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Abstract

Introduction The learning health system (LHS) community has taken up the challenge of bring-

ing the complex relationship between clinical research and practice into this brave new world. At

the heart of the LHS vision is the notion of routine capture, transformation, and dissemination of

data and knowledge, with various use cases, such as clinical studies, quality improvement initia-

tives, and decision support, constructed on top of specific routes that the data is taking through

the system. In order to stop this increased data volume and analytical complexity from obfus-

cating the research process, it is essential to establish trust in the system through implementing

reproducibility and auditability throughout the workflow.

Methods Data provenance technologies can automatically capture the trace of the research

task and resulting data, thereby facilitating reproducible research. While some computational

domains, such as bioinformatics, have embraced the technology through provenance-enabled

execution middlewares, disciplines based on distributed, heterogeneous software, such as medi-

cal research, are only starting on the road to adoption, motivated by the institutional pressures to

improve transparency and reproducibility.

Results Guided by the experiences of the TRANSFoRm project, we present the opportunities

that data provenance offers to the LHS community. We illustrate how provenance can facilitate

documenting 21 CFR Part 11 compliance for Food and Drug Administration submissions and pro-

vide auditability for decisions made by the decision support tools and discuss the transformational

effect of routine provenance capture on data privacy, study reporting, and publishing medical

research.

Conclusions If the scaling up of the LHS is to succeed, we have to embed mechanisms to verify

trust in the system inside our research instruments. In the research world increasingly reliant on

electronic tools, provenance gives us a lingua franca to achieve traceability, which we have shown

to be essential to building these mechanisms. To realize the vision of making computable prove-

nance a feasible approach to implementing reproducibility in the LHS, we have to provide viable

mechanisms for adoption. These include defining meaningful provenance models for problem

domains and also introducing provenance support to existing tools in a minimally invasive manner.
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1 INTRODUCTION

Our world is increasingly driven by data. Medical, economic, and polit-

ical decisions are made based on automated analysis of ever-growing

volumes of data, be they patient treatment decisions generated from

rule models or stock trading decisions made by microtrading tools.

Scientific discovery is now all but impossible without data-intensive

infrastructures,1 which have transformed both how science is done and
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what science has done.2 But, in this fresh landscape, there needs to

be an increased focus on the quality of data and research tasks, since

new technological advances and cultural paradigms may bring down the

control zones that existed to ensure the quality of scientific data and

the research process.3 More generally, growth in size and complexity of

data and analytics surrounding it form a black box around the reason-

ing behind important results and decisions. Understanding the prove-

nance of the data and processes that we are relying on has never been

more critical.

The learning health system (LHS)4 community has taken up the chal-

lenge of bringing the complex relationship between clinical research

and practice into this brave new world. At the heart of the LHS vision

is the notion of routine capture, transformation, and dissemination

of data and knowledge, with various use cases, such as clinical stud-

ies, quality improvement initiatives, and decision support, constructed

on top of specific routes that the data are taking through the LHS.

These processes need to be mirrored by routine availability of trust

information at each step of the process, embedding auditability and

transparency in the very heart of the LHS.

This challenge is very timely, with the scientific community steadily

becoming more aware of the fundamental problems in the way research

is reported and results submitted to scrutiny in the postpublication

stage.5 Reasons for this are complex and interleaved, including posi-

tive bias, intractable analyses, and pressure on journals and authors to

constantly deliver groundbreaking research. Still, a consensus is arising

that data-driven solutions are the way to ensure correctness of science,

making the LHS community, with its data focus, ideally positioned to

spearhead this drive for improvement in medical research.

This paper shall review the main reproducibility challenges that

affect medical research, before discussing the concept of data prove-

nance as a way of embedding reproducibility into the LHS. The experi-

ences of the TRANSFoRm project will be presented as an exemplar on

how to incorporate provenance into 3 LHS use cases: epidemiological

research, randomized controlled trials (RCTs), and diagnostic decision

support. Finally, the impact of such step change will be discussed and

directions for future research presented.

2 REPRODUCIBILITY CHALLENGES

While reproducibility has always been at the core of scientific method,

it was only with the digitalization of the research task that it has become

possible for external scientists and teams to attempt to fully reproduce

research findings in-house, using identical software tools, and data,

when available. Two landmark studies that established the scale of the

reproducibility crisis came from pharmaceutical industry teams look-

ing to validate details of published findings before dedicating resources

to produce them. A study by a team from Bayer showed that only 25%

of 67 examined academic papers could be replicated.6 Meanwhile, sci-

entists from Amgen looked at 53 preclinical oncology studies published

between 2001 and 2011 and found that only 6 (11%) could be robustly

replicated, with the irreproducible studies found to be attracting more

citations than the reproducible ones.7

The problem is by no means restricted to preclinical studies, even

though their increased reliance on computational instruments makes

them easier to spot and test. The investigation of Young and Karr8

looked into 12 randomized clinical trials testing 52 observational claims

and failed to reproduce a single one. Open Science Collaboration9

described the replication of 100 experiments reported in papers pub-

lished in 2008 in 3 high-ranking psychology journals. Assessing whether

the replication and the original experiment yielded the same result

according to several criteria, they found that only about one-third to

one-half of the original findings were also observed in the replication

study. Most recently, a random sample of 441 journal articles from

biomedical journals from between 2000 and 2014 was studied, and it

was found that none made all their data available, only one provided

a full protocol, and the majority did not disclose funding or conflicts

of interest.10 The cost of irreproducible research in life science is esti-

mated at $28 billion per year in the United States, with a quarter of that

sum attributed to data analysis and reporting.11

Lack of reproducibility creates translational problems on two fronts.

Findings in basic and preclinical research that are supposed to set

the agenda for the clinical studies and drug development are often

poor predictors for success in the clinic.12–14 At the other end of the

research spectrum, drugs with promising results in clinical trials are

sometimes found to be underperforming in real-world conditions, a

concept referred to as the efficacy-effectiveness gap.15 While the lack of

transparency and insight into trial design and execution is by no means

the only contributing factor to this phenomenon, it is a significant

contributor.16

A number of institutions have emerged that are dedicated to pro-

moting reproducible practices in scientific research, such as the Cen-

ter for Open Science in the United States,* which provides free and

open services to increase inclusivity and transparency of research.

Meta-Research Innovation Center at Stanford† is dedicated to building

cross-disciplinary collaborations with the view of improving research

practices across biomedical disciplines. The United Kingdom’s Software

Sustainability Institute‡ is focusing on the role of software in research

reproducibility and promoting best practices in documentation, version

management, release procedures, licensing, and archiving.

2.1 Inadequacies of publishing culture

So as to adequately address the reproducibility failings, some elements

of the publishing culture need revisiting to increase transparency and

traceability. A joint statement by editors of Science and Nature, follow-

ing a workshop organized by the National Institutes of Health, high-

lighted the issue.17,18 With regard to postpublishing guidelines, several

common pitfalls in the process have been noted, including reluctance

in publishing retractions, imposing fees for retracting articles or pub-

lishing comments challenging the published articles, and not providing

mechanisms for access to raw data.5 Proposals have been made that

the research teams should curate their data and software so that it is

readily available, and its scrutiny should form a required step of journal

peer review, eg, in Center for Open Science’s Transparency and Open-

ness Promotion Guidelines19 that have been endorsed by 538 journals

at the time of writing.

*https://cos.io/
† http://metrics.stanford.edu/
‡ http://www.software.ac.uk
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To further these aims, the editors of the leading medical journals in

International Committee of Medical Journal Editors made a proposal

in the early 2016 to make public sharing of data gathered in clinical

studies as a condition of publishing the results in those journals. The

data concerned comprises deidentified individual-patient data under-

lying the results presented in the article, tables, figures, and appendices

or supplementary material, including necessary metadata.20 This pro-

posal has not been without its critics though, with access to data being

a particular point of contention. A recent editorial in New England Jour-

nal of Medicine21 raised concerns about unsupervised use of data by

teams that lack understanding of the data and ethical and regulatory

mechanisms around it, and the emergence of a new class of “research

parasites” that focuses on finding errors in published research. The use

of term created a significant backlash in the research community, which

prompted a response by the journal.22

2.2 Reproducibility in the LHS

Relying on the routine processes that both depend on research findings

and produce further data for research, LHS is particularly vulnerable

to failings in the quality of its research. Being a systemic change across

multiple settings, it requires demonstrable trust in its every segment.

We define 4 levels of reproducibility within the context of the LHS:

1. Auditability allows the research to be scrutinized according to some

predefined methodology. A certain subset of research information

is made available for further investigation.

2. Traceability establishes an unbroken chain of transformations that

data underwent from its capture to its contribution to research

findings.

3. Replicability offers researchers the ability to repeat the experiments

and findings with identical tooling on original data.

4. Reproducibility asserts that the scientific result can be indepen-

dently confirmed on new data.

It would be wrong to assume that replicability is a necessary precon-

dition for reproducibility. Indeed reproducibility requires that findings

are robust enough to survive minute changes to experiment design,

whereas replicability avoids them by definition.23,24 However, it is the

role of traceability to establish exactly what happened during the

experiment and provide reassurance that sources of variability are

indeed scientifically insignificant and that the abstracted principles (eg,

P values and confidence intervals) are sound. Thus, it is traceability

that is central to establishing transparency and trust in the LHS pro-

cesses. It is worth noting that these issues do not apply exclusively to

research and that the same principles are applicable to routine qual-

ity improvement initiatives, which form another important part of the

LHS.25

3 DATA PROVENANCE

A necessary precondition for improving the reproducibility of medical

research is to increase the transparency of the research process, by

including minute details that will allow subsequent investigators to fully

understand what was actually done. Reporting standards for cohort

studies26,27 or clinical trials28–30 have long been the traditional means

of providing this level of rigor in medical research, but they are inad-

equate in a data-driven LHS, since they can only provide auditability,

often at significant resource cost, but cannot establish transparency,

much less traceability, replicability, or reproducibility. Manually produc-

ing standardized reports from a combination of notes and a collection

of software artifacts introduces space for mistakes and omissions,

exacerbated by the natural tendency of researchers toward observa-

tional and cognitive bias.31 Furthermore, such reports are typically not

included with the original research publication and thus not readily

available to readers.

Simply put, provenance describes what happened. W3C defines

provenance as a form of contextual metadata “that describes entities

and processes involved in producing and delivering or otherwise influ-

encing that resource. Provenance provides a critical foundation for

assessing authenticity, enabling trust, and allowing reproducibility.”32

The Office of the National Coordinator for Health IT describes it as

“attributes about the origin of health information at the time it is first

created and tracks the uses and permutations of the health information

over its lifecycle.”33

Data provenance technologies can provide traceability to the LHS

by automatically capturing the trace of the research task and result-

ing data in a uniform and domain-independent way, thereby facilitat-

ing reproducible research. The concept originated in the eScience and

cyber-infrastructure communities, as means of capturing the exact

parameterizations and configurations of scientific workflows that pro-

duced a particular data set.34,35 As the number of implementations

grew, the W3C developed the PROV interoperability standard32 that

models provenance data as graphs where nodes represent data enti-

ties; activities produce and use those entities; and agents are actors

that control these activities, with graph edges denoting the relation-

ships between the concepts36: was controlled by, used, was gener-

ated by and others. While provenance data are not always stored in

graph databases, this model conceptually implies that the provenance

questions of interest require both traditional item-based querying and

exploratory analysis, whereby the researcher can browse the relation-

ships between entities to find the answer.37 An example of a prove-

nance graph can be seen in Figure 4, with entities denoted in blue,

activities in red, and agents in yellow. The graphs are read in the direc-

tion of the arrows; thus, in the figure, the Query Result entity on the

right was generated by the Execute Query process that used the Data

Collection Query entity, which has its own further history recorded.

While provenance has a significant role to play in achieving repro-

ducibility in the LHS, there are still gaps in its implementation method-

ology that stem from provenance having emerged from computational

fields with standardized software architectures. Provenance adoption

in noncomputational disciplines, such as the LHS, presents several

challenges:

1. Problem domains, such as medicine, have established software

ecosystems that cannot be easily replaced with provenance-enabled

tooling without major investment and disruption.

2. Motivating such change can be difficult, particularly if the immedi-

ate benefit is unclear, and without example provenance data for a

particular problem domain, it is difficult to demonstrate the capabili-

ties of provenance analytics.
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3. Existing provenance models provide a common syntax for rep-

resenting provenance, but creating semantically rich provenance

models requires involvement of domain experts.

Furthermore, the specific goals of LHS being adaptable,

self-improving, stable, certifiable, and responsive38 introduce

additional desirable features in a provenance solution.

1. System transparency. The black-box approach and lack of trans-

parency result in the lack of trust and are cited as two of the

main reasons behind the poor take-up of medical software and

decision support systems (DSSs) in particular.39 Therefore, in a

provenance-enabled architecture, activities related to usage and

generation of data need to be readily available for users to review.

2. Auditability of actions. The system must enable the user to look up

an action performed in the system and find all the relevant detail

about how it was made—data sets used, exact versions of software

tools, and human actors involved. The level of detail captured must

be validated against the required audit standard.

3. Understandability of data. The provenance metadata that is captured

about the workings of the system not only needs to be accessible to

the users (clinicians, auditors, researchers, patients) but also has to

rely on standardized concepts expressed in terminologies that the

users are familiar with.

4. Validation readiness. So as to guarantee that the provenance meta-

data being captured is at the right level of granularity and encom-

passes all the necessary features, the structure of the provenance

data needs to be modeled and verified separately from the software

implementation.

5. Privacy and security. Traditionally, security logs have been used to

keep track of what is going on in the system and investigate any inap-

propriate actions. The provenance model needs to go beyond that

and be able to demonstrate that a data set is never used contrary to

its ethics and privacy constraints.

6. Scalability. The system must be able to scale up in line with the

expected usage volume, so the provenance store needs to be appro-

priately specified to cope with accumulation of usage data over

time.

We shall now describe how the provenance infrastructure in 1

large-scale LHS project, TRANSFoRm, addressed these issues.

4 IMPLEMENTATION OF PROVENANCE
INFRASTRUCTURE IN TRANSFORM

The TRANSFoRm project § was funded under EU Framework Pro-

gramme 7 to develop a common digital infrastructure for LHS appli-

cations, with the aim of integrating the data and workflows of clinical

and research domains in primary care. The project outputs include

methods, models, services, validated architectures, and clinical demon-

strations of software to support this integration. The architecture that

was developed is generic40 and was applied across the project’s 3

demonstrators: genotypic-phenotypic observational studies, RCTs, and

diagnostic decision support.

§ www.transformproject.eu

FIGURE 1 Overview of TRANSFoRm software components

The TRANSFoRm software ecosystem, shown in Figure 1, comprises

front-end tools that rely on a set of generic middleware components,

secure data transport, authentication, semantic mediation, and data

provenance, which provide essential shared functions for the LHS appli-

cations built in TRANSFoRm.

One of the goals for TRANSFoRm was to provide maximum flexibility,

presenting the lowest possible barriers to entry for integrating elec-

tronic health record (EHR) systems and data sets, reusing whenever

possible the existing data standards and methods for managing hetero-

geneity between data sources. The data used in the LHS reside in mul-

tiple repositories, differing in structure and terminology, bringing the

need for a generic mechanism for mapping TRANSFoRm queries onto

individual data sources. This was delivered using a semantic mediation

approach,41 combined with a standard data connectivity module, as

shown in Figure 2, which illustrates the translation process for observa-

tional studies and RCTs. Clinical concept data elements were modeled

using the clinical data integration model (CDIM) ontology,42 and local

data source models with the LexEVS tool used to support binding of

terminology terms to CDIM expressions. The research processes were

modeled by the clinical research information model (CRIM), which, in

conjunction with CDIM, enabled a 2-level archetype to be defined for

each required data element in the 3 use cases.

On top of these shared components, 3 application specific tools were

built to support the use cases: epidemiological study query workbench,

clinical trial data collection and monitoring tool, and a diagnostic sup-

port plug-in for EHR systems. The query workbench allows researchers

to design their queries from multiple data sources and translate their

clinical terms into a list of corresponding concepts from standard termi-

nologies and classifications supported by the systems they are working

with. The queries are dispatched to the data sources via the middle-

ware to the local data node connector that sits at the data source and

translates the generic CDIM-based query into a local representation

using the semantic mediator component and subsequently presents

that locally interpretable query (patient counts, flagging patients,

or data extraction) either to the data source directly or to a human

agent for final approval, before returning the result. The RCT mod-

ule comprises computerized trial definitions using extended CDISC’s

SDM/ODM standards, with automatically generated electronic case

report forms (eCRFs) and Patient Reported Outcome Measures

(PROMs). The former are filled in via a web browser by the clinician,

while the latter are completed by the patients using either web or
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FIGURE 2 TRANSFoRm semantic stack. Study concepts are expressed in the clinical research information model, with data elements defined in
the clinical data integration model (CDIM) and mapped onto the local database structures defined in the data source model (DSM), using local data
node connector and semantic mediator components. CTMS indicates clinical trial management system

mobile devices. The tool integrates with the EHR to perform patient eli-

gibility checks and enrolment, and prepopulation of eCRF data and to

store a copy of study data in the EHR. The TRANSFoRm Study System

coordinates study events and data collections across multiple clinical

sites. Finally, the diagnostic decision support tool is embedded into the

EHR and suggests to the clinician the diagnoses to consider, based on

the patient record and presentation cues entered. Recommendations

are generated by the central evidence service using rules stored in

the clinical evidence repository and annotated with levels of support

and confidence for the presenting case. The coded evidence cues and

current working diagnosis can be saved back to the patient EHR.

Data provenance capture in TRANSFoRm implements traceability

across these 3 use cases, which is necessary both to support trust

and transparency and to enable learning and improvement in LHS pro-

cesses. The need to capture provenance data from a number of het-

erogeneous data sources, without relying on each software tool to

write its own provenance code, was addressed by the concept of prove-

nance templates. Introduced by Curcin et al,43,44 these are abstract

constructs, which can be instantiated into concrete provenance graph

fragments, that are added to the existing provenance graphs. The

fragments are defined in terms of meaningful operations within the

LHS problem domain, expressed using concepts taken from a relevant

domain ontology (eg, CRIM) and that are mapped onto the prove-

nance ontology PROV-O.45 The choice of domain ontologies and their

mapping onto provenance concepts also determines the granularity of

captured provenance. Having established a set of meaningful actions

that software tools in the domain perform, reflected in the templates,

a service interface was defined for those tools to invoke and capture

provenance without needing to undergo major redesign, as shown in

Figure 3. While all the nodes and edges in provenance graphs are anno-

tated with ontological concepts, for clarity, the images in the following

sections use human-readable labels derived from the concepts and

identifiers.

The starting point for defining the provenance use cases was to

express the use case requirements as a series of provenance-related

questions. We list these generic provenance questions for each use

case to describe the provenance information that we require to be

automatically recorded and available about the LHS and then show how

it was implemented in TRANSFoRm.

4.1 Use case: epidemiological studies

The provenance challenge in the observational domain is to ensure that

the queries used to extract data were aligned with the study protocol,

and that any customization required by the data sources was correct

and is available for auditing. Further useful feature is to track the pop-

ularity of individual data sources and how they are being used. Thus,

within the context of cohort studies from distributed data sources,

provenance information should allow us to find out the following:

• What was the exact query used in each database to select cases and

controls for a study?

• How was a particular data extraction query modified before its final

form, and what were the performances of discarded versions?

• Which data items came from which data source?

• Which are the most useful data sources across multiple studies?

This information is typically not readily available, particularly in a dis-

tributed query scenario, with the researchers having to rely on local

logs that need to be interpreted and combined to provide full informa-

tion, which adds to the resource cost of the study, potentially present-

ing a major problem given the relatively tight financial constraints on

observational studies compared with clinical trials.

The TRANSFoRm epidemiological use case was implemented using

a front-end Query Workbench that researchers used to define their

queries and send them through the middleware infrastructure to data

sources. Three types of queries are supported (counts, flagging, and
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FIGURE 3 Provenance architecture in TRANSFoRm. Software tools are agnostic to the underlying provenance representation and invoke API calls
that match some provenance template in the provenance server. Template is then instantiated into a provenance graph fragment with appropriate
ontological annotations and persisted inside the relational database. The database is ETL-ed into a Neo4J graph data warehouse, which is used for
querying and analysis. API indicates application programming interface; CTMS, clinical trial management system; DSS, decision support system

FIGURE 4 Provenance graph depicting an execution of a data extraction query in the epidemiological use case. Blue nodes denote entities, red
nodes are processes, and yellow nodes are agents. The graph is read from the bottom node, which is a query result generated by the query
execution process, which used a data collection query that was generated by the translation process, controlled by the local data provider (Nivel)
and that was obtained from a generic query

data extraction), each of which is expressed in a generic query model

using generic CDIM representations of medical concepts inside the

queries, such as inclusion and exclusion criteria and data fields to be

retrieved. Once the query arrives at the data provider’s site, it gets

translated into the local representation, verified and authorized by the

local data controller, and executed against the database.

The provenance data that were captured in the use case, based on

a set of templates, covered the following: users logging in and being

authenticated in the system, creation and editing of queries, and exe-

cution of queries against the databases. All 3 of these scenarios were

performed by different tools, first by the authentication system, second

by the Query Workbench, and the third by the Data Connector, with the

TRANSFoRm template-based provenance service collecting the data.

The provenance graph fragment shown in Figure 4 contains the trace

of the third scenario, visualized in the Neo4J database, with blue nodes

as entities, red nodes as processes, and yellow nodes as agents. The

Query Result entity at the bottom of the graph was produced by the

Query Execution process, which used the Data Collection Query con-

taining the actual SQL query, which was in turn obtained from the

Translation process using a generic CDIM query and controlled by the
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FIGURE 5 Fragment of a provenance graph depicting one patient’s data record being checked for eligibility, patient being consented and
randomized, and having the first study form created. Blue nodes denote entities and red nodes are processes

data controller at the data provider’s site (Nivel¶ in the example shown).

The node labels have been generated from the ontological categories

and values that all nodes have been annotated with, taken from TRANS-

FoRm’s CRIM. The freedom to annotate the nodes with categories and

values as per the requirements of the audit trace needed is a pow-

erful mechanism for producing traces targeted for particular types of

reports.

4.2 Use case: clinical trials

Food and Drug Administration’s final guidance on Electronic Source

Data in Clinical Investigations46 encourages use of electronic source

(eSource) data in the conduct of clinical trials intended for inclusion in

investigational and new drug applications, with the view that Electronic

Data Capture from both devices and trial participants has the potential

to improve the reliability, quality, traceability, provenance, and integrity

of data from electronic source to regulatory submission. However, this

effort is hampered by the lack of framework for capturing this metadata

across various eSources.

In addition to providing an auditable research trail, the aim of using

provenance in clinical research is to achieve deeper understanding of

the trial characteristics and how it impacted its performance. So some

of the items that can be addressed using RCT provenance data are as

follows:

• Which trials had the largest/smallest number of consent rejections?

• Which trials failed to recruit patients for whatever reason?

• Which eligibility criteria were too restrictive in terms of the num-

bers of recruited vs expected patients?

• Which EHR-s/locales were best at recruiting patients?

• What eCRF items in various sites were consistently not extracted

from the EHR but had to be entered manually?

• For a particular study participant, list all versions of a specified eCRF,

together with the date and the people involved in each modification.

• Retrieve details of informed consent for a patient who filled in a

specific eCRF.

While some of these questions are answerable using the standard

reporting functions of clinical trial management system tools, having a

single audit repository becomes advantageous once several eSources

and associated software tools start participating in the trial process, eg,

clinical trial management system, EHR, mobile data collection tools, and

EHR adapters, and all their entries can be queried jointly.

¶www.nivel.nl

In its Randomized Controlled Trials use case, TRANSFoRm imple-

mented an EHR-driven clinical trial system, in which the EHR system

was used to significantly reduce the effort in running clinical studies by

automatically checking patients for study eligibility, using EHR data to

partly fill eCRFs, and coordinating the study workflow including mobile

data collection of PROMs. The resulting system was used to run studies

with over 600 patients in 4 European countries47 and was validated for

Good Clinical Practice.29 Traceability of such system is of essence so as

to understand, evaluate, and potentially improve the trial design. This

requires studying minute details, eg, eligibility criteria encodings, how

they were applied to individual patients who presented to the clinician,

data extracted from the EHR systems, data collected through eCRFs,

and the analysis performed on the collected data.

Similarly to other use cases, assembling the trace of the entire pro-

cess used provenance data captured from multiple tools: the TRANS-

FoRm Study System, EHR system, and the eCRF/PROM data collection

tools. The provenance traces for RCT were significantly more compli-

cated than those for the other 2 use cases, however, since they had to

cover patient eligibility checks, consenting, randomizations, and data

collections through eCRFs and PROMs, together with the interactions

between eCRFs and the host EHR.

A fragment of the collected RCT provenance data is shown in

Figure 5. As in the previous example, red nodes denote activities

and blue are entities. The graph shows one patient’s data record

being checked for eligibility, patient being consented and randomized,

and having the first study form created. The implementation uses

the provenance ontology for randomized controlled trials to provide

trial-relevant semantic annotation on the provenance nodes,43 and

nodes are labeled with concepts from provenance ontology for ran-

domized controlled trials. The values of the nodes contain various infor-

mation relevant to the concept, eg, eCRF document definition in ODM,

EHR version, and timestamp. It is important to note that no patient

identifiable information was stored in the provenance logs as these

were kept separately from the research database, so the eCRF prove-

nance entity contains the eCRF identifier in the TRANSFoRm Study

System, but not the actual data stored inside.

4.3 Use case: decision support

The notion of trust is central to the LHS vision of routine capture, trans-

formation, and dissemination of data and resulting knowledge and an

essential aspect of that trust is to ensure transparency at each step

of the process. When applied to DSSs, this translates to the ability to



8 of 12 CURCIN

FIGURE 6 DSS provenance graph depicting the origin of a recommendation made by the system (top right). Its origins are traced back via the
evidence comparison performed by the rule base and the patient cues presented all the way to individual EHR (InPS Vision) and DSS software
instances used. DSS indicates decision support system

readily demonstrate the clinical reasoning that was performed in a clin-

ical encounter, together with the recommendation received and a full

trace from that recommendation back to the rules applied to produce it.

Similarly to the RCT case above, although EHRs typically have auditabil-

ity features, third-party plug-ins and DSS-s often do not, questioning

their ability to meet medical device certification standards.

The key provenance questions that are relevant to DSSs are as

follows:

• Which clinician used the decision support tool to make a specific

diagnostic recommendation for a specific patient at a specific point

in time?

• What clinical evidence cues supporting diagnosis of a particular

diagnostic condition were matched to a particular patient evidence

set as part of an evidence comparison process that was run at a

particular point in time?

• Which rules are most frequently fired for a particular set of symp-

toms?

• Which rules are never getting used?

• In which decisions was a particular rule/guideline applied?

Generic DSSs use a standardized model representation to encode

the rules and guidelines that they implement. Should one such rule be

found to be invalid or potentially harmful, it is important to be able to

trace all usages of that rule, which is sometimes referred to as taint

analysis. As an added benefit, accumulated provenance traces describ-

ing rule usage form a potentially valuable resource when assessing rule

performance in practice.

In its third use case, TRANSFoRm has developed a prototype next

generation diagnostic DSS. The tool is driven by clinical knowledge

obtained through a web service–based clinical evidence repository and

is embedded into a family practice EHR system (InPractice Systems

Vision 3 EHR). The user enters observed patient cues with potential dif-

ferential diagnoses being dynamically ranked, the cues are sent to the

recommendation engine, and suggested diagnoses are returned. Upon

exiting the tool, a working diagnosis can be confirmed, and the coded

evidence cues and current working diagnosis can be saved back and

recorded for future reference in the patient EHR.

Two DSS scenarios were identified as being relevant to capture

through provenance metadata. The first use case describes the neces-

sary provenance collection requirements for evidence production, gen-

eration, and update of evidence either through manual evidence update

or through evidence generated automatically from the use of data

mining tools. The second use case supports provenance collection dur-

ing evidence consumption and subsequent clinical recommendation

provided by the deployed evidence repository accessed by the decision

support tool itself.

An example provenance trace from the second DSS scenario is shown

in Figure 6, with blue nodes representing entities, red nodes activi-

ties, and yellow nodes agents, as described previously. This provenance

trace shows the history of the DSS recommendation entity on the far

right, detailing how it was produced by a clinical evidence comparison

process, which compared cues obtained from the patient with the evi-

dence residing in the clinical evidence repository (yellow actor node),

with the full details of the cue collection and the DSS and EHR systems

captured as well. The ontological concepts annotated onto the nodes

and used to derive labels are taken from the TRANSFoRm’s clinical evi-

dence model ontology, containing relevant DSS concepts, and aligned

with the constructs in the PROV model, in the same manner as in the

other use cases.

5 DISCUSSION

To implement traceability, TRANSFoRm developed a generic solution

for capturing provenance data in LHS applications, based on prove-

nance templates and use of domain ontologies to attach precisely

defined meaning to the collected metadata and thus addressed the 3

provenance challenges identified earlier. The use of a RESTful service
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application programming interface that hid the provenance-specific

detail behind high-level service calls minimized the effort needed

to connect software components to the provenance system. Using

example provenance graphs, based on the abstract template con-

structs, enabled the creation of prototype reports and analytics to dis-

cuss with the end users. Such early prototypes can serve as powerful

incentives for provenance adoption. Finally, the use of concepts taken

from the relevant domain ontology when defining templates ensured

that the structure and level of granularity of provenance metadata have

been understood and agreed by the domain users. With regard to the

further features mentioned in Section 3, our solution offers full trans-

parency and auditability of data entities and their histories, allowing

for demonstrable adherence to security policies, while the understand-

ability of captured data is provided through use of domain ontologies,

which in combination with the templates facilitates the validation task.

The provenance work in TRANSFoRm was a pioneering effort in the

field, and the next step is to conduct a detailed evaluation in each

of the 3 problem domains by formally validating the template instru-

ments and collected data against relevant standards and investigating

the scalability aspects, with projects already underway in the decision

support and clinical trials domains.

Provenance solutions can of course be implemented locally, so that

they are specific to problem in hand. However, a generic approach, such

as the one used in TRANSFoRm, enables us to reuse the same infras-

tructure for multiple applications so that, for example, a system used for

clinical trials could also support the observational studies performed in

the same institution. Apart from financial benefits, this approach sup-

ports a greater degree of connectedness between studies, facilitates

long-term data reuse within an environment, and increases the qual-

ity of metadata available about the institutional data sets, all of which

become further incentives for provenance adoption.

Closely related to the issue of trust that has been discussed is the

concept of security of provenance data. Ideally, we would want the

provenance traces to act as a central piece of metadata about the LHS

task observed, amenable to reporting the task to a variety of stake-

holders, providing both detailed and high-leveled views depending on

the audience. For tasks involving sensitive data or steps, mechanisms

have been developed to abstract portions of provenance graphs that

should not be made accessible to certain users.48,49 Thus, if we were

looking into provenance of a clinical trial process, the researcher may

be able to see the full detail of the patient recruitment and eligibility

checks performed on each patient, while the provenance version pub-

lished with the paper would only contain the study eligibility criteria

used and recruitment outcome, without revealing individual patient’s

profiles.

5.1 Related work

The full provenance architecture and the details of the template model

used in TRANSFoRm are currently submitted for publication and are

under review. The templates that the solution is based on are similar

to the efforts of the team at University of Southampton,50 with the

main difference being that their work is better suited to atomic instan-

tiations, where each template is immediately instantiated in full, while

the TRANSFoRm model allows for variable repetitions (eg, sequence of

edits to a study protocol). The PRIME methodology51 covers the life

cycle of provenance model design, from use case specification to iden-

tification of actors, processes, and information flows, but it stops short

of defining the architecture for provenance capture, the joint work

on which is underway. Related to our use of ontologies for constrain-

ing provenance artifacts is the wider effort in the use of ontologies

as part of the software engineering process,52 eg, through transla-

tions between ontologies and UML constructs.53 A broader overview of

provenance implementation issues in biomedical research can be found

in the work of Curcin et al.44

Recently, the DPROV initiative‖ has been working on aligning data

provenance with the HL7 and FHIR protocols, with the goal of identify-

ing opportunities within CDA R2 where basic provenance information

about clinical (and other care related information) can be integrated,

eg, who created it, when was it created, where was it created, how it

was created, why it was created, and what action was taken to produce

the information captured, thus enabling detailed audit of the data entry

process.

Deciding the level of granularity of provenance capture is a rec-

ognized problem in the field. Indeed, there are infrastructures that

collect finely grained provenance, on the level of the operating sys-

tem (Hi-Fi,54 SPADE,55 PASS,56 and PLUS57) or of individual program-

matic scripts (noWorkflow58). In both cases, the scale of captured

data and lack of semantics make the resulting provenance trails dif-

ficult to link to underlying research domain. Our approach minimizes

the disruption required to instrument existing code by interleaving

provenance-specific elements into the code, in line with the princi-

ples of aspect-oriented programming.59 An alternative approach is to

reconstruct provenance from separately maintained logs,60 but this

comes at the cost to the level of confidence in the resulting prove-

nance data.

As part of the W3C PROV initiative, a comprehensive survey of avail-

able provenance implementations was assembled in 2013, which lists

a wide range of provenance-related software tools at various levels of

maturity.61

5.2 Use of provenance for validation against

standards

An important goal for the LHS community is to use provenance to

demonstrate compliance of the software tasks executed with applica-

ble standards and regulations. The most obvious example in the clinical

trial domain is Title 21 of the Code of Federal Regulations; Electronic

Records; Electronic Signatures (21 CFR Part 11)28 and Good Clinical

Practice29 standards in the US and EudraLex Vol. 4 Annex 11: Comput-

erised Systems in EU.62 Provenance can act as enabling technology to

help software tools address the Technical Controls of 21 CFR Part 11

that regulate electronic records, namely,

a. Discerning invalid or altered records.

b. Generating accurate and complete records.

c. Controlling task sequencing when event order is important (ie,

operational checks).

d. Protecting records throughout the record retention period.

‖http://wiki.siframework.org/Data+Provenance+Initiative
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e. Generating an audit trail through the record retention period con-

tains date/time of operator entries and description of actions taken

and is cumulative.

f. Limiting access to the system to authorized individuals

g. Limiting access to system functions to authorized users (ie, author-

ity checks).

h. Limiting data input to authorized sources (ie, device checks).

i. Protecting transmission of data from point of creation to receipt.

Addressing these in turn, (a) can be achieved by tracking access to

each record and the user/actor who performed it. Analysis of captured

provenance data can ensure that (b) is satisfied, although that can be

checked on the main record repository as well. The sequence of steps

executed, required in (c), can be proven using timestamped provenance

traces and causality relationship between the nodes. (d) needs to be

addressed at the data management level, where mechanisms such as

nonrepudiation can be implemented, but provenance security tech-

niques can be deployed to implement secure views on a single prove-

nance metadata repository. (e) is ideally suited to being answerable

using provenance audit trail since data provenance techniques allow all

required information from multiple software and human actors to be

placed in a single audit database using a uniform data model. (f) and (g)

can be asserted by checking for the human agents that executed rele-

vant processes in the provenance trace. Similarly, for (h), such checks

can be applied to software agents. Finally, for (i), provenance provides

an unbroken chain of actions and transformations that apply to the

piece of data.

By extracting relevant parts of the provenance trace, reporting can

be automated in accordance with the relevant standard, such as con-

solidated standards of reporting trials (CONSORT).30 Similar standards

exist for reporting of cohort studies, such as Strengthening the report-

ing of observational studies in epidemiology (STROBE)26 and REport-

ing of studies Conducted using Observational Routinely-collected Data

(RECORD),27 and the same principles can be applied to them as well,

as long as suitable ontological annotations are provided on the prove-

nance traces.

A significant advantage of data provenance technologies over stan-

dard logs for validation purposes is its ability to provide uniform history

record across multiple software tools, thus creating a single audit trail

to be examined, with consistent timestamping and simplified security

and hosting policies. When used for reporting and audit purposes, it is

important to validate the provenance captured against the structure,

content, and granularity required by the applicable standards. Mech-

anisms for specifying the structure of provenance traces, like prove-

nance templates used in TRANSFoRm, allow conformance to standards

to be established at design time, facilitating validation. In such scenar-

ios, it is also useful to treat provenance data stores as an adjunct part

of the study database to ensure that relevant study information can be

either replicated or referenced from the provenance entries.

6 CONCLUSION

Looking back at the 4 levels of reproducibility in the LHS introduced

earlier, we have established that data provenance provides us with the

traceability of data and processes. If those provenance traces contain

sufficient detail and are using the correct domain conceptualization

(ie, through well selected ontologies), they can be used to guarantee

auditability as well. Replicability is more easily achieved in computa-

tional use cases with few nondeterministic elements, such as a diag-

nostic recommendation, or a data extraction and subsequent statistical

analysis. In such scenarios, provenance, together with original data and

software used, guarantees replicability. Finally, reproducibility is facili-

tated by the presence of full provenance information, ensuring detailed

understanding of what occurred in the observed task, and also the

methodological soundness of the techniques applied.

Ultimately, LHS aims to scale up health systems, and consequently

the associated research that health systems are built upon. If this scal-

ing up is to succeed, we have to embed mechanisms to verify trust

in the system inside our research instruments. In the research world

increasingly reliant on electronic tools, provenance gives us a lingua

franca to achieve traceability, which we have shown to be essential to

building these mechanisms. To realize the vision of making computable

provenance a feasible approach to implementing reproducibility in the

LHS, we have to provide viable mechanisms for adoption. These include

defining meaningful provenance models for problem domains and also

introducing provenance support to existing tools in a minimally invasive

manner.

The applicability of data provenance to the challenges facing the

LHS was demonstrated in a provenance infrastructure that was imple-

mented in the TRANSFoRm project in 3 distinct LHS domains, those of

observational studies, clinical trials, and DSSs. The challenge now is to

address the provenance gap that exists between the provenance meta-

data collected and the reporting requirements of different domains

and perform a full evaluation in each domain, which will require a joint

effort by a range of stakeholders, including medical scientists, infor-

maticians, publishers, and regulators. However complex and challeng-

ing, this work is essential if the quality of translation from research into

practice in the LHS is to improve with the growing volume of data and

research, rather than deteriorate and get lost in the noise.
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