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Hennekam lymphangiectasia-lymphedema syndrome has been linked to single-nucleotide polymorphisms in the CCBE1
(collagen and calcium-binding EGF domains 1) gene. Several bioinformatics methods were used to find the most dangerous
nsSNPs that could affect CCBE1 structure and function. Using state-of-the-art in silico tools, this study examined the most
pathogenic nonsynonymous single-nucleotide polymorphisms (nsSNPs) that disrupt the CCBE1 protein and extracellular matrix
remodeling and migration. Our results indicate that seven nsSNPs, rs115982879, rs149792489, rs374941368, rs121908254,
rs149531418, rs121908251, and rs372499913, are deleterious in the CCBE1 gene, four (G330E, C102S, C174R, and G107D) of
which are the highly deleterious, two of them (G330E and G107D) have never been seen reported in the context of Hennekam
syndrome. Twelve missense SNPs, rs199902030, rs267605221, rs37517418, rs80008675, rs116596858, rs116675104, rs121908252,
rs147974432, rs147681552, rs192224843, rs139059968, and rs148498685, are found to revert into stop codons. Structural ho-
mology-based methods and sequence homology-based tools revealed that 8.8% of the nsSNPs are pathogenic. SIFT, PolyPhen2,
M-CAP, CADD, FATHMM-MKL, DANN, PANTHER, Mutation Taster, LRT, and SNAP2 had a significant score for identifying
deleterious nsSNPs. The importance of rs374941368 and rs200149541 in the prediction of post-translation changes was high-
lighted because it impacts a possible phosphorylation site. Gene-gene interactions revealed CCBE1’s association with other genes,
showing its role in a number of pathways and coexpressions. The top 16 deleterious nsSNPs found in this research should be
investigated further in the future while researching diseases caused CCBEI gene specifically HS. The FT web server predicted
amino acid residues involved in the ligand-binding site of the CCBE1 protein, and two of the substitutions (R167W and T153N)
were found to be involved. These highly deleterious nsSNPs can be used as marker pathogenic variants in the mutational diagnosis
of the HS syndrome, and this research also offers potential insights that will aid in the development of precision medicines. CCBE1
proteins from Hennekam syndrome patients should be tested in animal models for this purpose.

1. Introduction

Lymphangiogenesis is a process that helps the lymphatic
system in its development. This includes migrations, pro-
liferation, and budding of endothelial lymphatic progenitor
cell lines [1-3]. The interstitial fluids, which are normally

stored in the cardiovascular system, frequently flow away
due to irregular Lymphangiogenesis, and this drainage can
cause chylothorax, pleural effusion, angiectasias, lymphe-
dema, and chylous ascites of lymph vessels in various organs,
including the intestines [4]. Dysplasias’s symptoms of lymph
vessels are usually reserved for the limbs [1]. Hennekam
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syndrome is a genetically heterogeneous condition. Hen-
nekam lymphangiectasia is a condition marked by disorders
of the lymphatic system, which affects a variety of organs and
links the gastrointestinal tract and the pericardium. Lym-
phedema demonstrates abnormal facial dysmorphism and
cognitive dysfunction [5]. Approximately, up to now 45
people have been diagnosed with HS syndrome [6]. Almost
25% of patient’s diseases are influenced by biallelic muta-
tions in CCBE1 (Hennekam lymphangiectasia-lymphedema
syndrome 1 (HKLLS1; MIM: 235510)) and FAT4 (Henne-
kam lymphangiectasia-lymphedema syndrome 2 (HKLLS2;
MIM: 616006)) while CCBE 1 gene mutation [7]. In the
examination of two siblings with missense, the type was
found the biallelic mutation in the ADAMTS3 gene [8]. In
humans and model organisms, the signaling protein colla-
gen- and calcium-binding domain 1 (CCBEI) is required for
lymphangiogenesis. As per forward genetic screening in
zebrafish for a causative coding mutation in CCBEL, there is
a mutant known as full of fluid (fof) that misses the thoracic
duct’s truncal lymphatic vessels but retains normal blood
vasculature [9]. Missense mutation in the CCBE1 gene in the
protein functional domain or upstream cysteine-rich do-
main of EGF was identified as the causative agent of HKLLS1
[6]. The CCBE1 gene plays a significant role in the growth of
the lymphatic system in a model organism [9, 10]. However,
the connection between FAT4 and lymphatic development is
still not clear. Over time, our understanding of the phe-
notype associated with the CCBE1 mutation evolves. In the
original account, the key inconsistency in the degree of
cognitive damage (expansion from normal to moderate
damage) is displayed by Hennekam syndrome subjects [11].
Specimens with clinically diagnosed Hennekam syndrome
with or without mutations in CCBE1 were compared in the
most recent study [6]. The CCBEI gene interacts with
connective tissue in the extracellular matrix and is then
secreted [10-12]. Zebrafish often lacks lymphatic vessels and
thoracic ducts, as well as the ability to develop edema [9, 11].
A mutation in the CCBE1 gene confirmed this. The same
case of developing edema was shown in mice models [10].
On this basis, a mutation in this gene, which is thought to be
the key gene between organisms, was linked to vascular
lymphatic system dysfunction, leading to the conclusion that
the human CCBEI mutation is linked to widespread lym-
phatic dysplasia. Aagenaes syndrome, a rare AR condition,
has also been linked to the biallelic CCBE1 mutation. This
rare condition causes neonatal intrahepatic cholestasis,
extreme chronic lymphedema without mental retardation,
and lymphangiectasia [13]. Aagenaes syndrome was com-
mon in untreated children, and fetal hydrops was also found
in HS patients [13, 14]. The proof that disease is caused by
the rarity of a mutated allele is supported by the CCBE1 gene
triggering the mutation in the latest evidence. Because of
their segregation of phenotype in an AR inheritance model,
their sporadic repetition in unrelated organisms, and the
large number of associated carrying mutations, these mu-
tated alleles may have a harmful impact [15]. Molecular
biology, statistics, mathematics, computer science, and ge-
netics all fall under the umbrella of bioinformatics [16].
Single-nucleotide polymorphism is the most common

The Scientific World Journal

genetic variation present in the general population (SNPs).
Every single nucleotide in the entire genome has been
modified by SNPs. There are 200-300 bp SNPs in the human
genome, but there are 5000,000 SNPs in the entire human
genome. This can result in a variety of sequence changes,
which can contribute to abnormal function [17-19]. Aside
from SNPs in the exonic region of the genome, non-
synonymous SNPs (ns SNPs) and amino acid sequence
changes in gene products are often affected by genetic
variation (ns SNPs). SNPs do not have a large biological
impact, but they can disclose a variety of disorders, such as
affecting immunological response to drugs, and in some
cases, SNPs can be used as biomarkers for disease vulner-
ability [20]. Changes in amino acid sequence caused by SNPs
are responsible for 50% of reported cases of inheritance
disorders [21]. Gene expression and transcription factor
binding are also affected by promoter regions and regions
outside of the gene [22, 23]. Single-nucleotide polymor-
phisms have a critical role to play in determining an indi-
vidual’s susceptibility to various diseases and drug reactions
(SNPs). SNPs that cause disorders are discovered biologi-
cally through a simple procedure, so it is critical that we find
them before they are used as a tool in genetics technologies
[24]. Alignment methods based on matrix and data tree
structure computation are used in the tools. Recent results,
such as [25, 26], show that hash-based functions can speed
up the entire process. The aim of this study is to use a variety
of in silico approaches based on different concepts to in-
vestigate the potentially harmful effects of nsSNPs in the
CCBE1 gene and protein. The study’s aim is to provide a
valuable tool for quick and cost-effective screening for
pathologic nsSNPs, rather than biological experiment
validation.

2. Methods

2.1. SNP Retrieval. Entrez Gene on the website of the Na-
tional Center for Biological Information (NCBI) was col-
lected from the data of the human CCBEl gene. The
information of SNP (protein accession number and SNP ID)
of the CCBE1 gene was gained from NCBI dbSNP (http://
ncbi.nlm.nih.gov/snp/) and SwissProt databases (http://
expasy.org./). There was also searched other databases as
Exome Aggregation Consortium, Genome Variation Server,
and F-SNP to cross-check the nonsynonymous SNP
(nsSNP) data for the CCBE1 gene [27]. The databases were
accessed: 3 July 2020.

2.2. GeneMANIA. To check the interaction of the CCBE1
gene and observation of its association with other genes in
order to predict the effect of nsSNPs on other related genes
was used, GeneMANIA (https://genemania.org/) and
STRING (https://string-db.org/cgi/) (accessed on 6 July
2020 using manual search for CCBE] in the search box) [28].
Prediction of gene-gene interaction by GeneMANIA is that
interaction is based on the basis of pathways, colocalization,
coexpression protein domain similarity, genetic, and protein
interaction. Predictions of STRING were limited to the top
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10 best interactive genes with parameters that included gene
fusion, co-occurrence, coexpression, and experimental and
biochemical data. Those data showed a combined score for
each gene’s interaction with the target gene in range from 0
to 1, when 0 was the lowest interaction and 1 was the highest
interaction. Therefore, CCBE1 was presented as our input
gene and that generated the gene-gene interaction network.

2.3. Prediction Tool Used for nsSNP

2.3.1. Sequence Homology Tool (SIFT). For every sequences
of query, the SIFT takes referential SNP ID and sequence of
query by using multiple closely related information to
prediction of tolerated and damaging substitutions [29, 30].
It tells whether the substitution is tolerated at that position.
The tool was used on 6 July 2020.

2.3.2.  PolyPhen. (http://genetics.bwh.harvard.edu/pph2/)
PolyPhen predicts by using specific empiric rules the effect of
amino acids substitution on the protein’s structure and
function. Protein sequence, amino acid position, database
ID/accession number, and amino acid variant details are the
input for the PolyPhen [31], and the score difference be-
tween variants and wild-type amino acid is calculated. The
tool was used on 6 July 2020.

2.3.3. Analysis and Identification of the Most Damaging
SNPs. Many algorithms for prediction of functional impact
confirmed nonsynonymous single-nucleotide polymor-
phisms (nsSNPs). Those algorithms are SIFT [29, 30],
PolyPhen2 [31], PROVEAN [32], M-CAP, LRT, META
SVM, MetalR, FATHMM-pred, FATHMM-MKL-coding-
pred, Mutation Assessor, VESST3 CAAD, DANN, Mutation
Taster by VarCARD [33], SNP-GO, PhD-SNP and PAN-
THER [34, 35], and SNAP2 [36]. These tools were used from
8 to 25 July 2020.

2.4. Prediction of Disease-Related Amino Acid Substitution
and Phenotypes by MutPred. The online server MutPred
(http://mutpred.mutdb.org/) is used as searching tool for
prediction of the molecular basis of the disease which is
related with amino acid substitution in a mutant protein
[37]. It uses several attributes that are related to protein
structure, function, and evolution. There are used three
servers, PSI-BLASAT, SIFT, and Pfam profiles, along with
TMHMM, MARCOIL, and DisProt algorithms. These are
the prediction of some structural damages. The greater
accuracy of prediction is reached by combining of the scores
of all those three servers.

2.5. Prediction of Stability of the Mutated Protein due to SNPs
by iStable 2.0. Amino acid substitutions are caused by
missense SNPs and can change the stability of native protein
which can lead to influencing of protein and in the end lead
to diseases [38]. By a metaclassifier, iStable 2.0, we are
predicting changes due to missense SNPs in protein stability.
This metaclassifier uses machine learning and investigates

the increasing or decreasing stability of the protein. It
happens due to an amino acid substitution which is based on
prediction of 8 structural-based (I-Mutant2.0, CUPSAT,
PoPMuSiC, AUTO-MUTE2.0, SDM, DUET, mCSM,
MAESTRO, and SDM2) and 3 sequential-based (I-Mu-
tant2.0, MUpro, and iPTREESTAB) tools of stabilization’s
prediction. 4-letter PDB code or protein sequence in FASTA
format is used as input, but the structural predictor achieves
better performances than the sequential predictor. At the
web server, http://ncblab.nchu.edu.tw/iStable2 can be found,
the iStable 2.0.

2.6. Identification of Conserved Residues and Sequence Motifs.
Sequence of human-CCBE1l protein UniProt showed
markable comparison up to maximum of 100 sequences,
and it was blasted against the UniProtKB/SwissProt da-
tabase in NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi). To
perform, another computational analysis of the sequence
was used, Clustal Omega. It showed more than 50% identity
and E-value under 1, 00E-20 [39]. The amino acids iden-
tified were colored by scheme of Clustal color, and the
alignment position conservation index was provided by
Jalview [40].

2.7. Prediction of Amino Acid Conservation by ConSurf
(ConSurf.tau.ac.il). Bayesian empirical inference is used to
calculate evolutionary conversation sequence of amino acid
within a sequence of protein. This inference is giving us
conservation scores along with schemes of color. Variable
amino acid gets score 1, while the most conserved amino
acid gets score 9. To ConSurf analysis was submitted the
FASTA sequence of CCBE1 protein [41].

2.8. Project HOPE. Analysis of structural effects of the
intended mutation is performed by the website Project
HOPE. In cooperation with UniProt and DAS servers of
prediction, the HOPE Project shows the mutated protein in
an observable 3D structure. Project HOPE is the protein
sequence used as the input source, and then the wild-type
amino acid comparison of the structure is performed [42].

2.9. Secondary Structure Prediction by NetSurfP. In a fully
folded protein, to identify the interaction interfaces or active
sites is necessary knowledge of amino acid surface and
accessibility of solvent. When the amino acid substitutions
in such sites are noticed, then the affinity of binding is
disturbed [43]. Binding affinity is also disturbed by catalytic
activity when an enzyme is a protein. Surface and solvent
accessibility, structural disorder, backbone dihedral angles,
and secondary structure, for amino acid residues, can be
effectively estimated by NetSurf-2.0. Protein sequences in
FASTA format are utilized as input. They recruit deep neural
nets that were trained on solved protein structures [43]. The
availability of NetSurfP-2.0 is on the website http://www.cbs.
dtu.dk/services/NetSurfP/.
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2.10. Predicting 3D Protein Structure. The 3D homology
modelling tool that can predict 3D models of proteins is
called Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre 2/
html/page.cgi?xml:id = index) [44]. There were generated
3D models of wild-type CCBEI with its 23 mutants as-
sociated with most deleterious nsSNPs. TM-align (https://
zhanglab.ccmb.med.umich.edu/TM-align/) was used for
comparison of the wild-type CCBE1 and selected mutants.
There were predicted TM-score (template modelling
score), RMSD (root-mean-square deviation) and struc-
tural superposition. The range of TM-scores is provided
from 0 to 1, where 1 is identified as a higher structural
similarity. The greater will be the variation between
mutant and wild-type structures, the higher will be the
RMSD values [45, 46]. To I-TASSER for further study of
3D protein structure study (https://zhanglab.ccmb.med.
umich.edu/I-TASSE%20R/), were submitted 3 mutants
with higher RMSD along with the wild-type CCBEL
[47, 48, 49]. Chimera v1.11 was used to investigate mo-
lecular characteristics and to visualize the resulting
protein structure interactively [50].

2.11. PTM Site Prediction. Post-translation modification
(PTM) in protein is used to predict the function of the
protein. GPS-MSP v3.0 (http://msp.biocuckoo.org/online.
php) was used to predicate methylation sites in CCBE1
protein [51]. At residual positions of serine, tyrosine, and
threonine at CCBEI sequence of protein, the prediction of
phosphorylation sites is made by using GPS 3.0 (http://gps.
biocuckoo.org/online.php) [52] and NetPhos 3.1 (http://
www.cbs.dtu.dk/services/NetPhos/). By employing Net-
Phos 3.1 for neural network ensembles, a threshold of 0.5
was created, which predicted more specific findings than
GPS 3.0 [53]. There was a prediction that residues having a
higher score than threshold should be phosphorylated. To
the prediction of ubiquitylation sites in CCBE1 protein
were used BDM-PUB (http://bdmpub.biocuckoo.org/
prediction.php) and UbPred (http://www.ubpred.org/).
UbPred had chosen a balanced cutoff [37] for lysine res-
idues that were predicted ubiquitinated to have scored at or
above the 0.62 thresholds [54]. NetOglyc4.0 (http://www.
cbs.dtu.dk/services/NetOG%20lyc/) predicted glycosyla-
tion, which is another very important post-transcriptional
event [55]. The website of NetOglyc4.0 is analyzing protein
sequence with amino acid substitution and also a wild-type
protein sequence. Mutation is functionally significant when
there is difference between the functional pattern in mutant
type and wild type. There is the prediction that glycosyl-
ation sites with higher score than threshold 0.5 will be
glycosylated.

2.12. Ligand-Binding Site Prediction by FTSite Server.
(http://FTSite.buedu/) Server FTSite has predicted the li-
gand-binding site in the 3D protein structure. Prediction of
this site is based on energy, and the binding site over 94% of
the apoproteins is identified. To the prediction of the hot-
spot, ligand-binding used PDB data as input.
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2.13. Statistical Analysis. Computational in silico tool
predication was subjected to correlation analysis using SPSS
v23 and MS excel. The various computational tool prediction
significance differences were compared using Student’s t-
test. A pvalue <0.01 was considered significant.

3. Results

3.1. Exploring the Desired Gene Using dbSNPs/NCBL
CCBE1 gene SNP data were searched in the NCBI database
(http://www.ncbi.nlm.nih.gov/). It contains a total of 73845
SNPs, which were present in Homo sapiens, 407 were found
in nonsynonymous regions (missense), and 156 were in
synonymous as shown in Figure 1.

3.2. GeneMANIA. The CCBE1 gene provides instructions
for making a protein that is found in the extracellular matrix
of protein lattice and other molecules. The CCBE1 protein is
involved in the formation of the lymphatic system. Specif-
ically, the CCBE]I protein helps guide immature cells called
lymphangioblast maturation (differentiation) and move-
ment (migration) that will eventually form the lining (ep-
ithelium) of lymphatic vessels. Our findings revealed that
CCBE1 is coexpressed with 17 genes (COL6A6, MXRAS,
PLEKHF2, RPRM, CDH4, PLEKHGI1, CANDI1, MYO010,
LRRC4C, LRAT, ANK3, OLFMI1, DCN, NEURLIB,
PLEKHH2, GLTSCR2, and NDRG2) and shared domain
with only 2 genes (PLEKHH2 and DCN), physical inter-
action with two genes (SIAH2 and TOX4), and colocali-
zation with 2 genes (MYRA8 and DCN). Predictions
resulted from STRING showed combined score for each of
the genes and showed interaction of the gene with FLT4,
VEGFC, ADAMTS3, GJC2, FLGF, FAM43A, SNX29,
PKD212, and PHF5A. Gene interactions predicted by
GeneMANIA (Figures 2(a) and 2(b) and Table 1) and
STRING (Figure 2(c)) are given in Figure 2, respectively.

3.3. Prediction of Deleterious nsSNP by SIFT and PolyPhen in
CCBEI. A total of 407 nsSNPs (missense) were screened to
find their effect on protein structure and function. The first
step was to predict the nsSNP carried out the amino acid
substitution. SIFT predicts the effect of nsSNP on protein
structure and tells whether the induced amino acid is tol-
erable at that position or not. Out of a total of 407 nsSNPs, 23
were found to be deleterious with a tolerance index score of
0.00 on the SIFT network, as well as on prediction matching
of highly pathogenic nsSNPs with a PSIC score of >0.5 on
the PolyPhen server. There 11 nsSNPs contained the in-
formation of minor allele frequency (MAF). Except for
T153N, G107D, P249S, S19N, C75S, C102S, G327 R, C174R,
D397Y, R125W, P87W, and G330E, other MAFs of nsSNPs
might be lower than 1% (Table 2).

3.3.1. Confirmation of Delirious nsSNP by Different Tools in
CCBE]1. Fifteen in silico algorithms were used to confirm 23
deleterious/damaging nsSNPs predicated by SIFT and Pol-
yPhen. These tools were used for confirmation analysis
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FiGure 1: Distribution of all SNPs in CCBEI gene.

PROVEAN, FATHMM, LRT, M-CAP, VEST3, CAAD,
MetaLR, DANN, Mutation Assessor, Mutation Taster,
FATHMM-MKL, SNP-GO, PhD-SNP, PANTHER, and
SNAP2. Any of the seventeen prediction tools was used
independently or in combination with a tool that showed the
effects of several prediction tools. Each method has a dif-
ferent number of deleterious SNPs. SIFT classified 36 and
PolyPhen 23 nsSNPs as damaging or deleterious, but Pol-
yPhen did not demonstrate any of the damaging 13 nsSNPs
that SIFT classified as deleterious. With a cutoff of >0.5,
SNP-GO revealed the fewest 4 SNPs (17.23%) in total of 23
SIFT- and PolyPhen-predicated nsSNPs in the CCBE1 gene
as damaging or deleterious, and 19 as neutral. Using SNAP2
tool, 18 (78.26%) (09 effective nsSNPs : SNAP2 score 0 to 50;
09 highly effective: SNAP2 score 50 to 100) and 05 were
neutral (SNAP2 score —100). The deleterious and damaging
effects of 21 (91.23%) nsSNPs in which 18 nsSNPs probably
damaging, 3 nsSNPs as possibly damaging, and 2 (8.6%)
probably benign (time>450my “possibly damaging,”
450my > time > 200my, “probably benign,” and time-
<200my on CCBE1l protein), were predicted using the
PANTHER (Figure 1 S4). Furthermore, the analysis was
carried out using the PROVEAN, which predicts the impact
of SNP on the biological function of a protein. A total of 11
(47.82%) nsSNPs of CCBE1 gene were predicted to be highly
deleterious using PROVEAN having cutoft >-2.667 (Fig-
ure 1 S4), and 12 nsSNPs were neutral. Mutation Assessor
predicates 3 nsSNPs high, 9 medium, 8 low, and 2 as neutral
with a threshold of >0.65 (-5.545 to 5.975 (higher score-
>more damaging). FATHMM-MKL (<0.5), CADD (>15),
and M-Cap (>0.025) with respective scores show all 23
(100%) nsSNPs as deleterious/damaging. DANN predicated
19 deleterious and 4 as tolerated with cutoff (>0.5). Mutation
Taster with a threshold of (<0.5) predicated 21 (91.30%) as
deleterious and 2 as polymorphic while VEST3 predicated 15
(65.21%) deleterious and 8 tolerated with a cutoff (<0.5).
FATHMM with a score of (>0.453) predicated 17 (73.91%)

nsSNPs deleterious and 5 as tolerated, while LRT predicated
19 (82.60%), with score >0.001, nsSNPs deleterious and 4 as
neutral. PhD-SNP showed 13 (56.56%) deleterious SNPs and
10 neutral. FATHMM-MKL Furthermore, on the PolyPhen
server, prediction matching of highly pathogenic nsSNPs
was carried out with PSIC score (>0.5). A group of 4 nsSNPs,
rs149531418 (G330E), rs121908251 (C102S), rs121908254
(C174R), and rs372499913 (G107D), were cumulatively
considered as highly deleterious as these 4 nsSNPs were
supported 100% by all of the state-of-the-art tools while only
Mutation Assessor disagrees with the result of G107D by
other tools. Even though the SNAP2 agreed with G330E,
C102S, and C174R as effect, the score is <50 (Table 1 S4).
During the prediction matching analysis, the nsSNPs,
rs149531418 (G330E), rs121908251 (C102S), rs121908254
(C174R), and rs372499913 (G107D), were agreed by the
state-of-the-art tools, PolyPhen (>0.5), PANTHER (>450),
SNPs&GO (>0.5), SIFT (=0), Mutation Taster (<0.5), CADD
(>15), MetaLR (>0.5), M-CAP (>0.025), PANTHER
(probably damaging time>450my possibly damaging”
(450my > time > 200my, “probably benign” (time < 200my)),
VEST3 (>0.5), LRT (>0.001), PROVEAN (>-2.667),
FATHMM-MKL (<0.5), PhD-SNP (>0.5), SNP-GO (>0.5),
SNAP2 (-100 (fully neutral) and +100 (strong effect)),
DANN (>0.5), Mutation Assessor (>0.65) (=5.545 to 5.975
(higher score->more damaging)), FATHMM (>0.453), and
highly deleterious nsSNPs on CCBE1 gene. Analysis of 407
nsSNPs of CCBEI1 gene for the prediction of pathogenic
nsSNPs was almost similar (87%) for the SIFT and PolyPhen
while disagreement was 36%. We selected for further study
23 nsSNPs which were predicated deleterious/damaging by
both SIFT and PolyPhen. More than 100% of overlapped
similarity was observed between the SIFT, M-CAP, CADD,
PolyPhen, and FATHMM-MKL, on pathogenic nsSNPs.
Similarity between SNP-GO and PhD-SNP is 13%, and
disagreement is 73% while between SIFT and SNP-GO
dissimilarity was 82%. Almost more than 50% of the
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gene interaction of CCBE1 with other genes proposed by STRING.
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TaBLE 1: Genes coexpressed and sharing a domain with CCBEL.

Gene symbol Description Coexpression Shared domain

COL6A6 Collagen type VI alpha 6 Yes No

MXRAS8 Matrix remodeling associated 8 Yes No

PLEKHF2 Pleckstrin homology and FYVE domain containing 2 Yes No

RPRM Reprimo, TP53 dependent G2 arrest mediator candidate Yes No

CDH4 Cadherin 4 No No

PLEKHG]I Pleckstrin homology and RhoGEF domain containing G1 Yes No

CANDI Cullin associated and neddylation dissociated 1 Yes No

MYO10 Myosin X Yes No

LRRC4C Leucine rich repeat containing 4C Yes No

LRAT Lecithin retinol acyltransferase Yes No

ANK3 Ankyrin 3, node of Ranvier Yes No

OLFM1 Olfactomedin 1 Yes No

DCN Decorin Yes Yes

NEURLIB Neuralized E3 ubiquitin protein ligase 1B Yes No

PLEKHH2 Pleckstrin homology, MyTH4, and FERM domain containing H2 Yes Yes

GLTSCR2 Glioma tumor suppressor candidate region gene 2 Yes No

NDRG2 NDRG family member 2 Yes No
TaBLE 2: nsSNPs predicted as deleterious by SIFT and PolyPhen2.

ID of nsSNPs AA position SIFT Score PolyPhen2 Score MAF

rs199902030 D336N Deleterious 0.003 Probably damaging 1 <0.001 (T)

rs200149541 T153N Deleterious 0.001 Probably damaging 1

rs372499913 G107D Deleterious 0 Probably damaging 1

rs267605221 P249S Deleterious 0.007 Probably damaging 1

rs374941368 SI9N Deleterious 0.004 Probably damaging 0.981

rs375717418 R301W Deleterious 0.004 Probably damaging 1 <0.001 (T)

rs80008675 D41E Deleterious low 0.016 Probably damaging 0.982 0.017 (T)

rs116596858 P181S Deleterious low 0.007 Probably damaging 0.906 <0.001 (A)

rs116675104 R167W Deleterious low 0.017 Probably damaging 0.990 0.003 (A)

rs121908250 C758 Deleterious low 0.002 Probably damaging 0.981

rs121908251 C102S Deleterious low 0 Probably damaging 0.999

rs121908252 G327R Deleterious 0 Probably damaging 1

rs121908254 C174R Deleterious 0.001 Probably damaging 0.984

rs147974432 T144M Deleterious low 0.002 Probably damaging 1 <0.001 (A)

rs192224843 Q353R Deleterious 0.011 Probably damaging 0.993 <0.001 (C)

rs115982879 R118L Deleterious low 0.001 Probably damaging 0.910 <0.001 (T)

rs139059968 K355T Deleterious 0.002 Probably damaging 0.883 <0.001 (G)

rs141125426 D397Y Deleterious low 0.002 Probably damaging 0.828

rs147208835 RI25W Deleterious low 0 Probably damaging 0.995

rs147681552 P290L Deleterious 0.005 Probably damaging 1 <0.001 (A)

rs148498685 P87S Deleterious low 0.002 Probably damaging 1

rs149531418 G330E Deleterious 0 Probably damaging 0.999

rs149792489 A96G Deleterious low 0.004 Probably damaging 1 <0.001 (C)

Threshold. SIFT: <0.05; PolyPhen2: >0.8 (PSIC > 0.5) or Benign (PSIC <0.5).

predictions of pathogenic nsSNPs were found to be dis-
agreed between SIFT, and PROVEAN, SNAP2, PANTHER,
MetalR, Mutation Assessor, FATHMM, VEST3, and
MutPred. Moreover, similarities in between these tools
(SNAP2, MetaLR, Mutation Taster, DANN, FATHMM, and
LRT) for predication were more than 70%. Almost 60%
agreement for pathogenic nsSNPs was present in predication
tools (MutPred, VEST3, PhD-SNP, and Mutation Assessor).
The results of all the predication algorithms were found
statistically significant and were highly correlated. Student’s
t-test between the tools was significant at p value <0.001. The
results are shown in Table 3 as well as the cumulative score

and total significance of all the tools in the study are shown
in Figure 1 S4.

3.4. Conservation Analysis. We analyzed the degree of
conservations of CCBEL1 residues by using the ConSurf web
server. The results of the ConSurf analysis indicated that 23
deleterious missense SNPs are located in highly conserved
regions (7-8-9). Among these 23 missenses variants, 13 were
located in the highly conserved positions: 11 (C75S, P87S,
P290L, A96G, G107D, R118L, G330E, D336N, R125W,
Q353R, and T153N) were predicted as functional and
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exposed residues and the other 2 (C102S and C174R) were
predicted as buried and structural residues. The SI9N was
predicted as conserved and buried residue, and the other 8
(T144M, R167W, P249S, R301W, G327R, K355T, D397Y,
and D41E) were exposed residues. The results are shown in
Figure 3.

3.5. Project Hope. All of the 23 nonsynonymous SNPs that
were predicted to be deleterious and damaging by both SIFT
and PolyPhen software were submitted to Project HOPE
software. The findings revealed that rs149531418 resulted in
the substitution of glycine (wild type) into glutamic acid
(mutant) at position 330. The mutant residue is bigger than
the wild-type residue. The wild-type residue charge was
neutral, and the mutant residue charge was negative. The
wild-type residue is more hydrophobic than the mutant
residue as well as the mutation is located within a domain,
annotated in UniProt as collagen-like 2, and the mutation
introduces an amino acid with different properties, which can
disturb this domain and abolish its function. Neither our
mutant residue nor another residue type with similar prop-
erties was observed at this position in other homologous
sequences. Based on conservation scores, this mutation is
probably damaging to the protein. The mutant residue is
located near a highly conserved position. The rs121908251
resulted in the substitution of cysteine (wild type) into serine
(mutant type) at position 102. The wild-type residue is more
hydrophobic than the mutant residue. The variant is anno-
tated with severity: disease, and the mutation is located in a
region with known splice variants, described as C->S (in
HKLLS1; dbSNP: rs121908251). The mutant and wild-type
residues are not very similar. Based on this conservation
information, this mutation is probably damaging to the
protein. This mutant residue is located near a highly con-
served position. The rs121908254 shows the substitution of
cysteine (wild type) into arginine (mutant type) at position
174. The mutant residue is bigger than the wild-type residue.
The wild-type residue charge was neutral, and the mutant
residue charge was positive. The wild-type residue is more
hydrophobic than the mutant residue. The mutation is located
within a domain, annotated in UniProt as EGF-like, calcium-
binding. The mutation introduces an amino acid with dif-
terent properties, which can disturb this domain and abolish
its function. The variant is annotated with severity: disease,
and mutation is located in a region with known splice var-
iants, described as C- > R (in HKLLS1; dbSNP: rs121908254).
The mutant and wild-type residues are not very similar. Based
on this conservation information, this mutation is probably
damaging to the protein. The mutant residue is located near a
highly conserved position. The rs372499913 indicates the
substitution of glycine (wild type) into aspartic acid (mutant
type) at position 107. The mutant residue is bigger than the
wild-type residue. The wild-type residue charge was neutral,
and the mutant residue charge was negative. The wild-type
residue is more hydrophobic than the mutant residue. The
mutant and wild-type residues are not very similar. Based on
this conservation information, this mutation is probably
damaging to the protein. Our mutant residue is located near a

highly conserved position. SNP rs147208835 results in the
substitution of arginine (wild type) into tryptophan (mutant
type) at position 125. The mutant residue is bigger than the
wild-type residue. The wild-type residue charge was positive,
and the mutant residue charge was neutral. The mutant
residue is more hydrophobic than the wild-type residue. The
mutant residue was not among the other residue types ob-
served at this position in other homologous proteins. How-
ever, residues that have some properties in common with
your mutated residue were observed. This means that in some
rare cases, your mutation might occur without damaging the
protein. The mutant residue is located near a highly conserved
position.

3.6. Association of SNPs with Highly Conserved Buried
(Structural) and Exposed (Functional) Amino Acid Residues in
CCBEI Protein. CCBE1 from a structural point of view
expresses as a 406 amino acid long protein having 11 exons
located at 18q21.32. CCBEI sequence-based structural-
functional analysis was performed using Clustal Omega-
based multiple sequence alignment analysis. For this anal-
ysis, the CCBEL1 protein sequence (UniProt ID: Q6UXHS)
was retrieved from the UniProt Knowledgebase. The CCBE1
protein sequence was blasted against the UniProtKB/Swis-
sProt entries and aligned using Clustal Omega with default
settings. The results generated by the Clustal Omega tool
consist of CCBEl protein sequence aligned with other
phylogenetically close sequences from other organisms. The
results contain a colorimetric conservation score in the
range of 1-10. Multiple sequence alignment using Clustal
Omega revealed that the human CCBE1 protein sequence
contains a number of conserved residues and motifs. The
highly conserved amino acid residues in human CCBEI1
protein were G262, P264, G265, G270, P272, G273, G276,
R284, G285, R315, G317, R322, G323, G329, A345, E368,
F370, P371, P374, P381, E382, D385, and D391. There are
twenty-four different conserved residues Figure 4.

3.7. Prediction of Pathogenic Amino Acid Substitutions by
MutPred2. MutPred2 considers several molecular charac-
teristics of amino acid residues to predict whether an amino
acid substitution is disease-related or neutral in humans. The
score it provides is the probability predicted for an amino
acid substitution should affect the function of the respective
protein or not. The threshold score for pathogenicity pre-
diction is 0.5, and a MutPred2 score >0.8 can be considered
as a highly confident one. All substitutions have prediction
scores <0.5. Table 4 provides MutPred2 outcomes.

3.8. Prediction of Stability of the Mutated Protein due to SNPs
by iStable 2.0. Web tool iStable 2.0 was used to analysis for
protein stability prediction. This web tool consists of 11
sequence- and structure-based prediction tools, and a ma-
chine learning approach is used for all outputs. Mutations
were run from sequence analysis due to the unavailability of
experimental structure. The results showed that G330E,
C174R, G327R, P290L, D41E, A96G, T114M, D397Y, S19N,
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The conservation scale:

Variable Average Conserved
¢ - An exposed residue according to the neural-network algorithm.
b - Aburied residue according to the neural-network algorithm.
f - A predicted functional residue (highly conserved and exposed).
s - A predicted structural residue (highly conserved and buried).

- Insufficient data - the calculation for this site was performed on less
than 10% of the sequences.

fff

FIGURE 3: Evolutionary conservation of amino acids in the ADA gene determined by the ConSurf server. Value 1 indicates a high variability

region. The value increases as the region becomes more conserved, up to value 9.

and Q359RT have increased stability while P249S, R167W,
R301W, C75S, P87S, R118L, TI153N, D336N, R125W,
K355T, G107D, and C102S showed decreased stability.
Table 5 provides iStable 2.0 predictions.

3.9. Surface and Solvent Accessibility of Residues and CCBEI
Secondary Structure by NetSurfP-2.0. Surface accessibility
(exposed or buried) of amino acids in a given protein was
predicated by NetSurfP-2.0, which provides a relative and

absolute accessible surface area of each residue. It also predicts
the protein secondary structure. Relative surface accessibility:
red upward elevation is exposed to residue, and sky blue
downward elevation is buried residue; the threshold is at 25%.
Secondary structure is as follows: orange spiral = helix, indigo
arrow =strand, and pink straight line=coil. Disorder is
represented as black swollen line; thickness of line equals the
probability of disordered residue. Figure 5 shows NetSurfP-
2.0 outcomes.
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FIGURE 4: Amino acid alignment of human CCBE1 (UniProt ID: QGUXHS) along with its homologues in phylogenetically close species in
ABWGB and Q3MI99. Solid horizontal bars indicate conserved sequence motifs, and residues with asterisk (*) mark indicate evolutionary
conserved amino acids. The amino acid identities were colored according the Clustal color scheme, and the conservation index at each
alignment position was provided by Jalview.

TABLE 4: Predication of disease-related AA substitution and phenotypes by Mutpred2.

SNPs Actionable/confident hypothesis Probability p value
C174R Gain of intrinsic disorder 0.39 0.009
Loss of disulfide linkage at C174 0.21 0.020
Altered disorder interface 0.29 0.02
Loss of loop 0.26 0.05
D336N Loss of proteolytic cleavage at D336 0.11 0.05
Altered coiled coil 0.11 0.04

Altered transmembrane protein 0.29 0.0003
G107D Loss of loop 0.27 0.02
Loss of disulfide linkage at C102 0.26 0.004
Gain of proteolytic cleavage at R108 0.15 0.01

Loss of disulfide linkage at C102 0.55 0.0003
Loss of helix 0.28 0.03

C102S Loss of pyrrolidone carboxylic acid at Q100 0.19 0.002
Altered metal binding 0.35 0.008

Altered transmembrane protein 0.32 0.00007
Loss of B factor 0.27 0.02
G330F Gain of loop 0.04
G327R Loss of B factor 0.27 0.02
P290L Altered disordered interface 0.36 0.008
Loss of B factor 0.29 0.01
Q353R Altered disordered interface 0.29 0.03
Altered coiled coil 012 0.04
T153N Loss of strand 0.26 0.04
Gain of disulfide linkage at C150 0.23 0.01

Altered metal binding 0.40 0.006
C758 Loss of disulfide linkage at C75 0.30 0.001
Loss of helix 0.27 0.05
Gain of helix 0.28 0.02
P87S Gain of disulfide linkage at C85 0.20 0.02
Altered metal binding 0.25 0.03

Loss of sulfation at Y90 0.09 0.003
Altered disordered interface 0.27 0.40
RIISL Loss of disulfide linkage at C113 0.19 0.02
Gain of photolytic cleavage at D120 0.16 0.009

Loss of sulfation at Y114 0.02 0.02
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TaBLE 4: Continued.

SNPs Actionable/confident hypothesis Probability p value
Gain of phosphorylation at Y180 0.37 0.007
P181S Loss of acetylation at K179 0.21 0.03
Gain of N-linked glycosylation at N182 0.03 0.03

Altered transmembrane protein 0.30 0.0001
A%6G Loss of helix 0.29 0.02
Gain of disulfide linkage at C98 0.25 0.006

Gain of pyrrolidone carboxylic at Q100 0.20 0.002

Gain of loop 0.31 0.004
P249S Loss of B factor 0.29 0.02
Gain of phosphorylation at Y244 0.24 0.04
Gain of o-linked glycosylation at P249 0.12 0.04

TaBLE 5: iStable 2.0 result for prediction of CCBEI protein stability
due to the selected nsSNPs in CCBEL.

AAS Confidence score Stability
G330E —-0.002680719 Increase
C174R 0.021838337 Increase
C102S -1.2213084 Decrease
G107D —-0.86388123 Decrease
R125W —-0.85255766 Decrease
G327R 0.0042461157 Increase
P290L 0.2298831 Increase
K355T —0.052274585 Decrease
Q353R 0.8725257 Increase
D336N —1.2082165 Decrease
T153N —0.546193 Decrease
C75S —1.0542232 Decrease
P87S —1.9976869 Decrease
T144M 0.23297998 Increase
R118L -0.5704589 Decrease
D397Y 0.071232796 Increase
R301W —0.3441298 Decrease
P249S —1.1325055 Decrease
D41E 0.4703572 Increase
S19N 0.77003396 Increase
R167W —0.4350294 Decrease
A96G —0.041893244 Increase

3.10. 3D Modelling of CCBE1 and Its Mutants. Phyre2 was
used for 3D structure generation of wild-type CCBE1 protein
and 22 mutants. For generating mutant protein 3D structure,
nsSNP substitutions were made individually in CCBEI1 protein
sequence and then submitted to Phyre2, which predicted their
3D structures. Phyre2 used c5to3B as a template for 3D model
prediction because it was the highest similar template
according to the Phyre2 server. TM-scores and RMSD values
were calculated for each of the mutant models. The TM-score
shows us the topological similarity while RMSD values show
the average distance between a-carbon backbones of wild and
mutant models. Higher RMSD values predict greater mutant
structure deviation from wild type. The model for the mutant
RI118L (rs115982879) showed the greatest deviation having
1.56B RMSD value followed by A96G (rs149792489), S19N
(rs374941368), and C174R (rs121908254) with 1.50B, 1.44B,
and 1.46B RMSD values, respectively. R125W, C75S, and
T153N showed 0.89B, 0.90B, and 0.85B RMSD values, thus

showing no variation in structure from wild type. Other
nsSNPs showed slight variation which included G327R (1.36B
RMSD), P290L (1.3.6B RMSD), Q353T (1.3.2B RMSD), P290L
(1.25B RMSD), D336N (1.25B RMSD), C102R (1.22B RMSD),
R167W (1.16B RMSD), P87L (1.14B RMSD), G107D (1.13B
RMSD), T144M (1.13B RMSD), G330R (1.12B RMSD), D41E
(1.12B RMSD), D297Y (1.06B RMSD), R301W (1.02B RMSD),
and K355T (1.01B RMSD). TM-scores and RMSD values are
given in Table 6. Four nsSNPs (R118L, A96G, S19N, and
C174R) having the highest RMSD values were selected and
submitted to I-TASSER for remodeling. Protein structure
generated by the I-TASSER is the most reliable as it is the most
advanced modelling tool. Each of these 3 mutants was studied
and superimposed using Chimera 1.11 over the wild-type
CCBE1 protein, shown in Figures 6(a)-6(d).

3.11. Predicted PTMs (Post-Translation Modifications).
GPS-MSP 3.0 was used for this purpose which predicted no
sites in CCBEI to be methylated. GPS 3.0 and NetPhos 3.1
predicted CCBE1 phosphorylation sites which are given in
Table S1. 62 residues (Ser: 23, Thr: 22, and Tyr: 17) were
predicted by NetPhos 3.1 to have phosphorylation potential.
On the other hand, 18 residues (Ser: 12, Thr: 06, and Tyr: 00)
were predicted by GPS 3.0 to be capable of getting phos-
phorylated. BDM-PUB and UbPred were used for ubig-
uitylation prediction. BDM-PUB predicted 11 lysine residues
to get ubiquitinated, while UbPred predicted none of the lysine
residues to get ubiquitinated. Among those predicted by BDM-
PUB, none was located at a highly conserved or deleterious
nsSNP region. The results obtained are labeled in Table S1.
NetOGlyc4.0 was used for the prediction of potential glyco-
sylation sites. The output showed all the possible sites for
glycosylation in which positions 19, 144, and 153 were pre-
dicted to be glycosylated with scores of 0.34, 0.43, and 0.17 in
wild-type CCBEI protein. Interestingly, mutant S19N showed
loss of glycosylation site at position 19 while T144M also
showed loss of glycosylation sites at position 144. All the scores
for the wild-type and mutant proteins are given in Table S2.

3.12. Ligand-Binding Site Prediction by FTSite. Sites for li-
gand-binding were predicted by FTSite algorithms and
visualized and further analyzed using PyMOL. By this
tool, 3 ligand-binding sites were identified in human
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FIGURE 5: Secondary structure predication by NetSurfP-2.0.

CCBEI1 protein (Figures 7(a) and 7(b)). Site 1 consisted substituted positions predicted by the SIFT server lie in
of 14 residues; site 2 and site 3 consisted of 7 and 5  the predicted ligand-binding sites (T153N and R167W)
residues. Some of the substitutions in twenty-two (Table S3).
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TaBLE 6: TM-score and RMSD values of 23 selected damaging nsSNPs in CCBE1.
SNP-ID Residual change TM-score RMSD values SNP-ID Residual change TM-score RMSD values
rs199902030 D336N 0.92174 1.25 rs121908252 G327R 0.91250 1.36
rs200149541 T153N 0.95561 0.84 rs121908254 C174R 0.92822 1.46
1s372499913 G107D 0.95388 1.13 rs147974432 T144M 0.93348 1.13
1s267605221 P249S 0.91250 1.36 rs192224843 Q353R 0.92957 1.32
rs374941368 S19N 0.92526 1.44 rs115982879 R118L 0.92844 1.57
rs375717418 R301W 0.93696 1.02 rs139059968 K355T 0.93921 1.01
rs80008675 D41E 0.95466 1.12 rs141125426 D397Y 0.96008 1.06
rs149792489 A96G 0.92689 1.50 rs147208835 R125W 0.96213 0.89
rs116675104 R167W 0.93715 1.16 rs147681552 P290L 0.92174 1.25
rs121908250 C75S 0.96248 0.90 rs148498685 P87S 0.93523 1.14
rs121908251 C102S8 0.96432 1.22 rs149531418 G330E 0.94082 1.12

4. Discussion

Several studies have linked the CCBE1 gene to single-nu-
cleotide polymorphisms in the cases of lymph vessel dys-
plasia [13, 14]. Utilizing state-of-the-art in silico methods,
the current research explored the impact of SNPs on the
structural and interactive behaviors of the CCBEI protein.
The most pathogenic polymorphisms in different genes
have been screened using these methods in a sequential
order [42, 56]. The current study also used the sequential
application of all these methods to classify deleterious
variants in CCBEI that may interact with the machinery’s
role in extracellular matrix remodeling and migration by
silencing its function. We screened 73845 SNPs in the
CCBEL1 gene through multiple dbSNP databases for their
effect on the gene’s structure and interactions with a variety
of protein molecules. Various in silico methods were used to
screen the pathogenicity of 407 retrieved nonsynonymous
SNPs. Our study found 23 nsSNPs that were predicted to be
deleterious by SIFT and PolyPhen2 but instead verified
through other tools (PROVEAN, FATHMM, LRT, M-CAP,
VEST3, CAAD, MetalLR, Mutation Assessor, Mutation
Taster, and FATHMM-MKL, SNP-GO, PhD-SNP, PAN-
THER, SNAP2, and MutPred). Four nsSNPs were classified
as highly pathogenic which were rs149531418, rs121908251,
rs121908254, and rs372499913. This is a lower number than
which was previously estimated using the same methods in
different genes [56, 57]. The two of the variant shown in our
study (C102S, C174R) are already reported for Hennekam
syndrome in a study [11], while the other two variants
(G330E and G107D) are not reported until now for Hen-
nekam syndrome. Highly pathogenic variants were selected
on the basis of the impact of nsSNPs on sequence con-
servation, sequence attributes, and structural impute [58].
The chosen state-of-the-art tools covered the largest pos-
sible range of methods (AS: alignment score; NN: neural
networks; HMM: hidden Markov models; SVM: support
vector machine; BC: Bayesian classification) for predicting
pathogenic nsSNPs [58]. Since essential amino acids that are
involved in a wide range of biological methods and pro-
cesses, particularly protein interactions, are highly modified
and conserved, SNPs on conserved loci are more likely to
cause damage than SNPs on nonconserved loci [59]. In total
23 nsSNPs, only 11 SNPs are located at evolutionary

conserved, exposed, and functionally important residues
which are C75S, P87S, P290L, A96G, G107D, R118L,
G330E, D336N, R125W, Q353R, and T153N. There were 2
nsSNPs (C102S and C174R) located at conserved, buried,
and structurally important residues. All the rest of the
nsSNPs were found to be located in either only exposed or
buried residues which were not predicted to have any
structural or functional importance in CCBE1l protein.
These 11 nsSNPs for CCBE1 have not yet reported with
patients in Hennekam disorder, and in future, these can be
considered pathogenic nsSNPs when reported in Henne-
kam patients. For prediction of protein stability, I-STAB2
web server was used which predicted nsSNP rs149531418,
rs121908254, 15147681552, 1s192224843, 1s147974432,
rs141125426, 1rs374941368, and rs149792489 increased
stability while C75S, P87S, R125W, K355T, D336N, T153N,
P87S, R118L, R301W, P249S, and R167W decrease protein
stability. These nsSNPs can be used as marker for diagnostic
and revealing new therapeutic targets for Hennekam dis-
order. RAMPAGE values were used to verify all of the
modeled structures. Protein structures with RAMPAGE
values greater than 80% as core values are thought to be
higher [60]. For the structure given in Figure 5(a) (CCEB1
wild-type), RAMPAGE values were 75.5% favored residues,
19.1% allowed, 4.5% generally allowed, and disallowed 0.9%.
Similarly, for mutants RI118L (80.0% favored residues,
13.6% allowed, 4.5% generally allowed, and disallowed
1.8%), A96G (76.4% favored residues, 16.4% allowed, 5.5%
generally allowed, and disallowed 1.8%), C174R (79.1%
favored residues, 15.5% allowed, 2.7% generally allowed,
and disallowed 0.9%), and S19N (78.2% favored residues,
16.4% allowed, 4.5% generally allowed, and disallowed
0.9%), all the structures were somehow validated. PTMs
have been shown to be important in cell signaling and
protein-protein interactions, as well as other significant
events such as biological processes, control protein struc-
tures, and functions [61, 62]. In this analysis, we looked to
see if the chosen nsSNPs modified the PTMs of the CCBE1
protein. A variety of bioinformatics methods were used to
predict PTM sites in our understudied protein. Methylation
is a critical PTM because lysine residues in some proteins
are methylated, which influences their binding to DNA and
changes gene expression. Another important mechanism
for protein regulation acts as a molecular switch of protein
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FIGURE 6: (a) Wild-type CCBELI protein structure. (b) Superimposed structure of CCBE1 and its C174R mutant. (c) Superimposed structure
of CCBE1 and its A96G mutant. (d) Superimposed structure of CCBE1 and its R118L mutant.

to adapt it for functions such as protein structure confor-
mational changes, protein activation and deactivation, and
signal transduction pathways [63-66]. S19 is highly con-
served, exposed, and functionally significant, according to

the ConSurf conservation profile, indicating its significance.
Phosphorylation potential is seen at position S19, which
also contains one of the most damaging nsSNPs (rs137
6162684), which really is structurally important and highly
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F1GURE 7: (a) Ligand-binding site prediction by FT site in whole predicated 3D protein model of CCBEI gene. (b) 3 meshes were predicted as ligand-

binding site.

conserved (ConSurf prediction), making it highly impor-
tant. Ubiquitylation is a protein degradation mechanism
that also helps in DNA damage repair [67]. It is crucial to
the function and stability of proteins. It plays a structural
role in protein-protein interactions. Phosphorylation is the
only PTM that can have a major impact on CCBE1 protein
structure and function, as shown by these PTM predictions,
with residuals S19 and T153 being the most significant
phosphorylation sites. STRING and GeneMANIA predic-
tions show that ADAMTS3 is the most interactive gene with
CCBEl, supported by VEGFC and FLT4. CCBEl
ADAMTS3, VEGFC, FLTR4, and GJC2 are thought to be
related with either Hennekam disorder or its related
symptoms in many diseases, including rheumatoid arthritis
[8, 13, 68, 69]. As a result of their interaction patterns and
coexpression profiles, it can be inferred that some of the
most harmful nsSNPs in the CCBE1 gene will influence and
possibly disrupt the normal functioning of other interacting
genes. This demonstrates the significance of these inter-
acting and coexpressing genes, which may be significant
during the Hennekam syndrome or other primary immu-
nodeficiency disorders. FTSite was used to look into the

impact of substitutions on protein function. The FTSite
server predicted three ligand-binding sites, each with 14, 7,
and 9 residues. We discovered that R167W and T153N
substitutions are involved in the ligand-binding site and
form the catalytic coordination sphere, which can affect the
CCBEL1 protein’s binding affinity. Since our research was
thorough, it contains all of the necessary data and analysis
for identifying the most harmful nsSNPs. Any research,
including ours, has some limitations. The focus of our
research is on mathematical and computational algorithms
used in programming tools and web servers. As a conse-
quence, experimental research is needed to confirm these
findings. Our findings shed light on the CCBEI gene’s
nsSNPs, protein 3D structure, PTM potential sites, and
gene-gene interaction, and all of which may help re-
searchers better understand the gene’s role in autoimmunity
and related diseases in the future.

5. Conclusion

The impact of nsSNPs on the functional and structural de-
viations in the CCBE1 protein was predicted using a variety of
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various state-of-the-art tools. On the CCBE1 protein, struc-
tural homology-based methods and sequence homology-
based techniques have identified four nsSNPs as potentially
damaging: rs149531418 (G330E), rs121908251 (C102S),
rs121908254 (C174R), and rs372499913 (G107D). The
pathogenicity of nsSNPs can be predicted in a stepwise and
accurate manner (SIFT >PolyPhen>CADD > FATHMM-
MKK > M-CAP > PANTHER > Mutation Taster > LRT >
DANN > MetalR > SNAP2 > VEST3> MutPred > PhD-SNP
> Mutation Assessor > PROVEAN > SNP-GO > Cumulative
), prediction matching among the tools. As a consequence, the
findings of these tools for other studies may be considered
more reliable. The importance of rs374941368 and
rs200149541 in the prediction of post-transcriptional modi-
fications was highlighted because it affects a possible phos-
phorylation location. In the future, the 4 reported extremely
deleterious, protein stability decreasing, and nsSNPs in highly
conserved positions could be used as Hennekam syndrome
marker nsSNPs. Even though we performed a thorough in
silico study, further research is needed to fully understand the
impact of these nsSNPs on protein structure and function.
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