-

rence of disease.42 Additionally, it has been reported that by target-

ing STAT3, miR‐17‐5p regulated mouse cardiomyocyte apoptosis in

response to ischaemia followed by reperfusion43 and induced pro-

tective autophagy and anti‐apoptosis in vascular smooth muscle

cells.44

3.4 | Potential diagnostic biomarkers in HCM

Based on the above observations, we focused on the 12 regulators

(five TFs and seven miRNAs) with high degree and BC in the

DmiR_TF_Net, which might be associated with HCM occurrence.

There were 25 − 1 = 31 and 27 − 1 = 127 combinations of these

TFs and miRNAs, respectively. We calculated classification accuracies

for all the combinations by applying SVM classification model, and

the optimal biomarkers were achieved. Finally, two panel biomarkers

defined by three TFs (CEBPB, HIF1A and STAT3) and four miRNAs

(hsa‐miR‐155‐5p, hsa‐miR‐17‐5p, hsa‐miR‐20a‐5p, and hsa‐miR‐181a‐
5p) with the highest classification accuracy were identified. For the

signature of three TFs, an accuracy of 0.937 and an AUC value of

0.927 were obtained in the training set based on 5‐fold cross‐valida-
tion (Figure 6A). We further examined this signature in an indepen-

dent test set (GSE68316) including seven HCM patients and five

healthy individuals, and an accuracy of 0.833 and an AUC value of

0.800 were obtained (Figure 6B). Similarly, for the signature of four

miRNAs, we achieved an accuracy of 0.889 and an AUC value of

0.883 in the training set (Figure 6C). Hierarchical clustering analysis
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TABLE 2 Literature validation of nodes in top 5% dysregulated FFLs associated with cardiac development and cardiovascular disorders

Type Molecule Known research Year PMID

miRNA hsa‐let‐7c‐5p (1) Cardiac development (1) 2017 (1) 29057256

(2) Cardiac development (2) 2014 (2) 24365598

(3) Heart failure (3) 2016 (3) 27072074

miRNA hsa‐miR‐124‐3p (1) Cardiomyocyte hypertrophy (1) 2017 (1) 28478799

(2) Vascular smooth muscle cells proliferation and migration (2) 2017 (2) 29042195

(3) Atherosclerosis (3) 2017 (3) 28457624

miRNA hsa‐miR‐138‐5p (1) Congenital Heart Disease (1) 2018 (1) 29298094

(2) Alcoholic cardiomyopathy (2) 2015 (2) 25791397

(3) Cardiac development (3) 2008 (3) 19004786

miRNA hsa‐miR‐140‐5p (1) Cardiac development (1) 2015 (1) 26465880

(2) Heart failure (2) 2016 (2) 27072074

(3) Cardiotoxicity (3) 2017 (3) 29304479

miRNA hsa‐miR‐143‐3p (1) Dilated cardiomyopathy (1) 2018 (1) 29335596

(2) Insulin action in cardiomyocytes (2) 2013 (2) 23812417

(3) Coronary heart disease (3) 2017 (3) 29321799

miRNA hsa‐miR‐155‐5p (1) Cardiac hypertrophy (1) 2015 (1) 26086795

(2) Dilated cardiomyopathy (2) 2015 (2) 25840506

miRNA hsa‐miR‐197‐3p (1) Cardiometabolic (1) 2017 (1) 28178938

(2) Cardiovascular death (2) 2015 (2) 26720041

miRNA hsa‐miR‐338‐3p (1)Diabetic cardiomyopathy (1) 2014 (1) 23797610

(2) Autophagy in cardiomyocytes (2) 2017 (2) 29247537

miRNA hsa‐miR‐493‐5p (1) Coronary microembolisation (1) 2017 (1) 28968594

Gene ACTG1 (1) Myocardial injury (1) 2018 (1) 29068691

Gene ALOX5AP (1) Familial hypercholesterolemia (1) 2009 (1) 19361804

(2) Coronary heart disease (2) 2010 (2) 21199733

Gene BCL2L1 (1) Cardiac dysfunction (1) 2008 (1) 18313710

Gene CCL2 (1) Cardiomyopathy (1) 2014 (1) 24980781

(2) Ischaemic cardiomyopathy (2) 2007 (2) 17692033

(3) Cardiac fibrosis (3) 2009 (3) 19482709

Gene DLC1 (1) Congenital heart disease (1) 2014 (1) 24587289

Gene ERRFI1 (1) Metabolic syndrome (1) 2016 (1) 27778020

Gene MCL1 (1) Survival of cardimyocytes during oxidative stress (1) 2016 (1) 27220418

(2) Myocardial homoeostasis and autophagy (1) 2013 (1) 24165322

Gene MT2A (1) Cardiomyopathy (1) 2016 (1) 27477335

(2) Coronary heart disease (1) 2014 (2) 25555862

Gene NDUFA2 (1) Cardiomyocytes oxidative stress (2) 2013 (1) 23891692

Gene SERPINE1 (1) Hypertrophic cardiomyopathy (1) 2013 (1) 23756156

(2) Heart failure (2) 2016 (2) 27284354

Gene TNFRSF10B (1) Plasma fatty acid distribution (1) 2010 (1) 20410100

TF CEBPB (1) Cardiovascular disease (1) 2010 (1) 20460359

(2) Cardiac fibroblast senescence (2) 2015 (2) 25472717

TF CEBPD (1) Ischaemic cardiomyopathy (1) 2015 (1) 25884818

TF E2F4 (1) Cardiomyocyte proliferation (1) 2010 (1) 19955219

(2) Cardiomyoycte cell proliferation (2) 2006 (2) 17102628

TF KLF6 (1) Cardiac fibrosis (1) 2015 (1) 25987545

(2) Cardiac fibrosis (2) 2013 (2) 23724005

(Continues)
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was performed using expression data of the two panel biomarkers

and two major sample clusters with clear differences were found

(Figure 6D‐F). For three TFs, the rates of HCM patients in the pre-

dicted HCM group were 100% both in training set (106/106) and

test set (7/7), whereas the corresponding rates in the predicted

healthy group were 45% (9/20) and 80% (4/5), respectively. For four

miRNAs, the rates of HCM patients in the predicted HCM group

were 92.45% (98/106) in training set, whereas the corresponding

rates in the predicted healthy group were 10% (2/20). All these

results indicated that the signatures we identified had better perfor-

mance in distinguishing HCM patients from controls.

4 | DISCUSSION

TFs and miRNAs are two key regulators that mainly regulate gene

expression at the transcriptional and post‐transcriptional level.

Accumulating evidence has demonstrated the important roles of

their combinational regulation acting as FFLs in various cellular pro-

cesses and diseases. In this study, we introduced a novel analysis

approach for identifying dysregulated miRNA‐TF FFLs between two

biological states such as health and disease. We then identified

dysregulated miRNA‐TF FFLs associated with HCM, which were

confirmed to be closely related with HCM from different perspec-

tives. We investigated the global architecture and feature of dys-

regulated FFLs in HCM, from which a FFL (hsa‐miR‐17‐5p, STAT3
and FASN) might play important roles in HCM and two panels of

diagnostic biomarkers defined by three TFs and four miRNAs were

identified.

The main idea of the computational method we proposed is dif-

ferential co‐expression in normal and disease states. For a miRNA‐TF
FFL, we evaluated the strength of its dysregulation by integrating

differential expression of the nodes and differential co‐expression of

the edges in the FFL. Therefore, differential co‐expression analysis

can not only reflect dynamic changes of a single gene, but also cap-

ture the connections between genes. This approach was originated

from Jiang's method,18 and we improved it. Compared with Jiang's

method, we observed that the more significant the FFLs we identi-

fied, the more HCM‐related biological information they contained.

The investigation of biological pathway also revealed that the dys-

regulated FFLs we identified were significantly enriched in three car-

diovascular disease pathways including HCM pathway, while Jiang's

method18 only enriched in viral myocarditis.

More importantly, the dysregulated FFLs we identified provide

important clues for further experimentally validation and studying

combinational regulation of miRNAs and TFs in HCM. The

TABLE 2 (Continued)

Type Molecule Known research Year PMID

TF STAT3 (1) Cardiac Hypertrophy and Fatty Heart (1) 2015 (1) 26161779

(2) Familial hypertrophic cardiomyopathy (2) 2008 (2) 18362229

(3) Cardiomyocyte apoptosis (3) 2014 (3) 25200830
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F IGURE 4 DmiR_TF_Net and its structural features. (A) Global view of the DmiR_TF_Net. The DmiR_TF_Net consists of 664 edges
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the network. (B) Degree distribution of all nodes in the DmiR_TF_Net, and degree distribution of miRNAs, genes, and TFs
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dysregulated FFLs were based on experimentally verified regulatory

relationships among miRNAs, genes, and TFs. Here, we focused

more on the accuracy than the coverage, and thus the computational

predicted interactions were not used. However, it is neither com-

plete nor unbiased for experimentally confirmed data, and many reg-

ulatory relationships among miRNAs, genes, and TFs were not

verified in HCM‐related cells or tissues. Therefore, further experi-

mental confirmation was warranted. With an improvement of the

quantity and quality of these data, the dysregulated miRNA‐TF FFLs

we identified will be more accurate and comprehensive.

In summary, we systematically identified dysregulated miRNA‐TF
FFLs in HCM, and confirmed their important roles in HCM. Our

results provide important clues for investigation of gene regulation

by miRNAs and TFs in HCM, and shed new light on deciphering the

pathogenesis of HCM at the transcriptional and post‐transcriptional
levels.
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