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Abstract: Multiple myeloma (MM) accounts for 10–15% of all hematologic malignancies, as well as
20% of deaths related to hematologic malignant tumors, predominantly affecting bone and bone
marrow. Positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (FDG-
PET/CT) is an important method to assess the tumor burden of these patients. It is often challenging
to classify the extent of disease involvement in the PET scans for many of these patients because both
focal and diffuse bone lesions may coexist, with varying degrees of FDG uptake. Different metrics
involving volumetric parameters and texture features have been proposed to objectively assess
these images. Here, we review some metabolic parameters that can be extracted from FDG-PET/CT
images of MM patients, including technical aspects and predicting MM outcome impact. Metabolic
tumor volume (MTV) and total lesion glycolysis (TLG) are volumetric parameters known to be
independent predictors of MM outcome. However, they have not been adopted in clinical practice
due to the lack of measuring standards. CT-based segmentation allows automated, and therefore
reproducible, calculation of bone metabolic metrics in patients with MM, such as maximum, mean
and standard deviation of the standardized uptake values (SUV) for the entire skeleton. Intensity of
bone involvement (IBI) is a new parameter that also takes advantage of this approach with promising
results. Other indirect parameters obtained from FDG-PET/CT images, such as visceral adipose
tissue glucose uptake and subcutaneous adipose tissue radiodensity, may also be useful to evaluate
the prognosis of MM patients. Furthermore, the use and quantification of new radiotracers can
address different metabolic aspects of MM and may have important prognostic implications.

Keywords: multiple myeloma; 18F-fluorodeoxyglucose; positron emission tomography; metabolic
tumor volume; total lesion glycolysis; intensity of bone involvement

1. Introduction

Multiple myeloma (MM) is a hematological malignancy caused by the clonal expan-
sion of plasma cells. It is one of the most frequent hematologic malignancies worldwide,
accounting for 10–15% of them, as well as 20% of deaths related to hematologic neo-
plasms [1–3]. MM presents a heterogeneous distribution of tumor mass throughout the
skeleton and may also exhibit extra-osseous foci.
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Recently, new treatments have provided significant improvement in prognosis [4–6].
Therefore, it is critical to assess the whole tumor extension in the skeleton, as well as
extra-osseous sites of involvement. Besides, it is necessary to monitor the evolution of the
whole tumor mass during therapy [1].

Three-dimensional imaging techniques, such as whole-body computed tomogra-
phy (CT), positron emission tomography/computed tomography (PET/CT) with 18F-
fluorodeoxyglucose (FDG) and magnetic resonance imaging (MRI), are currently replacing
whole body radiographs (WBR) for bone evaluation of these patients [7]. FDG-PET/CT
detects the metabolic response early before morphological changes can be detected by
conventional imaging or MRI [8]. Therefore, it is useful for assessing response to induction
chemotherapy and autologous or allogeneic stem cell transplantation [8,9]. Furthermore,
several studies have demonstrated the usefulness of FDG-PET/CT in determining progno-
sis, both at initial staging and at relapse or progression [10–12]. The increasing acceptance
and use of FDG-PET/CT in the staging and monitoring of MM treatment response has led
to the consensus statement issued by the International Myeloma Working Group (IMWG) in
2017 [13]. FDG-PET/CT was defined as the gold standard method to assess MM treatment
response in several consensus publications [13].

FDG-PET/CT visual interpretation presently relies on semi-quantitative measures,
such as the Deauville score, which was prospectively validated only for lymphomas [14,15].
The definition of FDG-PET positivity is currently defined by visual criteria that can be
biased by inter-observer variability [12]. Recently, an attempt to better classify the amount
of tumor mass was made by Nanni et al. [16,17] using an extensive stratified scoring system,
which does not completely eliminate the subjectivity of interpretation.

Quantitative metrics are less operator-dependent than visual methods and can facili-
tate inter and multi-center clinical discussions [18]. Attempts have been made to standard-
ize quantitative interpretations of FDG-PET/CT in MM, especially using parameters that
refer to active metabolic disease [12,19–22]. However, the main limitation of FDG-PET/CT
to measure the metabolic tumor volume in MM is to standardize the criteria for delimiting
the areas affected by the disease. This impacts the reproducibility of interpretations, espe-
cially when assessing response to therapy. Therefore, there is a need for standardized and
reproducible methods for quantifying the tumor burden using FDG-PET/CT.

Here, we review several previously reported quantitative parameters to assess FDG-
PET/CT images, including standardized uptake value (SUV) and its derivatives, metabolic
tumor volume (MTV), total lesion glycolysis (TLG), percentage of bone involvement (PBI)
and intensity of bone involvement (IBI). Moreover, non-FDG radiotracers potentially
quantifiable by these same techniques, and other tomographic imaging methods used for
MM management, are briefly reviewed.

2. Methods to Quantify MM Tumor Burden Using FDG-PET/CT Images

Currently, the most used numerical metabolic metric for oncological PET is the SUV. In
addition, volumetric parameters and texture features have also been promisingly discussed
in the context of MM. The main metabolic metrics are discussed below.

2.1. SUV and Its Derivations

SUV is a dimensionless parameter, which is the activity concentration (C) within a
region normalized by the injected activity (A) and patient weight (P) for a given time t
(Equation (1)). If C is in units of mBq/mL, P should be used in grams (g) and A in mBq [23].

SUV(t) =
C(t)

A(t)/P
(1)

Maximum SUV (SUVmax) is the highest SUV value found in an area of interest, which
can be a single lesion, a set of lesions or even the whole body. An SUVmax calculation of
an attenuation-corrected PET image is simple, fast, reproducible and widely used in MM.
High SUVmax values of FDG are related to high metabolic lesions, which in turn, may
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be related to a worse prognosis of MM patients. Stolzenburg et al. [19] related SUVmax
values to worse overall survival (OS) both pre-treated and post-allogeneic hematopoietic
cell transplantation (SUVmax > 6.54 and SUVmax > 2.81, respectively) for MM patients.
Zamagni et al. [12] found that an SUVmax > 4.2 at baseline FDG-PET associated with at
least three focal lesions and extramedullary disease decreases the progression-free survival
(PFS) over 4 years in patients with newly diagnosed MM (NDMM). In addition, they found
that SUVmax > 4.2 is an independent prognostic factor when it is still present after first-line
treatment.

A prospective multi-center study evaluated SUVmax reduction (∆SUVmax) and
known prognostic factors, such as the Revised International Staging System (R-ISS) and bio-
chemical response, after three cycles of chemotherapy [24]. They conclude that ∆SUVmax
is an independent prognostic factor and superior to visual analysis (Deauville 5-point score)
in predicting PFS. Interestingly, R-ISS and biochemical response did not reach significance
for PFS in the univariate analysis of this study.

Despite these good SUVmax results in MM, it presents known limitations [25–29].
SUVmax is based on a single image voxel and is very susceptible to several factors such as
glucose blood level, body composition, size of the lesions, breathing movements and also
image acquisition, reconstruction and correction methods [25–28,30].

SUV derivations, such as SUVpeak, mean SUV (SUVmean) and standard deviation
of SUV (SDSUV) are less affected by image noise than SUVmax since they are based on
radiotracer uptake in a specific region, and outliers end up being softened. SUVmean is
calculated as the arithmetic mean of SUV in a region of interest (ROI). The most common
method to calculate SUVpeak uses the average SUV inside an ROI centered in the highest
uptake volume of the lesion. However, there is a wide variation in the academic literature
about how to define the area of highest uptake, size and format of the ROI [29,31]. Thus,
both SUVmean and SUVpeak are highly affected by the determination of the area or volume
of interest by the operator (Figure 1).
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Figure 1. (a) FDG-PET/CT maximum intensity projection (MIP) image of an 85-year-old male patient 
with multiple myeloma and extensive bone involvement. The patient has several focal lesions 

Figure 1. (a) FDG-PET/CT maximum intensity projection (MIP) image of an 85-year-old male patient
with multiple myeloma and extensive bone involvement. The patient has several focal lesions spread
throughout the body, the left humerus lesion being the one with the highest intensity of FDG uptake.
(b,c) The same FDG-PET axial slice obtained at the level of the blue dotted line depicted in (a), but
displayed with different image window settings. Different image windowing leads to different
operator visual experiences, resulting in disparate contours for manual ROI (green lines). In (b), the
lesion appears to be larger and with more uniform FDG uptake than in (c), resulting in different
SUVmean values of 9.4 and 14.3. Note that while SUVmean is highly dependent on the ROI defined
by the operator, SUVmax remains the same in both cases (45.5).
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Amini et al. [32] retrospectively evaluated radiological and metabolic measurements
at the level of L4 on FDG-PET/CT images performed at diagnosis of smoldering myeloma.
SUVmax and SUVmean were measured using a circular ROI in the bone marrow. They
found SUVmean as a prognostic indicator for PFS in these patients. None of the CT
measures were associated with PFS [33].

Ak and Gulbas [33] used geometric ROIs to measure the mean SUVmax (mSUV) of
the two femurs of 31 patients (21 with NDMM and 10 with relapsed disease after therapy).
They found a strong positive correlation (p = 0.000, r = 0.755) with the percentage of
myeloma cells expressing CD38/CD138 in bone marrow filtration of patients with MM.
Furthermore, mSUV was also positively correlated with serum beta-2-microglobulin levels
and negatively correlated with serum albumin levels.

Takahashi et al. [34] retrospectively assessed SUVmax, SUVmean and SDSUV in the
whole skeleton of 101 MM patients using CT-based segmentation. They found that both
SUVmean and SDSUV agree better than SUVmax with FDG-PET/CT visual analysis. Other
studies have also used CT-based segmentation to assess changes in overall skeletal uptake
to monitor MM outcome [35,36]. This method completely ignores hot spot volumetric data.
However, it can provide a good overview of the overall state of skeletal tumor burden,
including slight increases in baseline values (Figure 2).
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2.2. MTV and TLG 

Figure 2. (a) Maximum intensity projection (MIP) image of the follow-up FDG-PET/CT of a 58-year-
old male patient with multiple myeloma and mild bone involvement. (b) Bone segmentation mask
obtained from CT images of the FDG-PET/CT shown in (a). The skull is excluded because of the
intense overlap of cerebral FDG uptake on the cranium [34,37]. (c) MIP of FDG-PET images after
bone segmentation using CT. Note that CT segmentation of the bone allows reproducible calculation
of the mean SUV (SUVmean) and its respective standard deviation (SDsuv) exclusive for bone and
bone marrow tissues of the entire skeleton (except the skull). For this patient, the skeletal SUVmean
is 0.91, and its Sdsuv is 0.75.

2.2. MTV and TLG

MTV and TLG are volumetric parameters used to quantify the tumor burden of cancer
patients. MTV is usually expressed in milliliters (mL) or cubic centimeters (cm3) [38].
MTV segmentation can be made manually, automatically or using a hybrid method (semi-
automatic) [39]. Manual segmentation is not recommended for MM patients, as many
lesions spread throughout the body are often present. Thus, manual segmentation becomes
exhaustive and poorly reproducible [40].

Automatic or semi-automatic segmentation can be performed using thresholds or
algorithm-based methods. Algorithm-based methods use logic, stochastic and learning-
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based techniques to obtain MTV [41]. Within this category are, for example, gradient-based
methods, Gaussian mixture models, fuzzy locally adaptive Bayesian segmentation, Multi-
Otsu method and those that involve machine learning [41]. These methods are not widely
available on commercial workstations. This probably explains why they are not used very
often for MM.

Threshold-based methods can use a fixed cut-off to determine the MTV (fixed thresh-
old method) or can be based on specific image findings to determine an optimal threshold
(iterative and adaptive methods) [40,41]. Fixed threshold is the most common method to
calculate MTV. Fixed cut-off values can be based on a percentage of the SUVmax found
in an individual image, or an intra-patient reference (e.g., mean liver uptake), or even an
absolute global value, such as SUV = 2.5 [40].

TGL is derived from MTV. It is calculated by multiplying the MTV by its SUVmean.
For this reason, in addition to the volumetric factor, TLG takes into account the intensity of
radiotracer uptake [21].

Fonti et al. [20] calculated MTV and TLG in NDMM patients classified as stage
IIIA according to the Durie and Salmon staging system. They used a semi-automatic
method with a 40%-SUVmax threshold within a predetermined ROI with SUV > 2.5 to
calculate MTV and TLG. MTV was positively correlated with the percentage of diffuse
infiltration of bone marrow by plasma cells, and inversely correlated with hemoglobin
levels. Furthermore, TLG was positively correlated with beta-2-microglobulin levels. A
multivariate analysis of this study showed that MTV > 42.2 mL and MTV > 77.6 mL, were
related to worse PFS and OS, respectively.

McDonald et al. [21] found that TLG > 620 g and MTV > 210 cm3 at baseline FDG-
PET/CT are associated with worse PFS and OS in patients with MM. In this study, SUVmax
and total number of focal lesions were not considered relevant as prognostic factors. The
authors also investigated the relationship between TGL and 70-gene expression profiling
(GEP) and International Staging System (ISS), which are known risk factors. Patients with
low-risk GEP and high TLG had similar outcomes as high-risk GEP patients. The Chi-
square test verified that the GEP and TLG are independent prognostic factors. Furthermore,
they found that TLG > 205 g accurately divided ISS stage II patients into two subgroups
with outcomes similar to those of ISS stage I and ISS stage III, respectively [22].

Terao et al. [22] utilized an absolute fixed threshold of SUV = 2.5 to calculate MTV
and TLG from FDG-PET/CT images of NDMM patients. In a multivariate analysis, a
high-burden MTV (>56.4 cm3) had prognostic values for PFS and OS even when the model
was adjusted for the R-ISS and high-risk FDG-PET findings. The prognostic significance of
PFS and OS was maintained when high-TLG (>166.4 g) was used in multivariate analysis
instead of high-MTV. In both models, MTV and TLG had a higher hazard ratio (HR) than
R-ISS for PFS (1.53 vs. 1.45 and 1.56 vs. 1.55, respectively), while R-ISS had higher HR than
MTV and TLG for OS (2.65 vs. 2.10 and 2.72 vs. 2.19, respectively).

In a more recent study, Terao and collaborators [42] calculated tumor metabolic
heterogeneity (MH) of lesions with the highest MTV and the highest SUV on FDG-PET/CT
images of untreated NDMM patients. High MH calculated using the lesion with the
highest SUV (MH-SUV) proved to be more important for survival analysis than using the
highest MTV. MM patients with high MH-SUV had poorer PFS and OS than those with
low MH-SUV. When MH-SUV and high-risk cytogenetic abnormalities (Cas) data were
analyzed together, the patients with low MH-SUV and absence of high-risk Cas had better
survival than those with high MH-SUV and presence of high-risk Cas, concomitant or not.

There is still no consensus on the best method for MTV calculation [41]. Furthermore,
there is no consensus on the unit used for TLG, which could be presented as a dimensionless
unit, a mass unit (grams) or a volumetric unit (ml or cm3) [38]. The European Associa-
tion of Nuclear Medicine (EANM) guidelines for tumor imaging published in 2015 [43]
recommends that, whenever possible, MTV and TLG calculated using the threshold of
41% or 50% of SUVmax should be reported. In a phantom study, 41% of isocurve appears
to be the best representation of MTV [44]. However, when a low tumor-to-background
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ratio and/or non-homogenous uptake is found, other methods can be more suitable for
MTV calculation [41]. For lymphoma, Eude et al. [45] found that MTV based on a fixed
cut-off was significantly more reproducible than MTV based on 41% of the SUVmax. For
MM patients, Li et al. [46] consider in their study that an FDG uptake superior to hepatic
uptake is more appropriate to differentiate normal and pathological uptake in bone marrow.
Considerable variations in MTV and TLG can be found when different thresholds are used
(Figure 3).
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Figure 3. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were calculated with
two different fixed thresholds on the diagnostic FDG-PET/CT image of an 84 years-old male patient.
Segmented volumes are highlighted in blue. (a) Using a fixed threshold of SUV = 2.5 results in an
MTV = 977.6 mL and TLG = 6502.9. (b) Using a threshold of 41% of the maximum SUV (SUVmax)
of each lesion, the resulting volumes were much lower: MTV = 297.8 mL and TLG = 3132.3. Note
the individual lesions with lower volumes using 41% of SUVmax than SUV = 2.5 thresholds in this
patient (arrows).

2.3. PBI and IBI

PBI and IBI were proposed by Takahashi et al. [37] to quantify the total bone and bone
marrow involvement in MM patients. A total segmentation of FDG uptake in bone tissue
is needed to calculate PBI and IBI. For that, the authors used the Hounsfield scale of CT
images to segment bone and bone marrow on the co-registered PET. After this step, PBI is
calculated as the percentage of the total skeletal volume whose FDG uptake is higher than
that of the liver, that is, the percentage of the total skeletal volume that is hypermetabolic.
PBI is similar to an MTV normalized by the total skeletal volume of each patient. This
normalization makes PBI less dependent on the patient’s height and gender. Patients with
different sizes and equivalent MTVs do not have the same percentage of bone volume
involved by the disease or vice versa (Figure 4).

IBI is calculated as PBI multiplied by its SUVmean. Thus, IBI also takes into account
the intensity of radiotracer uptake by the lesions. If PBI is similar to MTV, then the IBI is
similar to TLG normalized by the bone and bone marrow volume of the patient.

IBI has been shown to present a good relationship with the visual analysis of the
images, allowing for an objective gradation of the disease among different patients. Fur-
thermore, MM patients with more than 10 focal lesions had a significantly higher IBI score
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than groups of patients with up to 3 focal lesions or those with 4 to10 focal lesions [37]. High
IBI scores measured at diagnostic FDG-PET were associated with high risk of death [47]. IBI
variation (∆IBI) between two consecutive FDG-PET/CTs seems to be suitable to quantify
image changes during patient follow-up [47].
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Figure 4. Diagnostic FDG-PET/CT of two different patients with MM. (a) A 61-year-old male, 1.75 m
tall, weighing 71 kg. (b) A 47-year-old female, 1.52 m tall, weighing 58 kg. Involved areas with FDG
uptake greater than liver uptake are highlighted in blue. Note that the patient in (a) presents higher
metabolic tumor volume (MTV) but lower percentage of bone involvement (PBI) than the patient
in (b).

This method routinely includes full skeletal segmentation, being very practical for
patients with a high number of bone lesions. Furthermore, because IBI uses an absolute
fixed threshold to the entire skeleton, it includes areas of diffuse bone marrow uptake.
Other volumetric methods such as MTV/TLG usually consider only focal-type lesions.
Diffuse FDG uptake in the bone marrow seems to play an important role in the prognostic
evaluation of MM patients [48] and probably reflects plasma cell infiltration [46].

Due to the low resolution of the PET image compared to CT image, areas of physio-
logical uptake often overlap adjacent anatomical structures (partial volume effect). This
effect is especially significant on the patient’s skull in FDG-PET/CT images. For this rea-
son, when IBI is calculated on FDG-PET/CT images, the skull is excluded from CT-based
segmentation. However, since some patients may have focal lesions in the skull, a manual
correction for skull lesions inclusion would be necessary (Figure 5).

2.4. FDG Uptake of Adipose Tissue and Radiodensity

Cachexia is present in more than 34% of patients with hematologic cancer and is
associated with a respective increase in mortality of these patients [49]. In order to de-
termine the pathophysiological features of cancer cachexia, accurate measurements of
body composition are essential [50]. Cachexia is a complex process, and anthropomorphic
measures such as body mass index (BMI) and skeletal muscle depletion may not be suitable
as prognostic biomarkers for cancer survival [50–52]. Although “gold standard” techniques
are still not available for precisely measuring cancer cachexia progression in patients with
MM, emergent evidence indicates that abnormalities in adipose tissue depots are associated
with survival outcomes in MM patients [53–56]. Specifically, increased visceral adipose
tissue (VAT) was identified as a predictive factor of poor treatment response [53], while
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lower subcutaneous adipose tissue (SAT) was associated with reduced survival [54]. SAT
radiodensity and increased VAT glucose uptake are associated with unfavorable prognosis
in MM patients [55,56]. FDG uptake in VAT is usually measured in a slice at the third
lumbar vertebra (L3) level. The segmentation criterion is the equivalent Hounsfield Unit
(HU) for adipose tissue (Figure 6).

Metabolites 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 5. (a) Lateral maximum intensity projection (MIP) image (right) and axial slice at the level of 
the blue dotted line (left) of an FDG-PET/CT of a 67-year-old male patient with extensive bone in-
volvement by multiple myeloma and a single focal lesion in the skull (arrow). (b) Volumes of inter-
est (VOI) for IBI calculation. The volume highlighted in red was determined by CT-based segmen-
tation, followed by the application of a fixed threshold based on the patient’s hepatic uptake (auto-
matic segmentation) [37]. The skull lesion, highlighted in blue, was manually included in the IBI 
calculation. 

2.4. FDG Uptake of Adipose Tissue and Radiodensity 
Cachexia is present in more than 34% of patients with hematologic cancer and is as-

sociated with a respective increase in mortality of these patients [49]. In order to determine 
the pathophysiological features of cancer cachexia, accurate measurements of body com-
position are essential [50]. Cachexia is a complex process, and anthropomorphic measures 
such as body mass index (BMI) and skeletal muscle depletion may not be suitable as prog-
nostic biomarkers for cancer survival [50–52]. Although “gold standard” techniques are 
still not available for precisely measuring cancer cachexia progression in patients with 
MM, emergent evidence indicates that abnormalities in adipose tissue depots are associ-
ated with survival outcomes in MM patients [53–56]. Specifically, increased visceral adi-
pose tissue (VAT) was identified as a predictive factor of poor treatment response [53], 
while lower subcutaneous adipose tissue (SAT) was associated with reduced survival [54]. 
SAT radiodensity and increased VAT glucose uptake are associated with unfavorable 
prognosis in MM patients [55,56]. FDG uptake in VAT is usually measured in a slice at the 
third lumbar vertebra (L3) level. The segmentation criterion is the equivalent Hounsfield 
Unit (HU) for adipose tissue (Figure 6). 

Cancer cachexia is a disorder characterized by wasting of muscle and adipose tissue, 
but changes in white adipose tissue (WAT) phenotype, i.e., the conversion of the white 
adipocytes in “beige” cells, was only described recently [57,58]. Interestingly, both high 
adipose tissue radiodensity and increased adipose tissue glucose uptake may be related 
to this phenomenon, and therefore, they may be early markers of cancer cachexia. In ac-
cordance, high SAT radiodensity has similar HU to that of brown adipose tissue [55,59,60]. 
This may also be a consequence of inflammation, which is also associated with high adi-
pose tissue radiodensity. Increased FDG uptake in adipose tissue of MM patients can also 
be explained by adipocyte browning or by the presence of activated macrophages that are 
avid for glucose [61,62]. 

Figure 5. (a) Lateral maximum intensity projection (MIP) image (right) and axial slice at the level
of the blue dotted line (left) of an FDG-PET/CT of a 67-year-old male patient with extensive bone
involvement by multiple myeloma and a single focal lesion in the skull (arrow). (b) Volumes of
interest (VOI) for IBI calculation. The volume highlighted in red was determined by CT-based
segmentation, followed by the application of a fixed threshold based on the patient’s hepatic uptake
(automatic segmentation) [37]. The skull lesion, highlighted in blue, was manually included in the
IBI calculation.
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Figure 6. (a) A manual ROI (green line) was drawn on a CT axial slice at the level of L3 to enclose
the visceral content. A threshold of −150 < HU < −50 was applied to segment the visceral adipose
tissue (VAT), represented by the blue dots. (b) Anatomic region of VAT was then defined in the
co-registered FDG-PET. SUV mean was calculated as the arithmetic mean of the SUVs of each pixel
of segmented tissue corresponding to the blue dots.

Cancer cachexia is a disorder characterized by wasting of muscle and adipose tissue,
but changes in white adipose tissue (WAT) phenotype, i.e., the conversion of the white
adipocytes in “beige” cells, was only described recently [57,58]. Interestingly, both high
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adipose tissue radiodensity and increased adipose tissue glucose uptake may be related
to this phenomenon, and therefore, they may be early markers of cancer cachexia. In
accordance, high SAT radiodensity has similar HU to that of brown adipose tissue [55,59,60].
This may also be a consequence of inflammation, which is also associated with high adipose
tissue radiodensity. Increased FDG uptake in adipose tissue of MM patients can also be
explained by adipocyte browning or by the presence of activated macrophages that are
avid for glucose [61,62].

3. Artificial Intelligence for Estimating Total Metabolic Tumor Volume in
Multiple Myeloma

Artificial intelligence (AI) can simulate intellectual work, and its use in nuclear
medicine is becoming more and more relevant [63,64]. AI embraces executing tasks,
such as understanding language and pattern recognition, recognizing objects and sounds
or problem-solving. Machine learning is a part of AI and is related to the ability to learn
from large amounts of data (a set of lessons) [65]. Recently, Yan et al. [66] demonstrated that
machine learning models derived from routine laboratory results can accurately diagnose
MM and can increase the rate of early diagnosis.

Deep learning is another important part of AI and refers to any neural network with
more than one hidden layer (not a primarily input set of data). Hidden layers ultimately
generate an output layer, which can perform standard classification/regression tasks.
Convolutional neural networks (CNN) can work with visual data and process imaging
information in much more detail than human capacity. CNN-based approaches have been
demonstrated to effectively diagnose MM based exclusively on mass spectrometry data
from peripheral blood [67]. Deep learning algorithms can use the full set of imaging data
directly from the raw images in contrast to conventional machine learning approaches that
require manual extraction of these features, a process that is tedious and may not fully
capture the underlying imaging information for the task with potential selection bias [66].

Total tumor burden evaluation is not easily implemented in clinical practice because
the exact identification and segmentation of each tumoral lesion to measure these indexes
is time-consuming and is sometimes very challenging (multiple and disseminated lesions).
Recently, Capobianco et al. [68] used CNNs to localize and classify uptake patterns of whole-
body FDG-PET/CT images in patients with lymphoma and showed that this approach
considerably simplified MTV estimation, reduced observer variability and facilitated the
use of MTV as a predictive factor in lymphoma patients. The use of AI in PET images of
patients with MM is still in its first steps. Morvan et al. [69] demonstrated that random
survival forest radiomics analysis in MM patients reduced the errors of the predicted
progression, increasing the predictive value of FDG-PET/CT in this scenario. Future
studies are necessary to demonstrate in MM patients whether Al will be used as an aide for
the interpreting physician by removing tedious and repetitive tasks of identification and
classification of all lesions suspicious for malignancy while providing potentially accurate
measurement of whole-body tumor burden [70].

4. Other Radiotracers Used for Multiple Myeloma

Most of the molecular imaging data currently available in MM is based on studies
using FDG, a glucose analog. Therefore, all quantitative methods used to evaluate FDG-
PET/CT are, of course, exclusively quantifying glucose metabolism. However, several
other radiopharmaceuticals have been proposed to study MM.

Single-photon emission computed tomography (SPECT)/CT using 99mTc-sestamibi
(MIBI)—which is related to mitochondrial activity—has been demonstrated to be more
efficient than FDG-PET/CT for detecting the diffuse involvement of bone marrow in
MM [71]. 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT can also
detect MM lesions, probably by evidencing neoangiogenesis in the lesions [72,73] (Figure 7).
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in 24–50% of patients when compared to WBR [91]. Furthermore, it is especially helpful 
for identifying extramedullary disease [92], which presents a worse prognosis. A system-
atic review comparing conventional whole-body MRI with FDG-PET reported greater 
sensitivity, but lower specificity of MRI as compared to FDG-PET [93]. 

In the study conducted by Zamagni et al. [90], the authors compared FDG-PET/CT 
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Figure 7. FDG-PET/CT (a) and 68Ga-PSMA PET/CT (b) of a 47-year-old female patient with bone involvement by multiple
myeloma. The time interval between the exams was three days. The volumes of interest (VOIs) used for bone segmentation
are highlighted in green. For FDG-PET/CT, the fixed threshold used for lesion segmentation was the mean hepatic uptake
plus two standard deviations (SUV = 2.00). For PSMA-PET/CT, it was the mean uptake of the left atrium (blood pool) plus
two standard deviations (SUV = 1.08). The bone and bone marrow areas in which radiotracer uptake is above the fixed
threshold are highlighted in red. The quantitative parameters MTV, TLG, PBI and IBI are shown on the right of the images.
Note that diffuse FDG uptake in bone tissue (a) was not detected by PSMA examination (b). However, a higher number of
rib lesions were detected by PSMA (b) than by FDG (a) image. Moreover, note that it is not necessary to exclude the skull
region for automatic contour of the VOI in the bone tissue for PSMA-PET/CT (b) because there is no physiological uptake
of this tracer in the brain.

68Ga-Pentixafor is a new PET tracer with a high affinity for the chemokine receptor-
4 (CXCR4), which is highly expressed in several hematologic malignancies. It seems
to have greater positivity than FDG in MM [74]. Old PET tracers such as 11C-choline
and 11C-methionine have also been used to study MM [75]. Choline is a component of
phosphatidylcholine; therefore, 11C-choline is an indicator of plasma membrane synthesis.
The radiolabeled amino acid methionine is supposed to be rapidly incorporated into newly
synthesized immunoglobulins in MM lesions [75].

3′-Deoxy-3′-[18F]-fluorothymidine (FLT) is used to image DNA synthesis and indi-
rectly evaluate cell proliferation. FLT-PET/CT has been proposed as a possible adjunct in
the prognostic evaluation of MM patients. Finally, PET/CT using a somatostatin receptor
expression marker—68Ga-DOTATATE—has also been shown to detect MM with an efficacy
similar to that of FDG-PET/CT in a lesion-based analysis [76].

CD38 is a glycoprotein highly specific for MM, and anti-CD38 antibodies (e.g., dara-
tumumab) have been successfully used to treat the disease [77]. Currently, CD38-based
radiotracers for PET/CT imaging are also under evaluation [78–80]. The first human
images of 89Zr or 64Cu-labeled anti-CD38 have recently been obtained, with promising
results [78,79]. However, the low tumor-to-background ratio (TBR) resulting from full-size
antibodies implies the need for premedication with unlabeled antibodies and delayed
imaging, up to days after tracer injection [78,79]. More recently, 68Ga-labeled anti-CD38
single-domain antibodies have been used to obtain same-day pre-clinical images with high
TBR [80].

It is interesting and intriguing that radiopharmaceuticals that represent such diverse
metabolic aspects can identify the same disease. Generally, different tracers present differ-
ent uptake intensities in different lesions of the same MM patient [71,74,75]. The entirely
distinct uptake mechanisms of these radiopharmaceuticals suggest that this is related to the
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very heterogeneous biological behavior of this disease. Cytogenetic analyses have shown
that MM is not a single disease, but has unique characteristics at the molecular level in
each patient [81]. Therefore, the same volumetric quantitative methods described here for
FDG-PET/CT can potentially be used for several other radiopharmaceuticals. Comparison
of metabolic volumes of various tracers that represent different metabolic aspects of the
disease could have clinical and prognostic implications. Possibly, this would contribute to
the understanding of the already demonstrated expressive inter-patient and intra-lesion
heterogeneity of MM [82].

5. FDG-PET in Comparison with MRI and CT

Imaging techniques are essential in the diagnosis and follow-up of patients with MM.
They allow the assessment of the effects of the disease on the skeletal system and identify
the presence of extramedullary disease. In the past, this included skeletal radiographic
examinations, now largely replaced by CT, MRI and FDG-PET/CT [83–87].

While CT exclusively provides anatomical details of lesions, MRI can provide both
anatomical and functional information, depending on the technique used. Since FDG-
PET identifies metabolic alterations, it can even detect lesions without macroscopically
detectable anatomical alterations. Particularly, hybrid PET/CT images bring together both
metabolic and anatomical information. For this reason, FDG PET/CT can distinguish
metabolic activity from inactive or necrotic lesions [88]. Therefore, it offers the additional
advantage of assessing the degree of metabolic activity associated with myeloma lesions,
while allowing adequate morphological characterization and assessment of potential com-
plications such as pathological fractures [13]. The overall sensitivity for bone lesions varies
from 80% to 100% at initial staging [89,90]. The method detects additional lesions in 24–50%
of patients when compared to WBR [91]. Furthermore, it is especially helpful for identify-
ing extramedullary disease [92], which presents a worse prognosis. A systematic review
comparing conventional whole-body MRI with FDG-PET reported greater sensitivity, but
lower specificity of MRI as compared to FDG-PET [93].

In the study conducted by Zamagni et al. [90], the authors compared FDG-PET/CT
images with T1-weighted MRI of 46 MM patients at baseline. They conclude that MRI is
superior in assessing spinal and pelvic bone marrow involvement. FDG-PET provided
additional and valuable information for the assessment of MM bone disease in areas not
covered by the MRI’s field-of-view (FOV). In this study, the ability to detect active sites of
MM, both spinal and extramedullary, reached 92% when combining the spinal-pelvis MRI
with whole-body FDG-PET/CT images. Other studies also support the concept that MRI
and FDG-PET/CT are complementary techniques. [7,86,94–97].

Diffusion-weighted imaging (DWI) is a functional MRI imaging technique that re-
flects the rate of water diffusion between tissues. DWI is regarded as the most sensitive
imaging technique for bone marrow lesions [87,97]. In parallel with FDG-PET, DWI allows
quantitative assessments, such as measures related to the apparent diffusion coefficient
(ADC) and volumetric measures such as total diffusion volume (tDV). Terao et al. [95]
compared the prognostic significance of TLG and tDV for NDMM patients at baseline. They
reported that although both tDV and TLG provided prognostic information about PFS,
only TLG remained a prognostic factor for OS in the analyzed group. Interestingly, some
patients present contradictory tDV and TLG, probably due to genomic heterogeneity. The
genomic heterogeneity of MM lesions—including intra-patient lesions—is well-known [82].
For example, lesions that are FDG non-avid, and therefore undetectable by FDG-PET, are
associated with low expression of hexokinase-2 [98,99]. These lesions can potentially be
detected by MRI or PET with non-FDG radiopharmaceuticals.

Multi-center studies without methodological bias comparing MRI and FDG-PET/CT
images in MM are lacking [93]. The roles of PET, MRI and CT in MM will certainly be
re-discussed with the publication of new comparative studies and with the improvement
of volumetric quantification techniques.
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6. Conclusions

MM is still not a curable disease, and accurate monitoring of tumor mass is essential
for disease management. FDG-PET/CT is an established method to assess tumor burden
in these patients. Different metrics have been proposed to objectively assess the images,
including MTV and TLG, which present challenges in standardization. PIB and IBI are
new parameters based on reproducible CT segmentation of PET images, with promising
results. Indirect parameters, such as FDG uptake in VAT may also be useful to evaluate the
prognosis of these patients. AI, including deep learning and CNN, can simplify PET/CT
quantifications and reduce observer variability. The quantitative methods currently used to
evaluate PET/CT in MM are based on FDG images. The use of these methods to quantify
images of tracers with different uptake mechanisms might contribute to the understanding
of the expressive heterogeneity of the disease.
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