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Abstract
Purpose of Review Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic
inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipo-
protein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and
the significance of its association with HDL.
Recent Findings Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers.
Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not
HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium
between lipid-free and HDL-associated SAA have been identified.
Summary HDLmay serve to limit SAA’s bioactivities in vivo. Understanding the factors leading to the release of systemic SAA
from HDL may provide insights into chronic disease mechanisms.
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Introduction

Serum amyloid A (SAA) comprises a family of lowmolecular
weight proteins (104–112 amino acid residues) first described
almost 50 years ago (for a recent comprehensive review, see
[1]). SAA was identified as the circulating protein that forms
amyloid deposits in tissues of certain individuals suffering
from chronic or recurrent inflammation [2, 3]. Although a rare
disorder, secondary amyloidosis can cause severe clinical
complications, such as kidney failure. While its physiological
function(s) remain an enigma, SAA is remarkably conserved
through millions of years of evolution, suggesting it plays an
important role in primordial host defense. The human genome
encodes two acute phase SAA proteins, SAA1 and SAA2,
which are 96% homologous over their entire length and cor-
respond to mouse SAA1.1 and SAA2.1. Mice encode a third
conserved acute phase SAA gene, Saa3. Saa3 is generally

thought to be a pseudogene in humans due to an early stop
codon [4]. In addition to the acute phase isoforms, humans
and mice also encode another gene family member, Saa4.
This isoform contains an insertion of 8 amino acids between
residues 69 and 70 of SAA1/SAA1.1 and SAA2/SAA2.1.
While the SAA4 protein is expressed in the liver at low levels
and is not induced during inflammation, it likely comprises
the major SAA isoform in the circulation under basal condi-
tions [5, 6]. The constitutive SAAs are generally understudied
members of the gene family and will not be covered in this
review, which focuses on liver-derived acute phase SAAs.

In both humans andmice, the acute phase SAAs are transcrip-
tionally regulated in hepatocytes by a variety of inflammatory
cytokines including tumor necrosis factor-α, interleukin-1β, in-
terleukin-6, and interferon-γ, which are all likely produced by
macrophages during an acute inflammatory response (reviewed
in [7]). SAA can transiently increase > 1000-fold in the circula-
tion and, as such, is considered one of the most highly induced
acute phase reactants in vertebrates. Indeed, it has been estimated
that SAA represents ~2.5% of total hepatic protein synthesized in
mice during endotoxemic shock [8]. There is also evidence that
hepatic SAA productionmay be regulated through posttranscrip-
tional mechanisms [9, 10]. Notably, SAA appears to be not only
a key soluble mediator in the acute phase response but also likely
plays a role in a negative feedback loop that serves to shut down
inflammation [11].
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SAA and Chronic Inflammatory Disease

Given its profound induction and evolutionary conservation,
acute phase SAAs likely play a key role in survival during
traumatic injury or acute infection. Circulating SAA is also
known to be persistently elevated, albeit at lower levels, in
individuals with chronic inflammation. This “inappropriate”
expression of SAA has been associated with increased risk or
poor prognosis for numerous chronic diseases, including ath-
erosclerotic cardiovascular disease and cancer [12, 13].
Whether SAA plays a direct role in the pathogenesis of these
chronic diseases, or is merely a marker of increased risk, has
been the topic of intense investigations over the past several
decades. One obstacle has been the lack of knockout mice
deficient in all three acute phase SAAs. The development of
SAA-deficient mice was challenging, due to the length of the
gene cluster encoding the three acute phase SAAs (~45 kb) on
mouse chromosome 7 [14], which made it difficult to target all
three genes simultaneously by conventional homologous re-
combination approaches. With the advent of CRISPR-Cas9
technology, mice deficient in SAA1.1, SAA2.1, and SAA3
have recently been generated [15, 16••].

It is well-recognized that elevated SAA is associated with
increased risk for atherosclerosis in humans [17•]. In some
reports, plasma SAA levels were a better predictor of future
cardiovascular events than the widely used clinical biomarker
of inflammation, hsCRP [18–20]. It has recently been sug-
gested that SAA contributes to atherosclerosis and its compli-
cations at least in part through its prothrombotic effects [21•].
Several gain-of-function studies in mice using viral vector-
mediated SAA overexpression demonstrated that SAA con-
tributes to atherosclerotic processes and is not merely a bio-
marker reflecting the burden of the disease [22, 23].
Paradoxically, an early study by our group investigating the
role of endogenous SAA in atherosclerotic lipid deposition
showed no reduction in APOE−/− mice that were deficient in
SAA1.1 and SAA2.1 compared to control APOE−/− mice
[24]. However, in a follow-up study, we determined that sup-
pression of SAA3 expression in APOE−/− mice lacking
SAA1.1 and SAA2.1 had significantly reduced atherosclero-
sis compared to APOE−/− mice expressing all three SAAs
[15], highlighting that SAA1.1, SAA2.1, and SAA3 likely
play redundant roles in atherogenesis and that deficiency/
suppression of all three acute phase isoforms is necessary to
reduce atherosclerosis in mice. On the other hand, our group
has shown that deficiency of SAA1.1 and SAA2.1 is sufficient
to protect APOE−/− mice from angiotensin II-induced abdom-
inal aortic aneurysms [25]. Taken together, human epidemio-
logical data and results from genetically altered mice support a
causal role for SAA in cardiovascular disease, although the
precise mechanisms remain unclear.

While dozens of publications spanning more than three
decades report an association between circulating SAA levels

and a spectrum of neoplastic diseases in humans, direct evi-
dence that SAA promotes tumorigenic processes has been
limited. A number of years ago, Sung et al. reported that
forced overexpression of SAA in Lewis lung carcinoma cells
increases the cells’ capacity to colonize the lung and form
tumors in mice, indicating that SAA may be a tumor-
intrinsic factor that promotes tumor cell metastasis [26]. A
more recent study by Beatty and colleagues demonstrated
for the first time that inflammatory responses mounted by
hepatocytes are critical for the establishment of a metastatic
niche in the liver, with SAA playing a key role [27••]. In a
mouse model of pancreatic ductal adenocarcinoma, the au-
thors showed that pancreatic tumors activate IL-6/STAT3 sig-
naling in hepatocytes, leading to the induction of SAA, which
in turn orchestrates local changes in the inflammatory and
extracellular matrix milieu that supports tumor cell spread to
the liver. Thus, current data suggest that targeting SAA may
provide a novel strategy for preventing tumormetastasis to the
liver.

SAA as an HDL Apolipoprotein

In the blood, the vast majority (~95%) of liver-derived SAA is
typically found associated with the high-density lipoprotein
(HDL) fraction [28, 29, 30••]. During a severe inflammatory
response, SAA can become the major apolipoprotein on HDL
[31]. The SAA monomer is predicted to comprise four α
helices arranged in a cone-shaped array [32], with helices 1
and 3 containing both hydrophobic and hydrophilic faces.
According to one model, SAA assumes a topology that allows
it to act as a “hub” in macromolecular interactions by associ-
ating with the lipid surface of the HDL particle as well as
cellular receptors and extracellular components [33].
Extensive research has focused on whether the presence of
SAA impacts HDL function during inflammation. Of particu-
lar interest is whether SAA alters HDL’s ability to mediate
reverse cholesterol transport (RCT), the pathway by which
excess cholesterol in peripheral tissues is delivered to the liver
for excretion in bile and feces, and a major mechanism by
which HDL is thought to be cardioprotective. Over the years,
results from studies investigating the impact of SAA on HDL-
mediated RCT have been conflicting. In a number of studies,
SAA, either associated with HDL or in a lipid-free form, was
reported to promote cellular cholesterol efflux through both
ABCA1-dependent and ABCA1-independent mechanisms
[34–37]. On the other hand, HDL isolated from human sub-
jects undergoing acute sepsis [38] or experimental
endotoxemia [39] showed a reduced capacity to promote cho-
lesterol efflux, suggesting that SAA may impede RCT.
According to several reports, fecal excretion of macrophage-
derived cholesterol is reduced during inflammation in mice
[38–40]. However, our studies in SAA-deficient mice suggest
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that this impairment of macrophage-to-feces RCT during in-
flammation is not dependent on SAA [40].

It has been suggested that SAA reduces the anti-
inflammatory and antioxidative properties of HDL and thus
renders HDL dysfunctional [41, 42•, 43•]. The extent to which
an impairment in the anti-inflammatory or antioxidant activity
of HDL contributes to chronic inflammatory disease is not
clear; however, it is notable that HDL contributes only a minor
portion (1–2%) of the total antioxidant capacity of plasma
[44]. Although the antioxidative capacity of HDL has been
shown to be reduced in a number of disease states (reviewed
in [45]), it does not appear that SAA plays a direct role in this
impairment. Jayaraman et al. [46] demonstrated that SAA
enrichment of HDL actually impedes lipoprotein oxidation
and that mild oxidation of SAA-enriched HDL leads to the
release of SAA that exhibits antioxidant effects. This study,
together with the work of Sato et al. [47], indicates that SAA
does not produce a prooxidant effect on lipoproteins and may
have antioxidant effects. Further support for an antioxidant
effect of SAA is provided by a population study indicating
that HDLs from patients with higher SAA levels exhibit en-
hanced antioxidant activity compared to controls [48]. In sum-
mary, while it has been extensively documented through the
use of a variety of in vitro assays that HDL function is im-
paired in inflammation, a role for SAA in mediating HDL
dysfunction in vivo is not well substantiated. Based on current
evidence, it seems unlikely that the massive enrichment of
HDL with SAA during an acute inflammatory response has
evolved for the purpose of altering HDL function. Rather, the
association of systemic SAA with HDL likely serves as a
mechanism for increasing SAA stability [49•], or as discussed
below, dampening SAA’s pro-inflammatory activities in the
circulation.

SAA as an Innate Immune Molecule

Given the accumulating evidence that SAA plays a causative
role in a variety of chronic inflammatory diseases, there is a
critical need to understand SAA’s biological functions. As
summarized in a recent review [50], SAA has been shown to
evoke a variety of activities consistent with its putative role as
an innate immune molecule, including cytokine induction,
leukocyte chemotaxis, and upregulation of genes involved in
the remodeling of the extracellular matrix, including TGF-β
and matrix metalloproteinases. These activities have been at-
tributed to signaling through a number of “pattern recognition
receptors” (PRRs) including formyl peptide receptor-like 1
(FPRL-1), FPRL-2, TLR2, TLR4, SR-BI, and CD36 [50].
More recently, SAA was shown to stimulate secretion of IL-
1β by human and mouse macrophages by activating the
NLRP3 inflammasome [51•]. However, it should be noted that
many of the reports on SAA’s activities in vitro are

unfortunately confounded by the recent recognition that a
widely used, commercially available hybrid form of SAA ex-
erts activities not shared by native SAA [52–55]. Thus, results
from some earlier studies investigating the pro-inflammatory
functions of SAA and its role in innate immunity must be
interpreted with caution. Nevertheless, a preponderance of
in vitro data supports the conclusion that SAA plays a key
role in innate immunity by stimulating multiple inflammatory
pathways during acute infection or tissue injury. In the setting
of chronic inflammation, SAA may contribute to pathological
processes by inappropriately activating inflammatory
signaling.

A puzzling aspect of SAA biology is that the robust effects
of SAA reported from in vitro studies do not appear to be
easily recapitulated in vivo [53, 56]. This paradox is perhaps
most clearly demonstrated by the work of Simons and col-
leagues, who developed transgenic mice with liver-specific,
doxycycline-inducible expression of SAA [56]. Interestingly,
when treated with doxycline, the transgenic mice failed to
mount a systemic inflammatory response, despite a remark-
able induction of SAA to plasma levels that correspond to a
robust acute phase response (i.e., > 1 mg/ml). On the other
hand, Chami et al. reported that administering SAA by i.p.
injection produced a prothrombotic and pro-inflammatory
phenotype in APOE−/−mice that was accompanied by indices
of renal dysfunction [57•]. However, in a subsequent study,
the same group demonstrated that SAA’s pathological effects
were ameliorated when the injected SAA was supplemented
with HDL [58••]. All of these findings raise important ques-
tions about the mechanisms that influence SAA activities
in vivo. To protect the host from tissue damage under homeo-
static conditions, it seems likely there are mechanisms to blunt
the inflammatory effects of circulating SAA unless it is pres-
ent in the appropriate context. Without such mechanisms, pro-
found induction of SAA during a robust acute phase response
would be expected to lead to unrestrained tissue damage
throughout the body, rather than targeted inflammation at
the site of tissue injury or infection. As discussed above, under
normal circumstances, virtually all of SAA in plasma is asso-
ciated with HDL. Moreover, most in vitro studies have exam-
ined the effect of lipid-free SAA, not HDL-associated SAA,
which may be a limitation since emerging literature indicates
that many of the effects attributed to SAA are lost when SAA
is HDL-bound [51•, 53, 59, 60]. Thus, the relationship of SAA
with HDL must be taken into account when considering
SAA’s pathophysiological effects in vivo.

Generation of Non-HDL-Associated SAA

As noted above, recent findings clearly establish that lipid-free
and HDL-associated SAA are functionally distinct and high-
light the intriguing possibility that processes leading to the

Page 3 of 8     7Curr Atheroscler Rep (2021) 23: 7



association and/or dissociation of SAA with HDL may repre-
sent a mechanism for modulating the biological activities of
systemic SAA. Until recently, few studies have addressed
how the equilibrium between lipid-free and HDL-associated
SAA might be regulated. To determine whether SAA incor-
porates into HDL as HDL is formed, our laboratory recently
investigated the lipidation of SAA by primary mouse hepato-
cytes, the major site of HDL biogenesis [61••]. We determined
that SAA is efficiently lipidated by hepatocytes in an ABCA1-
dependent manner to form nascent particles that are distinct
from apoA-I-containing particles, indicating that SAA is not
incorporated into HDL during HDL biogenesis. Our results
are in line with earlier studies [36, 62, 63]. The finding that the
initial lipidation of SAA does not give rise to particles con-
taining both apoA-I and SAA raises questions as to how SAA
associates with apoA-I-containing HDL in vivo. It is known
that lipid-free SAA can be incorporated into HDL particles
ex vivo, leading to displacement of apoA-I from HDL [63].
Whether lipidated SAA species generated by ABCA1 effi-
ciently incorporate into mature HDL particles in the circula-
tion, and whether this leads to the dissociation of apoA-I,
requires further investigation.

While the vast majority of circulating SAA is normally
found associated with HDL, a small fraction of lipid-free
SAA exists in equilibrium. Factors that modulate this equilib-
rium and facilitate the liberation of lipid-free SAA might be
expected to regulate the bioactivity of circulating SAA. HDL
in the circulation is acted on by a number of remodeling fac-
tors, including lipases and lipid transfer proteins that alter the
lipid and protein composition of the HDL particle. Several of
these factors have been shown to destabilize the HDL particle,
leading to the release of lipid-poor APOA1 [64–66]. One such
factor is cholesteryl ester transfer protein (CETP), which fa-
cilitates the exchange of triglycerides on triglyceride-enriched
lipoproteins with cholesteryl ester on HDL. We have shown
that CETP-mediated remodeling of HDL facilitates the release
of lipid-poor SAA from HDL [30••, 67] as well as the transfer
of SAA fromHDL to apoB-containing lipoproteins [30••]. We
further showed that the presence of SAA on apoB-containing
lipoproteins was associated with increased binding to vascular
proteoglycans. Thus, SAA is an exchangeable HDL apolipo-
protein, and factors that enhance SAA exchange may have
functional consequences by increasing the amount of bioac-
tive lipid-free SAA and by enhancing the atherogenicity of
apoB-containing lipoproteins. Interestingly, SAA has been
documented to be on apoB-containing lipoproteins, especially
LDL, in human subpopulations known to be at increased risk
for cardiovascular disease despite the absence of elevated
LDL [68–70].

Additional mechanisms for liberating SAA from HDL
have been documented. For example, Gursky and colleagues
demonstrated that mild oxidation of SAA-enriched HDL lib-
erates lipid-poor/free SAA [47]. Our group reported that

hydrolysis by Group IIa secretory phospholipase A2 also leads
to SAA release from HDL [67]. Whether oxidative modifica-
tion or phospholipase A2 remodeling of SAA-enriched HDL
leads to the release of biologically active SAA has not been
investigated and may be particularly relevant to the oxidative
and lipolytic environment characteristic of atherosclerotic
plaques and other sites of tissue injury. Another potential
mechanism for liberating HDL-associated SAA in damaged
tissue is through interactions with specific components of the
extracellular matrix, which is known to occur during amyloid
formation [71]. HDL remodeling by phospholipid transfer
protein (PLTP) and cholesteryl ester uptake mediated by scav-
enger receptor B1 (SR-B1) have been documented to generate
lipid-poor APOA1 [64–66]. Whether the action of PLTP or
SR-BI also leads to the liberation of lipid-poor SAA from
HDL has not been reported.

While the liver is the major source of circulating SAA
during an acute phase response, SAA is also expressed in
many non-hepatic tissues, including the intestine, adipose tis-
sue, kidney, and lung, among others [72]. The lipidation state
of locally produced SAA within a tissue microenvironment is
not known. One possibility is that SAA in extra-hepatic tis-
sues exists in an oligomeric form and changes in the organi-
zation of SAA oligomers influence its bioactivity. This sce-
nario is suggested by the elegant work of Smole et al., who
recently investigated the role of SAA in asthma pathogenesis
[73••]. The authors provide a model, whereby SAA1 produced
by airway epithelial cells is activated through its interaction
with dust mite allergen, which triggers the dissociation of
biologically inactive SAA1 hexamers, leading to the genera-
tion of bioactive SAA capable of stimulating type 2 immune
responses. Other recent studies highlight a role for SAA in
both homeostatic functions and pathogenic, pro-
inflammatory functions, depending on its tissue source. For
example, in the gut, ileum epithelial cell-derived SAA1/2 is
thought to support barrier integrity by orchestrating homeo-
static Th17 cell responses [74]. On the other hand, systemic
SAA is also thought to promote pathogenic Th17 program-
ming in models of colitis and experimental autoimmune en-
cephalomyelitis [16••]. Clearly, we are just beginning to ap-
preciate the complex interplay between systemic liver-derived
SAA that is induced during an acute phase response and the
locally produced SAA present in tissues under homeostatic
and/or inflammatory conditions.

Conclusions

While earlier research focused on the impact of liver-
derived SAA on HDL function during an acute inflamma-
tory response, more recent studies highlight how HDL pro-
foundly influences the function of SAA. To fully under-
stand SAA biology, a more complete understanding of the
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factors that modulate SAA’s association with HDL is need-
ed. During an acute phase response, HDL may serve as a
vehicle to transport SAA to sites of tissue injury but, in the
circulation, sequesters SAA to protect the host from unre-
strained inflammation and generalized tissue damage
[30••, 75]. Given that HDL-associated SAA appears to be
biologically inert, a fundamental question is how SAA
might be liberated from HDL to exert pro-inflammatory
effects during an acute phase response. Understanding the
mechanisms that influence the equilibrium between HDL-
associated SAA and other forms of SAA may provide in-
sights into factors leading to SAA-driven disease in indi-
viduals with chronic inflammation. Another important as-
pect of SAA that merits future investigation is the interplay
between systemic, liver-derived SAA and locally produced
SAA that is present in non-hepatic tissues under both ho-
meostatic and inflammatory conditions. It was recognized
more than 50 years ago that one pathological consequence
of SAA’s dissociation from HDL is the formation of amy-
loid deposits in tissues of certain individuals with chronic
or recurrent inflammation. Understanding the features of
tissue microenvironments that facilitate the disassociation
of SAA from HDL may provide insights into SAA’s path-
ological effects in chronic diseases, including atheroscle-
rosis, abdominal aortic aneurysms, and cancer. The recent
link between SAA and an emerging infectious disease,
COVID-19 [76, 77], underscores the importance of under-
standing SAA’s bioactivities in both acute and chronic in-
flammation. Future research will uncover new insights into
this ancient molecule and how it contributes to modern
maladies.
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