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Abstract: Exposure to high concentration levels of radon gas constitutes a major health hazard, being
nowadays the second-leading cause of lung cancer after smoking. Facing this situation, the last years
have seen a clear trend towards the search for methodologies that allow an efficient prevention of the
potential risks derived from the presence of harmful radon gas concentration levels in buildings. With
that, it is intended to establish preventive and corrective actions that might help to reduce the impact
of radon exposure on people, especially in places where workers and external users must stay for
long periods of time, as it may be the case of healthcare buildings. In this paper, a new methodology
is developed and applied to the prevention of the risks derived from the exposure to radon gas in
indoor spaces. Such methodology is grounded in the concurrent use of expert systems and regression
trees that allows producing a diagram with recommendations associated to the exposure risk. The
presented methodology has been implemented by means of a software application that supports the
definition of the expert systems and the regression algorithm. Finally, after proving its applicability
with a case study and discussing its contributions, it may be claimed that the benefits of the new
methodology might lead on to an innovation in this field of study.

Keywords: radon; expert systems; decision support systems; regression tree; risk; design science
research

1. Introduction
1.1. Framework

Radon gas is radioactive, odourless, colourless and tasteless and belongs to the ‘noble
gases’ group of chemical elements. It is produced by the radioactive decay of radium
through an α-disintegration chain [1,2]. It emanates naturally from soil and rocks, pene-
trating into buildings thorough existing orifices (cracks, holes, etc.). It usually accumulates
in enclosed spaces, presenting a half-life of 3.8 days for its most stable isotope [1,2]. The
International System unit for radon gas concentration is the Becquerel-per-cubic-meter
(Bq/m3) [3].

Several different studies consider that a radon gas concentration level between 5
and 15 Bq/m3, common in outdoor spaces, is not a health threat at all, and therefore its
impact on health is usually considered only in enclosed spaces. In these places, the radon
concentration values might often vary between 10 and 10,000 Bq/m3 [4] according to
different environmental variables and conditioning factors, which might become a health
issue [1]. Currently, inhalation of radon gas and its decay-products is one of the main
causes of lung cancer [1,4–10].

In view of that, the harmful effect of exposure to radon gas on the health of indi-
viduals is proved. In particular, for the Galicia region in Spain—the geographic area
where this methodology is being developed—several different works aimed to measure
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radon incidence in this zone are enumerated. In the current literature, a number of stud-
ies are available for that region, which is a high-radon incidence zone (more than 10%
of dwellings where measurements were carried out by the Galician Radon Laboratory
showed concentration values over 200 Bq/m3 [11]), aiming to connect those radon con-
centration levels to the incidence of several types of cancer. As an example, in the work
by López-Abente et al. [12] an association was observed between the home concentration
of radon gas and lung, stomach and brain cancer incidence in women. Along this same
line, in the work by Barbosa-Lorenzo et al. [13] the existence of a correlation between lung
cancer mortality in men and their home concentration of radon gas was concluded, once
again making clear the impact of this gas on people’s health. In the PhD thesis of Castro
Bernárdez [11] an analysis on the residential exposure to radon gas and lung cancer in the
Ourense (Galicia, Spain) healthcare area was carried out. From it, it is concluded, in line
with the previously introduced works, that an association exists between the concentration
of residential radon gas and lung cancer incidence. Additionally, in the PhD thesis of Torres
Durán [14] an analysis on the risk of developing lung cancer in a Galician non-smoking
population exposed to high residential radon gas concentrations was performed. Its results
indicated that people exposed to concentrations higher than 200 Bq/m3 show a risk of
developing lung cancer that is 2.2 times higher than people exposed to concentration values
lower than 100 Bq/m3. The aforementioned studies allude to the analysis of the effect of
radon gas incidence on human health derived from its harmful concentrations in dwellings
and residential and public buildings. Even if it is indubitable that there are industrial
activities, such as underground mining, where radon concentrations are recognized as a
considerable risk, the study and validation data used in this work came from the Galicia
region (Spain), where there have been no underground mining activities for decades now.
Because of that, at a social level preoccupation about the impact of radon gas on public
health is focused on the study and adaptation of dwellings and residential and public
buildings, on the light of a growing concern derived from the porous and granitic soils on
top of which most of the Galician buildings are located [15,16].

Besides those already mentioned, there are different works that aimed to measure
the impact of radon gas concentrations, both in the Galicia area and in contiguous zones
such as the North of Portugal, which carry out studies oriented towards the processes for
detection and risk prevention without highlighting the influence of radon gas on human
health. In the work by Barros-Dios et al. [17] it was intended to determine which factors of a
dwelling have an influence on its indoor radon concentrations. To carry out such a study, a
measurement was made of the indoor radon concentration and the different characteristics
were determined for a total number of 983 dwellings in Galicia. It was observed that
the dwelling age, its building materials and the floor in which the detector was placed
were related to the radon concentration levels measured. In the work by Quidós et al. [18],
300 gamma radiation measurements were made on Galician soils and 600 others on Galician
dwellings, aiming to verify former studies that were carried out years before, and to
establish a natural radiation map of the region. In the work by Cortina et al. [19] a
series of home radon gas concentration measurements were carried out in the Santiago
de Compostela area (Galicia). In this work, a correlation analysis was also performed
between the radon concentration value and the location of the measurement stations,
with no relevant relationship being observed. The authors of this work also collected
measurements associated to meteorological parameters, obtaining a direct correlation
between the indoor radon concentration value in dwellings and the derivative of the
outdoor temperature with respect to time. In the work by Martins et al. [20], focused on
the Amarante region (North of Portugal), a strong relationship was observed to exist
between the soil characteristics and the measured radon gas concentration. In the presence
of granitic soils, the observed concentrations are usually higher than those established
as safe in the Portuguese regulations (400 Bq/m3). In this same line, in another work by
Martins et al. [21] a study is made in the Vila Pouca de Aguiar region (North of Portugal as
well). A geometric mean value of 568 Bq/m3 was observed for the radon concentration
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inside 91 dwellings, a value that was much higher than those from other granitic soil areas
in the North of Portugal, a fact that highlights the need for making the population in the
area aware of the risk that exists there.

Facing this impact, recent years have seen a clear trend towards an early and efficient
prevention of harmful radon gas concentration levels, considered as harmful in residential
buildings, in order to establish corrective actions that allow to mitigate its effects on the
health of the exposed people [9,22]. In this sense, it is of interest to mention the work by
Pereira et al. [23], focused on the design and implementation of a so-called ‘RnProbe’, an
Internet of Things edge device for the integrated management of radon risk in buildings.

With the objective of providing an answer to the previously described problems, in this
article a new methodology aimed to the prevention of the exposure to radon concentrations
inside buildings that could result in harm to the health of the exposed people is presented
and defined. Starting from the information provided by several sensors, the methodology
allows providing recommendations related to possible corrective measures that might
reduce the existing concentration of radon gas. To that end, a system is proposed that
makes use of two expert systems working concurrently. Such systems are based in the use
of fuzzy logic inference engines aimed to obtain outputs related to the gas exposure risk
level and to the accuracy of that estimation. All these outputs, together with the sensors’
measured values history, are set as input data for a set of regression trees that, after being
trained, allow to establish the degree according to which it is proposed the application
of a collection of corrective measures—in a range of 0 through 5—associated to each one
of them. This means to distinguish between recommendations for no action (0) and for
compulsory actuations (5).

For the handling of this methodology the use of expert systems, considered as support
tools for the corrective decisions aimed to the reduction of harmful concentrations of radon
gas, was proposed. In essence, an expert system, defined within the scope of information
systems and specified as a knowledge-based system, is a system that shows capabilities
to find solutions to real projects taking into account a specific action domain, with a
performance level that is similar to the one used by human experts [24]. Its scope is the
improvement of the decision-making process by means of its capabilities for disseminating
and formalizing information [25].

On this matter, the application of expert systems to problems related to the mitigation
of harmful effects on human health or to improve environments that might be harmful
to it—as it is the case of the ones used in this work—might be included within a wider
approach related to the so-called ‘early warning systems’. However, this work does not
address the definition of an early warning expert system, because it poses as necessary the
human intervention in the interpretation of the decision derived from the methodology,
as it is considered that the multiplicity of criteria intervening in the determination of the
radon gas concentration is large and heterogeneous enough as to not deem useful a more
autonomous approach in the decision making.

This work is organized and developed over five sections. In Section 1, the problems
associated to radon gas are presented, together with the conceptual groundings on which
the methodology is supported. In Section 2, a conceptual description of the design and
definition of the methodology is made. After that, the methodology is proposed and
described in detail. In Section 3, an illustrative case study is proposed that allows to
understand the operation of the methodology. In Section 4, the discussion of the work is
presented. In Section 5, the main conclusions obtained are presented.

1.2. Radon Related Concepts

Across this section several concepts are presented, related to the mechanisms that
facilitate the flow of radon gas into buildings (Section 1.2.1), the criteria used for the
application of corrective measures (Section 1.2.2) and the possible devices used to measure
radon gas concentration (Section 1.2.3).
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1.2.1. Mechanisms and Factors That Boost Radon Leakage into Enclosed Spaces

Indoor concentration levels of radon gas may be influenced by multiple factors, among
them atmospheric and seismic phenomena, architectural barriers, etc. [26–28]. Furthermore,
perfusion of radon gas into buildings has been studied according to the basic mechanisms
that favour its inflow into built spaces. There are basically two such mechanisms, the first
one of them might be framed within the ‘gas diffusion’ mechanisms, and it is caused by the
gradient of the radon concentration level that is present in the environment [10,28]. The
second one, however, is caused by the gradient of atmospheric pressure that exists between
the building envelope and the soil itself, and it is known as ‘advection mechanism’ [10,28].

In relation to the abovementioned factors, those that directly influence the increase of
radon gas concentration inside buildings must be highlighted, and a classification can be
made of them into two groups: internal and external factors [10,29].

Internal factors refer to those features that are inherent to the building itself and its
placement, such as the construction materials, the ventilation system installed, or the soil
on top of which it is placed, among others [10].

Among the external factors there are meteorological phenomena (rainfall, relative
humidity, atmospheric pressure, temperature, and wind direction and speed) [10,28–32],
seismic movements and atmospheric instability [10,29].

As regards to the factors associated with rainfall, it has been verified that high amounts
of it on a dry ground could result initially in a reduction of the radon concentration level
on the upper soil layers because of the gas solubility [29]. If the heavy rainfall persists,
the soil could reach concentration levels close to saturation, establishing a boundary
that might avoid radon gas leakage towards the surface [29]. Additionally, and taking
into account the yearly seasons, it has been observed that radon concentration is usually
higher in winter than in summertime [29,33]. In the cold nights and seasons (Autumn-
Winter), the temperature difference between the internal and external home spaces is at
its maximum [33]. That is why an atmospheric pressure gradient appears between the
indoor and outdoor spaces of the building, causing the radon to leak in and to accumulate
inside it because of the stack effect [10,28,33,34]. In this sense, different studies associate
the use of hearths and fireplaces to an increase in radon gas concentration because of its
depressurization effect and the increase of the air-exchange ratio, but without obtaining a
clear relationship [35–37]. When time slots are taken into account, it is observed that radon
concentration in homes is higher during the night than in daytime [33], showing maximum
values early in the morning and minimum ones in the evening [10,29]. Such differences
are caused by a smaller activity level of the residents during the night, and therefore to
the existence of smaller ventilation rates [33]. Furthermore, besides the studies referenced
in Section 1.1, it might be worth to highlight that the factors associated to the people’s
uses and habits can play a fundamental role in the increase of the radon gas concentration.
Thus, the indoor ventilation rate, the use of air conditioning devices, or the behaviour
of the residents at home might result in noticeable differences between regions. In this
matter, the cultural and social differences are also key factors and they must be taken into
consideration when studying radon gas issues [38,39].

As a general rule, the existence of mechanisms and multiple facts that might change the
radon concentration level inside a home may be concluded [26,27]. Both the diffusion and
the advection mechanisms may be corrected by means of preventive actions. Internal factors
are usually constant, with little sensitivity to changes with time, unless any construction
modification is made on the building. External factors, however, show a higher variability
across the year, are more sensitive to changes, and therefore their influence in radon
concentration changes is higher.

In any case, the reduction of the radon gas concentration must be a national priority
to be addressed in the building codes and the regulations affecting the residential use of
buildings, because of its indubitable influence on the health of its inhabitants. To have
available a methodology that is easy to apply and reliable in its recommendations could
entail a better processing of the determination of the risk derived from exposure to the gas
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and in the adoption of measures addressed to a better handling of enclosed spaces, and
to the improvement of the dwelling habits related with ventilation and air treatment. All
that will contribute to a better quality of life for the inhabitants, not only reducing their
exposure to radon gas and therefore the risk of suffering its associated diseases, but also
mitigating its long- and medium-term effects and serving in turn as an awareness-raising
measure. In one word, the presented methodology would provide an efficient mechanism
for solving the associated problem, while at the same time it reduces and monitors the risk
of radon gas on public health by means of its prevention and processing, and thus it would
tune in with the Agenda 2030 as a conveying tool for its goals [40].

1.2.2. Criteria for the Application of Corrective Measures

Among the increasing body or rules and regulations related to radon gas control,
the EU’s, USA’s and World Health Organization’s (WHO) recommendations may be
highlighted. According to the United States Environmental Protection Agency (EPA),
corrective measures should be applied to reduce concentration levels above 4 pCi/L, a value
equivalent to 148 Bq/m3 [22]. Despite that, it also indicates that values below 148 Bq/m3

might involve some heath risk, this being in line with the WHO proposals on the topic,
which establishes a reference level of 100 Bq/m3 [1] in order to minimize the potential
impact on the health of people exposed to indoor radon gas concentrations. In those
cases where it is not feasible to set that limit because of—among other factors—ambient
conditions, WHO indicates that the concentration level should not exceed 300 Bq/m3 in the
worst-case scenario. According to EU Directive 2013/59/EURATOM, the reference level for
radon concentration in indoor work environments should not exceed a mean concentration
level of 300 Bq/m3 on a yearly basis [41]. That regulation is of compulsory application
by all EU member states since February 2018. Many countries have developed their own
particular safety rules and criteria for the prevention and treatment of long-term exposure
to radon gas, which in general terms agree with the WHO’s recommendations [42].

1.2.3. Radon Gas Detection Systems

Even though in this work a system for the detection of radon gas is not specifically
developed, the presented methodology incorporates readings from these systems in its
operation. Because of that, it is deemed convenient to contextualize the most well-known
detection systems. There are nowadays several different technological approaches that
provide an answer to the need of a process for determining radon gas concentration levels.
From a functional point of view, radon gas detectors might be distinguished attending
to their need for an external power supply in their operation. According to this criterion,
a first general classification is made into active and passive detectors, the first of which
need of an external power supply for their operation while the second ones do not need
it. This first general classification [1] is complemented by a second one that establishes
a distinction between active sampling and passive sampling detectors; for those in the
first group the air sample is forcefully collected by means of a pump, while in the second
group the air sample is naturally collected, by means of diffusion of permeation effects [43].
It is worth to mention that both classifications are complementary, being possible for
example to find active detectors that allow active or passive sampling. In the same way,
and in order to avoid confusion among those two classifications, a third one might be
considered between detectors capable—or not—of real-time detection, related as well with
the measurement method used [44]. Together with these general considerations, there are
still other classification criteria, that may be distinguish between ‘short-term’ when their
needed time of exposure to radon gas is reduced—from a few seconds to a few hours—and
‘long-term’ when their exposure to the gas needs of several days, or even months. This
time-based classification may be elaborated in more detail based on the already pointed-
at measurement method, by which three main groups can be established. Thus, it is
possible for example to find detectors that use grab sampling methods, which perform
instantaneous measurements in short periods of time, from 1 to 20 min. Another group
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uses continuous sampling methods by automating the measurements in short reiterated
intervals across long exposure periods of time. Lastly, the integrative sampling methods
collect data associated to the radiation effects—such as air ionization—across periods of
time ranging from a few days to a few months, calculating then the mean values [44,45].
Thus, according to the aforementioned classifications and taking into account their most
identifying characteristics, in Table 1 a summary is made of the main technologies used for
radon gas concentration measurement.

Table 1. Main technologies currently in use for the measurement of radon concentration values.

Technology Air Sampling Measurement
Technique Duration of Studies Description of the Technology

Activated carbon
detector Passive Integrating [44]

Short-term studies
(periods generally

shorter than one week)

These are based on the capability of
active carbon to retain radon gas [46].
After their use, the amount of gamma

radiation emitted may be determined in
a laboratory.

Electret ion
chamber detector

Active and
passive variants Integrating

Depending on the ion
chamber design, it may

allow to carry out
short-term or long-term

studies [47]

This type of devices measure the
ionization produced when radon atoms

disintegrate inside the chamber [47].

Track-etch
detector Passive Integrating [44] Long-term studies

After exposed, the detector is chemically
and/or electrochemically etched and
analysed in a laboratory to obtain the
average radon concentration from the
density of tracks produced by radon

and its progeny [46].

Scintillation cells Active Grab or Continuous
[44]

Commonly used for
carrying out
continuous

measurements [3] for
both short and long

cycles

It consists of a cylindrical device coated
with a luminescent material [47], with
one of the walls being transparent, and
activated by alpha emissions [46]. The

emitted photons are captured and
amplified by a photomultiplier

tube [46,47], thus allowing to determine
the radon gas concentration level in

air [46].

Gas-filled
detector

Active and
passive variants

Grab or continuous
[48]

May be used both for
short and for long

measurement periods

It is a device in which an interaction is
produced between the radioactive

particles derived from the radon gas
present in a chamber, generating ion
couples that are attracted to charged

electrodes [47]. It may use different gas
mixes such as air, argon with a small

amount of methane, and argon or
helium with small amounts of any

halogen element [47].

Solid-state
detector

Active and
passive variants Grab or continuous

Can be used both for
short and long

measurement cycles.

It is based on the interaction of the
emitted radiation with a semi-conductor

material that produces electron-hole
couples that are then collected by

charged electrodes [47]. Depending on
the type of design it may focus on one

or another radiation type, with
germanium and silicon being the most

commonly used materials [47].
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1.3. Use of Expert Systems in Decision-Support Tools

Generally, any methodology that arises from the interpretation of information aiming
to provide support to the decision-making process is susceptible to be considered within the
information systems overall framework. This kind of methodologies, shaped as decision
support systems and offering huge versatility and adaptability capabilities [49–52] have
come to constitute in these last decades its own discipline, framed as mentioned before
within the scope of information systems. Decision support systems have the capability
for being used in multidisciplinary environments, facilitating the use and integration
of different techniques and methods to allow an efficient management of information.
Among these are the gradual integration of the advances derived from data science and
artificial intelligence in the shaping of expert systems, which not only allow to drive the
decision-making process, but also to solve problems in real environments, incorporating
the knowledge from different sources and providing the capabilities that are needed to
improve the decision-making process [25].

These expert systems started to be developed in the 1960s [24,53,54] and have capabil-
ities for translating and transferring human knowledge and experience into simulation and
calculation environments [54–56], thus providing answers to complex problems. Their use,
therefore, always within the frameworks of information systems and knowledge-based
systems, is articulated as complementary or component tools in the usual methodologies
that provide support to the decision-making process [57–62]. For their correct and com-
plete definition it is necessary to start from an expert knowledge base, a human-machine
interface, an inference system and a set of data from the problem represented on a real
dominion [24,53,55,56,63–65].

On the other hand, from the point of view of design within information systems, it
is essential to consider design science as established in the works by Hevner et al. [52,66].
Design science may be applied to the building of software artifacts that allow providing
solutions for information management, whatever their purpose will be. These artifacts
will implement the structures of the decision support methodologies and, in the same way,
will accommodate the expert systems themselves. Therefore, this is in essence what is
proposed in this work, the design and development of a new decision support method-
ology applied to the prevention of the exposure to harmful concentrations of radon gas,
articulated by means of a software artifact that will implement the set of expert systems
and decision algorithms.

In a way that is similar to the traditional engineering applications, the design within
information systems encompasses a process that must start from the identification of a
problem, as well as the establishment of needs, until finally obtaining a product, in this case
being the previously mentioned software artifact that allows meeting the requirements and
limitations of the problem. In this work, and previously to the generation of the artifact,
the guidelines proposed by Hevner et al. [66] are analysed, which allow one to evaluate
the design of the artifact itself.

1.3.1. Expert Systems Applied to the Interpretation of External Factors and
Environmental Conditions

The implementation of the formerly described methods may come together with
the use of an expert system in the role of manager of the collected data. It is possible
to find in the current literature a large number of works related to the interpretation of
environmental conditions and phenomena. The work by Brambley et al. [67] in the 90s
presents and describes an expert system, the Expert Radon Mitigation Advisor (ERMA)
developed by the Pacific Northwest Laboratory. The user inputs information about the
conditions of the place to be monitored in the system, such as for example the type of
heating installed, as well as an historian of measurements of radon concentration level at
the place. From that information, the system provides the user with recommendations
about the most appropriated method to mitigate the radon gas risk. In a more general
way, the work by Reffat et al. [68] proposes an expert system aimed to the evaluation of
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the environmental quality of a specific room, taking into account multiple factors such as
thermal comfort or air quality, among others. The work by Shoom and Bowen [69] discusses
the design of the Indoor Air Quality testing and evaluation Expert System (IAQES), an
expert system that aims to diagnose problems existing in indoor spaces related to air quality,
and to suggest potential solutions. On another line, for example, the work by Ikram and
Qamar [70] poses and implements an expert system oriented to earthquake prediction. In
the work by Shin-ya et al. [71] it is intended to improve the air quality inside a building by
means of the use of expert systems. The authors developed a tool oriented towards the
identification of 9 polluting elements—CO2, CO, NO2 or radon, among others—inside a
building. This tool, besides diagnosing the presence of the contaminants, also provides
support to the process for designing the ventilation systems. Fang et al. [72] use GEOTOX,
a tool developed in their previous works [73–76], as an expert system that aims to help to
evaluate hazardous waste, allowing to perform interpretation tasks, i.e., to assess places
that present a potential hazard to health. In the thesis of Byrne [77], a hybrid knowledge-
based advisory system is developed to be applied to the mitigation of radon gas risk.
Such system takes into account, from the selection of the corrective means—for example,
fans—up to the determination of building materials and the estimation of costs.

As a collateral—but not necessarily conjoint—use of expert systems, the so-called
‘early warning systems’ are worth mention. Widely used and applied in fields as hetero-
geneous as health [78], natural disasters [79] or finance [80], this type of systems aims to
provide a quick and anticipative answer to any fact considered as harmful. Their traditional
definition might characterize them as information systems that encompass means for data
(sensor) reading and processes for detection, decision-making, information transmission
and answer-generation, aiming to minimize the impact of a harmful or pernicious fact [81].
From this point of view, the presented methodology might be understood as an early
warning system; however, in this case the main goal is not only to minimize the damaging
effect from harmful radon gas concentrations, but also to establish its causes and to propose
a reasonable solution to the detected problem. That is why an expert system is proposed,
i.e., a system having the capability for finding solutions to real problems within a domain
of specific action and with a performance level similar to human experts of technicians.
It is not proposed, therefore, a simple detection based on the identification of precursor
effects, but a methodology is defined and developed that aims to describe the problem and,
with its application, to go looking for an optimal solution to it, adapting itself to the criteria,
viewpoints and specific scenarios of its use. Once this expert system has been specified,
and its information dissemination and formalization capabilities have been verified, then
it would be possible indeed to integrate it into an early warning system, thus defining a
so-called ‘early warning expert system’ [82].

1.4. Decision Trees

Decision trees define a set of predictive methods used in the fields of statistics, data
science and machine learning. They are grounded in the determination of different groups,
by means of which the space of initial data–predictors might be segmented of fragmented,
in order to look for models in them that allow to link them by means of a common class—or
prediction variable. They allow, therefore, to omit global models with multiple predictors,
reducing them to local models by looking for a characteristic in the data that will give a
determination of groups as pure as possible, that is, groups where all the predictors will be
associated to a single class. The final objective will be to find a distribution that returns
groups as pure as possible.

The algorithms that implement decision trees use non-parametric approaches and
fit within the category of supervised learning techniques. Depending on the nature of
the prediction variable, they are called regression trees or classification trees. A common
feature to all of them is the use of some metric that allows to measure the purity of the
groups, i.e., the homogeneity between the data correspondence and the class they are
assigned to. Using a general notation, it is about measuring the purity of each set by means
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of a metric, that might be linked to the concept of entropy of a random variable [83], that
determines the degree of purity for the different groups and allows to establish a criterion
to stop the splitting. It will be the metrics for this purity measurement, understood also
as criteria for performing subsequent splits, together with other rules for stopping the
formation of new groups, which will distinguish among the different algorithms.

There are nowadays several algorithms that are used to support the predictive methods
based on decision trees. Iterative Dichotomiser 3 (ID3), extended by C4.5, the multivariate
adaptive regression splines (MARS), Chi-square automatic interaction detection (CHAID),
and the classification and regression tree (CART), are among the most widely used and
proved algorithms [84–88].

In this work, the use of CART-type algorithms is proposed for obtaining a regression
model. Initially developed in the 1980s by Breiman et al. [84], the CART algorithm defines
a set of binary decision trees where the space of predictors is getting subsequently split into
two groups, aiming to find the most pure ones: those that are associated to a single class.
In the last years, the use of CART-like algorithms has become widespread because of their
simple software implementation and the better knowledge about them by researchers [89].
CART presents advantages with respect to other regression and classification algorithms,
such as its non-parametric nature (it doesn’t take into account the distribution of the values
of the predicting variables), as well as its capabilities for finding splitting variables and for
managing both outlier data and missing variables. Furthermore, the implementation of
CART has been greatly automated and its interpretation is relatively simple, even without
having a specific training on decision trees [89].

Therefore, the CART decision tree consists in a binary and recursive partition pro-
cedure [32]. As it may be observed in the work by Lemon et al. [90], which shows a
basic schematic for a decision tree, this gets defined by a series of nodes and branches.
Starting with the ‘root’ node, the group containing all the predictors, and after exam-
ining the different input data or independent variables, a first split is established with
two descending branches that give place to two new nodes—two groups that divide the
initial space—named as ‘child’ nodes. In a similar way, the different independent variables
continue to be examined and new splits are made from the previously obtained child nodes,
producing new branches [91]. Finally, the terminal nodes—or ‘leaves’—are determined,
which establish sub-groups from the initial sample that are mutually exclusive [90]. As it
has been already mentioned, the splitting process will stop when the nodes reach a purity
level that minimizes their entropy, meaning that they contain data corresponding to a
single class.

Depending on the nature of the dependent—or predictor—class or variable, classifi-
cation or regression approaches may be chosen [85]. For the former, the Y domain within
which the predict variable y moves is a set of non-ordered values, i.e., a category such
as: ‘winter, ‘night’ or ‘rainy’, while for the latter the predict variable y moves within a
continuous domain Y that takes real values, i.e., ‘date’ (expressed as day of the year), ‘time’
(expressed over 24 h) or ‘rainfall’ (expressed in litres of water by square meter) [84,85,92,93].
Resuming the description in the last paragraph and considering this difference, the CART
algorithm applies different metrics, such as successive splitting criteria, when it is used
either as a regression or as a classification model. As a regression model, it usually ap-
plies the ‘impurity’ concept, which relates to the Residual Sum of Squares (RSS) that in
essence looks for a distribution of the predictors–independent variables—space in different
classes—or regions in this approach—aiming to lower the sum of its impurities as much
as possible. The RSS metric, in turn, is defined as the sum of the squared deviations
between the dependent variables values and the mean value for the region. The generic
expression for impurity if defined in Equation (1) [94], where yk represents the value of
the dependent variable and y is the mean value for the region [84,94]. On the other hand,
when classification models are concerned then the metrics applied are usually the Gini
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or Towing [85], where Gini is defined as a measurement of the variance in the set of the
different node classes:

Impurity of the nodes =
m

∑
k=1

(yk − y)2 (1)

In this specific case a choice is made for a regression tree. The sequence that is
necessary to determine it might be defined according to the next stages [84,93,94]:

• Step 1: Start from the root node that contains all the independent variables.
• Step 2: For each independent variable x ε X, find all the potential splitting points

by defining a series of regions or nodes that do not overlap each other, and that are
associated to the observable values linked to the predictor variable in each one of
those regions.

• Step 3: For each one of the previously identified nodes, the subset S that allows one to
minimize the impurity of the node into two descending branches giving place to two
child nodes, must be found. As it has already been mentioned, the impurity parameter
represents the sum of the squared deviations between the dependent variables’ values
and the mean value for the region or node [85]. A group might be considered as
pure when all its elements belong to the same region, and as impure when all of its
elements belong to different regions [85]. When a node is pure, it might be said that
a terminal node—or leaf—has been reached. However, when a node is impure it is
necessary to determine if it is wished to stop and accept the obtained group, or else
continue performing splits considering other independent variables [85]. As it has
been already mentioned, there are several indices to measure impurity—such as Gini
for classification problems [85]—but in this case, because a regression case will be
applied, the RSS metric becomes important, aiming to its minimization as a metric for
more homogeneous nodes.

• Step 4: The former process is repeated recursively through the recursive binary split-
ting method, selecting the predictor variable and the splitting point that guarantees
a lower total RSS value by using the subsequent nodes until the tree reaches the
maximum size that was assigned to it.

• Step 5: If a stop criterion is reached then the iteration is halted; else the command
will return again to Step 2. In relation to the stop criteria, it is necessary to be careful
because an early stop might result in a tree that is very small as to represent the
structure of the starting data. On the contrary, a late stop might produce a tree that is
too large, or even unstable, and with no useful meaning whatsoever [85].

• Step 6: Finally, after obtaining the value associated to a prediction line, it is proceeded
to calculate the root-mean-square error (RMSE) in order to determine the accuracy
and precision of the proposed regression model, by calculating the square root of the
mean value of the sum of the squared differences between the predicted and the actual
values. That is, starting from the initial data, a measure is established of how far away
the predicted and the actual values are [95].

There are other possible approaches, based on the idea that using stop rules might
cause important associations in data to get lost because of an early stop, and thus they
propose to build an extremely large tree that accommodates all the possible levels, to be
later pruned using several strategies [90,91].

2. Materials and Methods
2.1. Definition of the Methodology
2.1.1. Previous Considerations

As it has been already mentioned, and prior to the presentation and conceptual
description of the methodology, it is necessary to validate its development by using, in this
case, the proposal made in Hevner et al. [52,66], based on a set of criteria that must be met
by the contributions within the field of information systems.
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In Table 2 a review of the degree of achievement of the proposed methodology accord-
ing to the guidelines proposed by Hevner et al. is presented [52,66].

Table 2. Verification of the guidelines in Hevner et al. [52,66].

Guideline 1: Design an Artifact (the Proposed Methodology)

The artifact, meaning the methodology as detailed in Section 2.2, consists in a helping tool aimed to the process for the prevention
of high indoor concentrations of radon gas. In the first place, the calculation is made for the correction factor, from the information
collected by a set of sensors, by means of a fuzzy logic-based inference system. Later, said correction factor is combined with the
current radon gas concentration within a second inference system, also based on fuzzy logic, from which the radon risk level is
obtained. Finally, from the calculated values and the data history it is possible to train regression models based on a decision tree,
that will be used to perform recommendations on the levels at which the corrective measures should be applied to reduce the
concentration of radon gas. With the objective of automating the calculations and facilitating the understanding of the proposed
methodology, the implementation of the system has been carried out into a software artifact defined using the MATLAB®

environment developed by The MathWorks, Inc, Natick, MA, US.

Guideline 2: Relevance of the problem

The problem derived from the inhalation of radon gas results nowadays to be unquestionable, because it is recognized as the
second-leading cause of lung cancer after smoking [1,5–9,11]. That is why it becomes very important the development of a
methodology that allows to detect and anticipate potential situations in which the current radon gas concentration might get
increased inside a building.

Guideline 3: Assessment of the design

The application of the new methodology is shown in the case study described in Section 3.

Guideline 4: Contributions to the field of research

The contributions to the field of expert systems are presented in Sections 4 and 5 of this article.

Guideline 5: Rigour in the research

The conceptual development of the presented methodology, together with its classification within the field of investigation, has
been defined in Section 1. In the same way, the mathematical foundations of this work are supported on the use of fuzzy inference
systems, given their proved effectiveness and their capability for handling uncertainty in decision-making processes.

Guideline 6: Design as a search

In Section 1, the methodology has been framed within the state of the art that is inherent to the field of study.

Guideline 7: Communication of the research

In Section 5, the main contributions of the new method are presented, as will be the future lines of work.

2.1.2. Conceptual Design and Description of the Proposed Methodology

In this work a new decision-support methodology is designed and defined, based
in the use of two concurrent expert system combined with regression trees. All that is
applied to the prevention of exposure to harmful radon gas concentrations inside buildings,
especially aimed to those having a high occupancy, such as healthcare buildings. As it
has already been commented, the design of the proposed methodology is formulated
as the design of a software artifact that meets the requirements and limitations of the
problem to be addressed. In this sense, the design process must start with the collection
of needs, summarized in Table 3, from which it will be possible to establish the technical
specifications and the design constraints.

Figure 1 shows the basic flowchart of the decision-making support methodology,
which will be described next, encompassing the whole of the information handling from
the data collection to the recommendation of corrective actions after the evaluation made
by the different inference systems.
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Table 3. Design needs, requirements, and their corresponding restrictions.

Prevention of Exposure to Harmful Radon Gas Concentrations

Design Needs for the Artifact Technical Requirements Restrictions Associated to the Environment

The methodological process, from
data collection to its interpretation,
will need as little user interaction
as possible

Programming the sensor data reading,
and the automatic filtering and labelling
of information
Programming the autonomous-operation
inference models

Errors or corrections that need the
intervention of an expert

It must have an interface where the
recommendations are shown in a
graphical way

Graphical interface The user must have available a device to run
the software

It must collect environmental
information and store it in a
convenient way

Definition of a knowledge base
supported by common database systems

The applicable restrictions from the devices
and the environments where the software is
implemented

It must process recursively the
information

Continuous reading/writing on the
database systems None

It must calculate a risk value
associated to the exposure to radon gas

Conjoint implementation of the inference
systems together with the regression tree

Limitations associated to the algorithms
themselves
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The methodology is based on the use of two concurrent expert systems [96–98] for the
calculation of the radon risk value, together with a decision tree-based regression model,
that will determine the final recommendations associated to such risk. All of them are
respectively labelled in Figure 1 as ‘Fuzzy inference system Fc’, ‘Fuzzy inference system
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RR’ and ‘Regression Tree #Number of Tree’. Each one of these expert systems is provided
with a Mamdani-type inference system [99–102]. Mamdani’s inference method is one of
the most popular ones in literature [102]. It is characterized by its graphical representation
of an inference process, that is, given some previous facts or hypothesis (antecedents), it is
possible to obtain or infer a derived fact (consequent) starting from linguistic rules based on
syllogisms. Using these natural language rules of the IF-THEN type, the Mamdani fuzzy
inference system allows to combine the different antecedents of each rule and to determine
its consequents, these to be later aggregated to obtain a real-number output value by means
of a defuzzification process. The representation of antecedents and consequent is carried
out by means of the well-known membership functions—the mathematical representation
of a fuzzy set—that determine the degree of membership of a certain value to a particular
set. The subsequent combination and aggregation of antecedents and consequents uses
different specific operators that ensure the graphical combination of the membership
functions [96,98,102].

The first of the Mamdani inference systems in the methodology feeds, on the one
hand on the data collected by a set of environmental sensors, and on the other hand on
the data loaded from a database. The second inference system has as input the reading of
the radon system and the correction factor Fc obtained from the first inference system. The
combination of both will generate the radon risk index RR. Each one of the decision trees
is fed the previously established factors—Fc and RR—and the different data collected, as
well as the history of recommendations associated to all those data. From them, each one
of the mentioned trees allows one to establish the degree of recommendation associated
to a certain corrective and preventive measure which allows, either to reduce the radon
concentration, or to produce an alert on the inconsistency in the prediction.

Data Collection

The methodology starts with the periodic collection of information by means of
different data provided by sensors. All these data, together with those derived from the
methodology itself, will constitute the knowledge base. Such data will be compiled through
a control unit to be later processed through a filtering and classification system, analogous
to the one described in the article by Blanco-Novoa et al. [3] or the one proposed by Font
and Baixeras [26]. The implementation of the sensor system, as well as the collection,
gathering and transmission of data, is a previous step to the development and application
of the methodology presented in this article. Even so, and in a general way, it is possible to
consider that the data will come from two different sensor families:

• Environmental and atmospheric sensors.
• Radon sensor.

Data Reading, Processing and Interpretation

Once the input data for the system is available, their manipulation starts within the
methodological process itself. Also, the data collection may be performed concurrently
with their processing. The methodology is developed in a way that does not depend on the
type of data collection system used, and it is possible to adapt and apply it to any sensor
set and to any information pre- and post-processing hardware system, that might be either
commercial solutions or specific developments.

To start with, the data—both those coming from environmental and atmospheric
sensors—is collected to be later stored into a database. After a relevant number of data
collection cycles, it is possible to establish the correlation coefficient that exists between
the radon concentration level and the different environmental and atmospheric variables,
from the values stored into the database. After that, processing is carried out on the data
collected by the two Mamdani-type fuzzy-logic expert systems that work in a concurrent
way [96–98]. The first system is provided with a feedback from the historian as Figure 1
shows, in which depending on the correlation existing between the radon concentration
level and the value of the different atmospheric variables, the values of the different rules
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of the system itself are weighted in one or another way. The outcome of this first system is
a factor that aims to express what will be the future trend of the radon concentration level,
known as ‘correction factor’ (Fc). In the second system, the calculation is performed and an
index value related to the risk implied by the radon existing in the building is obtained,
known as ‘Radon Risk’ (RR).

Monitoring and Alert Generation

Subsequently, by means of the interpretation of the radon risk and as a helping tool
to preventive decision, recommendations will be generated relative to the application of
corrective measures that could allow to minimize the health risks derived from extended
exposure to those concentration levels. Such recommendation levels would be the outcome
of a regression model based on the CART algorithm, the correction factor value, and
the environmental and atmospheric data, and determines a set of outputs that are to
be understood as recommendations to be followed in order to minimize the health risk
associated to the radon concentration level. These outputs would be grouped in the one of
the following two categories:

• Preventive actions

# Activate forced evacuation and mechanical ventilation.
# De-activate forced evacuation.
# Natural ventilation.

• Checking actions

# Check sensors.
# Check inference.
# Check exposure time.

Therefore, from the decision trees a total of six outputs are obtained that are repre-
sented in a graphical way in order to provide support to the decision to be made. The
chart aims, precisely, to highlight the non-unquestionable nature of the posed recommen-
dations and to stress their need for interpretation that, in this case, falls on the user of the
methodology. It is they who must assess its convenience and degree of application, as well
as its conjoint nature, establishing the appropriate corrections on the final measures that, if
they exist, must be collected on the application database. In this sense, for example, the
proposed outputs are not unchangeable, but they must be studied and validated before the
implementation of the methodology is made on a study zone. If the final user considers
necessary to modify any of them, then the code of the software artifact that supports the
execution and monitoring of the methodology must be consequently modified as well.
Figure 2 shows one of these representations, where in a scale from 0 to 5 the strength of
the recommendation to be followed is specified. Such scale is standardized within this
interval in a way that these recommendations can be compared appropriately. Both the
preventive actions and the checking actions are established within the quantitative range
from 0 through 5 units. They must not be interpreted as complementary to each other, but
the value that each one of them takes within the aforementioned numerical interval aims
to make evident the degree in which those actions must be applied. That is, absolute states
are not intended, in which for example a full forced evacuation activity might be given, but
intermediate states are intended in which such evacuation is carried out in a more or less
exhaustive way. We proceed in the same way with the rest of the actions. This capability
for graduation connects with the need for interpreting the actions to be followed, because
the methodology performs recommendations that must be necessarily interpreted by the
final user.
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2.2. Implementation of the Methodology

The methodology that was introduced and developed in the previous section encom-
passes several stages that allow performing the collection and processing of data by means
of expert systems that act as complementary decision-support tools. Next, the operation of
such methodology is explained in detail.

After the sensor data—both the atmospheric- and the radon-related—are collected,
the information produced is stored and structured into a database to be processed later.
This information will constitute the knowledge base for all the expert systems and, together
with their outputs, will make up the training dataset for the regression trees. Starting then
from the building of the knowledge base, an initial processing is carried out that consists
in the calculation of a number of coefficients that aim to represent the correlation that
exists between the environmental variables and the radon concentration value, that is, to
determine the influence of the rate of change of the atmospheric parameters on the change
of the radon concentration over time. These coefficients are in turn reinterpreted to be
applied as modifiers for the importance level of the different rules used by the first expert
system in the methodology, which is based on a Mamdani-type inference system [99–102].
In this way, it is achieved to adapt such system to the specific circumstances for each
location where the radon risk value is in need to be assessed. In the same way, it is also
achieved to narrow the uncertainty level that is associated to the methodology and to
expert systems, both in their interaction, random and epistemic variants [103].

Later, the assessment of the information coming from the atmospheric factor in the
previously mentioned first information system is carried out, obtaining as its result a factor,
named as ‘correction factor’ (FC), that aims to express how favourable or unfavourable
are the atmospheric conditions in relation to producing a rise or fall in the radon gas
concentration value. Concurrent to this first expert system, a second system operates
that is in charge of the assessment of the risk that the current radon concentration value
inside the building may involve. Taking into account both the effect of the atmospheric
conditions through the correction factor and the technical measurement of the radon
concentration, it is obtained as an output of the inference process the parameter named
as ‘radon risk’ (RR). This risk value aims to be an objective metric of the danger that a
permanent presence into the monitored zone has on the health of people. It is a proper
metric, because of the defuzzification procedure that assigns to it a value that is tangible,
measurable and comparable in future measurements. It is objective as well, because it not
just takes into account the measurement of the radon sensor, but corrects it depending on the
environmental effects which their non-linear relationship with the radon gas concentration
has been modelled by using the first expert system.
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Finally, by means of a decision tree-based regression model that the atmospheric
variables, the current radon concentration value, as well as the FC and RR, are fed into, it
is possible to calculate the recommendation level associated to each one of the corrective
measures listed and suggested in the methodology. Next, the operation of each one of the
components in the methodology will be explained in detail.

2.2.1. First Inference System—Correction Factor

As it has been mentioned before, the correction factor (FC) is the output of the first
expert system, which is a Mamdani-type fuzzy logic-based inference system [99–102].
Such system, shown in Figure 1, is in charge of assessing the data coming from the
environmental sensors.

Calculation

The correction factor (Fc) is obtained as an output of the defuzzification process
performed by the first inference system. Figure 3 shows the detailed schematic of this
Mamdani-type inference system [99–102]. The inference process starts with the fuzzification
of both the input and the output quantitative variables by means of their corresponding
membership functions, previously defined but always subject to modification from the
software artefact configuration options. Trapezoidal functions [102] are used both for the
input and for the output variables, because it is considered that there will always be a range
of values showing maximum membership to each one of the qualitative valuation scales
in which the different functions are divided into. In the case of the input variables, the
valuations will be grading qualifiers (low, medium, high) within an interval determined by
the maximum and minimum values of their corresponding technical measurement ranges.
In the case of the output variable, i.e., the correction factor, its qualifiers will coincide with
those of its antecedents and the value interval will be [0, 10].
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Once this is done, the different fuzzy values obtained are combined according to a set
of pre-established combination rules. The elaboration of the rules will not be conditioned
by subjective values and will be limited to two antecedents for each rule because of
the easiness to propose and compare the effects [104,105]. Their combination is carried
out by means of AND-type operators [102], as the consequent needs of the combined
participation and contribution of all the antecedents. The output of this process is an
aggregation of the output functions associated to each rule that is finally defuzzified, thus
obtaining a specific value that in this case is the correction factor. Prior to the aggregation
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of the consequents, that will follow a disjunctive approach [102], the implication must be
carried out of the consequents which, when an AND operator is applied to the antecedents
list, will be determined by truncation using the minimum value of those obtained in
the membership functions of the antecedents in the application of the rule. After the
aggregation of the consequents, the final value of the correction factor value is calculated
by means of the defuzzification process based on the centroid method [102]. In the work by
Casal-Guisande et al. [96] a more detailed explanation of the development of these systems
is provided.

As a particular feature of this inference system, it must be pointed out that in the
initialization of the rules a standard weight of 0.25 is assigned to each one of them. Addi-
tionally, such weight may be altered by means of the calculation of a correlation coefficient
established between the atmospheric conditions and the radon concentration. As the data
is collected by the sensors, such data gets registered on a knowledge base, thus allowing to
create a history from which it is possible to calculate the existing correlation, as already
mentioned, between the atmospheric variables and the radon concentration. The differ-
ent rules in the system are weighted depending on the correlation coefficient obtained,
giving more importance to those in which the variable that they depend on shows a high
correlation level to radon concentration. As the correlation coefficient may either have a
positive or a negative value, it is important that all the possible rules have been defined
previously, even those that might result a priori to be either evident or contradictory. For
example: IF (Temperature-Difference is High) THEN (Correction-Factor is High) and IF
(Temperature-Difference is High) THEN (Correction-Factor is Low). Thus, it will be the
system itself the one that, by modifying the weight of the different rules, determines which
ones of them will have a higher or lower weight.

Determination of the Correlation Coefficient

For the calculation of the correlation coefficient between two variables (atmospheric
variable and radon concentration), in this case it is proposed the use of the Pearson
correlation coefficient. This coefficient measures the degree of lineal dependence that
exists between two variables, taking values in the range [−1, 1] [106,107]. When its value
is zero, there is no relationship whatsoever between the considered variables. Conversely,
the close its value is to one, the higher the relationship between the considered variables
will be.

The knowledge base will be updated after each one of the sensor data readings, and
the Pearson correlation coefficient between each one of the different atmospheric variables
and the radon concentration will be then re-calculated. Equation (2) shows the expression
of the coefficient for two variables, a and b, where E(a, b) is the co-variance and σa and σb
are respectively the variances for those variables [107]:

ρ(a, b) =
E(a, b)
σa·σb

(2)

The values obtained for the correlation coefficient belong to the closed interval [−1, 1].
This indicates a linear behaviour of the relationship between the atmospheric factors and
the radon gas concentration, which not always corresponds to real cases, in which there
could be non-linear growth episodes related to both variables for a specific time period.
Aiming to model this behaviour, a transformation is applied to the correlation values
obtained, that allows estimating non-linear behaviours in them, as well as fast rises and
falls within measurement intervals. Such transformation is based in the use of a sigmoidal
function that, starting from the data within the interval [−1, 1] (values to be shown in
the abscissa axis considering their absolute value), determine values corresponding to the
interval [0, 1] from the ordinate axis by means of the application of a sigmoidal function
that is fully defined by the user of the methodology. Thus, in summary, starting from
the Pearson correlation coefficient values and considering their absolute values, these are
defined within the interval [0, 1]—it must be pointed out that those values close to 1 or −1
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determine clear proportionality relationships—of the abscissa axis of a sigmoidal function.
The ordinate axis for such function is defined within the interval [0,1] and represents the
weight or graduation of the combination rules of the first inference system where the
variables considered in the calculation of the different Pearson correlation coefficients take
part. Because of that, depending on the correlation coefficient value obtained and after
applying the sigmoidal transformation, the weights for the system’s rules will be modified.
This entails that, for example, if the value obtained in the transformation is higher than
zero, then the estimated correlation between the radon concentration and the atmospheric
variable is—either directly or indirectly—proportional, meaning that the rules in which
these variables are related will be prioritized according to that proportion. In the same
way, a value of zero will be assigned to those rules for which the variables are related by a
proportionality that is different to the one established by the correlation coefficient. The
graduation in the correlation coefficients is represented by the sigmoidal transformation,
allowing modelling both the growth rate and the position of the inflexion point on the
abscissa axis, thus reflecting the correlation between the variables by modifying their initial
values. In this way, it is possible to modify the non-linear behaviour of the correlation
coefficients with regard to its assignation as weightings for the combination rules from the
inference system that will determine the final correction factor. Equation (3) shows the
generic expression for a sigmoidal function, where the parameter a allows to modify its
amplitude in the ordinate axis, b represents the growth rate of the sigmoid function, and the
parameter c allows to move the sigmoid middle zone with respect to the coordinates origin
along the abscissa axis. As the value of the weight presents a maximum value of 1, the value
of a will be 1. On the other hand, the values for the parameters b and c may be established
by the user themselves in the configuration stage. Thus, for example, the modification
of the parameter b allows modelling the relationship between the environmental factors
and the radon gas concentration by changing the growth rate, with which the user may
opt for a smoother of steeper transition between the low and high weighting zones. The
modification of the parameter c allows, for example, to keep the sigmoid inflection to
the extreme values in order to only weight combination rules having membership values
that are equally extreme. In this way, the act of moving the sigmoid towards the left will
cause the system to be more sensitive to changes, while if it is moved towards the right
the opposite effect would be obtained. Equation (4) shows the expression used for the
calculation of the new weight:

sigmoid(x; a, b, c) = a· 1
1 + e−b·(x−c)

(3)

new_weight(ρ; b, c) =
1

1 + e−b·(ρ−c)
(4)

In the definition of the rules, different levels of a consequent for a certain antecedent
are initially considered. For example: Rule 1—IF (Temperature-Difference is High) AND
(Radon-Concentration is High) THEN (Correction-Factor is High), and Rule 2—IF
(Temperature-Difference is Low) AND (Radon-Concentration is High) THEN (Correction-
Factor is High). If the correlation coefficient between the indoor-outdoor temperature
difference and the radon concentration is positive, then the value of the new weight of
Rule 1 will be the one determined by Equation (4), while the new weight of Rule 2 will be
zero. This means that a direct proportionality between the ‘Temperature-Difference’ and
the ‘Radon-Concentration’ variables is considered to exist, which a priori might appear to
be true, but not conclusive. Because of that, the use of the sigmoidal transformation makes
sense, as it allows correcting the correlation coefficient according to the expert’s criteria.
In this way, the system will be able to adapt itself and to determine which ones are the
atmospheric conditions that show a higher influence on the radon concentration.

With all that has been previously explained, the user has full control on the final
determination of the correlation coefficients, which in turn represent a weighting of the
combination rules for the first inference system that is in charge of the determination of
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the correction factor. This control will not always be mandatory as it will depend on
the assessment that the user sees fit, according to their experience and the information
cumulated into the methodology’s database, with respect to the interpretation of the
initially calculated correlation values.

2.2.2. Second Inference System—Radon Risk

The radon risk (RR) is the output of the second expert system which, as was the first
one, is a Mamdani-type fuzzy logic-based inference system [99–102]. Such system is in
charge of quantifying the existing risk from the combination of the radon concentration
reading and the correction factor obtained from the first inference system. Figure 4 shows
a schematic in which the different stages for the calculation of the radon risk are estab-
lished. It is an inference system that starts with the fuzzification of the input variables, or
antecedents, and output variables, or consequents, by means of the previously defined
membership functions. Same as in the case of the first inference system, the antecedents
use a trapezoidal-type function with a technical interval for the case of the radon gas
concentration and an interval [0, 10] for the correction factor. In this case the consequent
is the radon risk value, represented by a trapezoidal function defined in the abscissa in-
terval [0, 100] with a reasoning that is similar to the one followed in the definition of the
correction factor in the first inference system. After being combined according to a set of
pre-established rules, it is proceeded to the aggregation of the output functions associated
to each rule, or consequents, and eventually to the defuzzification of the final aggregated
set. As happened in the first inference system, the combination rules are defined without
external conditions and are combined using AND-type operators. The implication of
consequents, therefore, will truncate its own membership function by the minimum value
of the membership functions of the antecedents, proceeding to it aggregation by means of
a disjunctive method that fuses the envelopes of the consequents of all the rules.
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Figure 4. Inference System for the Radon Risk.

The output of this system, after applying the centroid method to the aggregated
function of the consequents, is named as radon risk (RR). This risk reflects a measurement of
the harmful effects on people’s health of an extended exposure to radon gas, measurement
that is associated both to the atmospheric conditions and to the reference location the
methodology is applied to. The determination of this risk by means of an inference system
allows reducing the uncertainty associated both to its definition and to its determination.
The presence of relevant radon gas concentrations must not imply in all cases that a risk
associated to the exposed person exists, but that the impact of those concentrations must be
interpreted as a probability of causing harm. In the present methodology, this expression
of probability is represented as a risk percentage, derived as explained from quantitative
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values and therefore, in principle, not in need of interpretation or of a qualitative factor to
maximize or minimize these values. It is, accordingly, an estimation of the danger of being
exposed to radon gas concentrations that do not address directly the discretionality in the
exposure time, as all those qualitative considerations are integrated into the definition of
the factor.

2.2.3. Regression Trees and Generation of the Spider-Web Diagram—Establishment
of Recommendations

So far the correction factor and the radon risk have been calculated, obtained after the
defuzzification of their corresponding inference systems, which work concurrently [96–98].
Such information must be structured into a knowledge base, together with the values of the
atmospheric variables, the radon concentration, and the level of each one of the corrective
measures associated to each dataset (variables and concentration values). Overall, in this
methodology it is posed the use of 12 independent variables and a dependent variable,
associated to each one of the six recommendations, for each one of the regression trees used.
The independent variables are the following: Year date, Day hour, Radon concentration,
Indoor temperature, Outdoor temperature, Atmospheric pressure, Wind speed, Relative
humidity, Correction factor and Radon risk. As mentioned before, the dependent variable
associated to each decision tree is a quantitative measurement associated to each one of the
six actions that are determined as outputs of the methodology. With that, it is intended that
the relationships between the atmospheric variables, the radon concentration and the radon
risk with respect to the recommendations followed in order to reduce harmful radon gas
concentrations, would be modelled. The recommendations suggested by this methodology
correspond to different actions that must be carried out, either in person or remotely, in the
zone to be monitored. As it has been already mentioned in the Monitoring and alert generation
point, the recommendations made cover the scope of corrective and preventive measures,
as well as the potential detection of errors in the measurements. The set of quantitative
measurements is established as a prediction set (dependent variable) of the decision tree,
providing a real value laying into the interval [0, 5] for each one of the determined actions.
On the other hand, all the initial information mentioned before is quantified in a direct or
indirect way and implemented as either explaining or independent variables from the tree
itself. Two inferred variables are also added, these being the correction factor and the radon
risk, that also encompass an expert interpretation of the environmental factors and radon
concentration values mentioned before. With all that, it is intended that the assessment of
the action is as rigorous as possible, fitting its value to trusted concentration estimations
and radon risk values. With the progressive use of the methodology, the data collected
and corroborated will improve the training of the trees, and therefore also improve the
proposed regression model.

The use of decision trees as recommendation predictors is not only related to the
proved capability of these algorithms for finding a relationship between heterogeneous
data without any apparent link, but also because of their easiness of interpretation and their
low need for pre-processing the initial data. Even if the regression models show a certain
loss of information in the categorization process, and there is a trend towards unbalanced
trainings in the presence of predominant classes, in this work its use presents differential
advantages. The initial data derived from the measurements and the subsequent outputs
from the inference systems will be fed into the CART algorithm without a specific pre-
treatment, while the classes will be obtained from the recommendations for actuation facing
the data collected. As it has been already mentioned, the recommendations are grouped into
two large sets: ‘Preventive Actions’ and ‘Checking Actions’, each one of them containing
three sub-sets. These six sub-sets, that will act as prediction variables, will be evaluated
within an interval of [0, 5] according to the degree of need for their implementation. In
this way, an initial data package will have 6 outputs that will correspond to a continuous
value within the closed interval [0, 5]. Each one of these outputs will determine a single
regression tree, being therefore necessary to train and cross-check six trees associated to a
single output that matches each sub-set.
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From all this information, it is possible to train each one of the six regression trees
based on the CART algorithm. The initial data are common for all of them, while the
different output classes are structured as continuous values in the interval [0, 5] associated
to each recommendation sub-set. The measures will be collected into the knowledge base
with a frequency of twice per day, proceeding to train the trees each week, that is, starting
with the first 14 data lines collected the algorithm will be trained when 14 new registers are
available. Once the tree is trained, it is possible to deduct the recommendations in each
one of the two samples that are collected daily. To do that, the trained tree will be gone
over according to the new initial data—the new predictors—and the estimated output
value will be determined, composed of a set of six natural numbers that are associated to
each one of the six recommendations listed and proposed in the methodology. In order
to verify the accuracy of the proposed regression model, monitoring and following up
the root-mean-square error (RMSE) will be performed as a measurement derived from
the mean difference between the values predicted by the regression model and the actual
values taken from the starting data [95].

Finally, the recommendation provided by the tree will be expressed as a spider-web
diagram, thus making possible to determine, in a graphical and intuitive way, which are
the specific actions that are recommended for the user to perform. These recommendations
require an interpretation, individual and combined, from the user of the methodology, who
is in charge of their implementation from a larger viewpoint that includes multiple criteria,
points of view and application scenarios.

3. Case Study and Results

In this section, the application of the methodology on a case study is shown. In order
to facilitate its monitoring and understanding, a software artifact was implemented using
the MATLAB® R2020b platform [108]. The inference systems have been implemented using
the Fuzzy Logic Toolbox [109]. Additionally, an integral graphical interface was developed
using the App Designer module. As regards to the generation of the spider-web diagram,
a third-party script was used that is available at Github [110].

3.1. Data Collection

As it was mentioned previously, the methodology starts with the collection and the
storing of information into a database carried out by different sensors. The elaboration
of this case study starts from a series of data packages collected twice a day, at 12.00 and
24.00 h, for a full month. In this case study, a choice was made for carrying out two control
measurements per day, which in any case might be modified by the user if they see it
fit. Figure 5 shows how the collected data are structured: date of measurement, time of
measurement, radon concentration in Bq/m3, indoor room temperature in ◦C, outdoor
temperature in ◦C, indoor-outdoor temperature difference, atmospheric pressure in mbar,
wind speed in km/h, rainfall in mm, and relative humidity in %. As regards to the data in
the ‘day’ column, a pre-processing was made on them so that the value ‘01 September 2020’
is coded as the integer ‘44075’, the value 02 September 2020 as ‘44076’, and so forth.
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3.2. Data Reading, Processing and Interpretation

As the sensor measurements are collected and structured into a database, it is possible
to carry out a reading on them by the system. Figure 6 shows a dashboard that allows
displaying the last measurement data. It consists of two clearly differentiated regions: a
first block in which the main measurement—the radon concentration value—is shown, and
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a second panel which displays the measurements of the atmospheric sensors. Additionally,
the date and time of measurement are shown.
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In this specific case, as it can be deduced from Figure 6, the values from the last
measurements collected from the sensors on date 29 September 2020 at 12.00 h are as
follows:

• Radon concentration value: 84 Bq/m3.
• Indoor temperature: 29.6 ◦C.
• Outdoor temperature: 6.5 ◦C.
• Atmospheric pressure: 1014.8 mbar.
• Wind speed: 9.5 km/h.
• Collected rainfall: 1.2 mm.
• Relative humidity: 62.3%.

The previous data will be used to predict the recommendations suggested by the
methodology, once the regression trees are trained.

From the data history it is possible to calculate the correlation coefficients that exist
between the radon and the atmospheric conditioning variables. Figure 7 shows the dash-
board for the software in charge of the calculation of the correlation coefficients from the
history data. In this case, the correlation coefficients obtained between the different values
are the following:

• Correlation coefficient of radon concentration vs. indoor temperature: 0.2047.
• Correlation coefficient of radon concentration vs. outdoor temperature: −0.08535.
• Correlation coefficient of radon concentration vs. temperature difference: 0.155.
• Correlation coefficient of radon concentration vs. atmospheric pressure: 0.05139.
• Correlation coefficient of radon concentration vs. wind speed: 0.04129.
• Correlation coefficient of radon concentration vs. rainfall: −0.3779.
• Correlation coefficient of radon concentration vs. relative humidity: −0.09206.
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Figure 7. Dashboard for the calculation of the correlation coefficients.

It is observed that one of the strongest correlations is the one that exists between radon
concentration and rainfall, in this case having a negative sign, which may be interpreted as
that when the rainfall value grows the radon concentration value drops, and vice versa.

These correlation coefficients, after they have been transformed by means of a sig-
moidal function, are used to modify the weight of the rules from the first inference system.
Figure 8 shows the dashboard used for the modification of the sigmoidal function param-
eters that allows to decentre it and to change the growth rate, and therefore the weights
to be obtained. This will have a great influence on the correction factor to be obtained,
making the system to be more or less sensitive to the changes associated to the variables
that are the most dominant on this phenomenon.
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Once the correlation coefficients have been calculated and the rules of the first inference
systems have been modified, it is proceeded to the calculation of the correction factor
and the radon risk values by the inference systems 1 and 2, respectively. In Figure 9 the



Int. J. Environ. Res. Public Health 2021, 18, 269 24 of 32

calculation blocks of the inference systems 1 and 2 are highlighted on the graphical interface.
A correction factor value of 5.078 and a radon risk value of 61.79 were thus obtained. If the
sigmoidal function was displaced towards the left, then the correction factor value would
be higher.
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3.3. Monitoring and Alert Generation

The data collected after the defuzzification process performed in both inference sys-
tems, together with those previously collected, are structured into a database. The first
time the system is used, in the stage just before its autonomous operation, the user must
set the levels associated to each one of the recommendations, thus establishing the training
dataset for the regression trees. After that, when the system is in steady-state operation, the
trees will be trained again each time 14 new lines are incorporated into the database, i.e.,
each seven days. In this case, with the data from the last registered measurement shown in
Section 3.2 of this case study, the following recommendation levels have been obtained:

• Activate forced evacuation: 3.667/5.
• De-activate forced evacuation: 1/5.
• Natural ventilation: 2.5/5.
• Check sensors: 0/5.
• Check inference: 0/5.
• Check exposure time: 0/5.

The RMSE for the sample displays values of 0.1809, 0.4009, 0.1890, 0.3619, 0 and 0 that
correspond to each one of the six proposed regression trees. As it happens that all of these
values are close to zero, and taking into account the measurement scale, the regression
values are considered overall as reliable because they show a small difference between
the actual and the predicted values [95]. As a consequence of that, and aiming to ease the
interpretation of data by the user, these are displayed in the form of a spider-web diagram,
as shown in Figure 10.

In the view of the recommendations obtained, it may be concluded that the current
radon gas concentration is prone to rising, and because of that it is recommended to activate
the forced ventilation as a first option, or else to choose natural ventilation solutions.
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4. Discussion

In the present paper a novel decision-support methodology related to the prevention
of the harm caused by exposure to radon gas is proposed. Such a methodology is grounded
on the integration of expert systems into the process for the determination of the risk
associated to the radon gas concentration level, combined with a regression model that will
determine the degree in which the implementation of some corrective recommendations is
necessary. The issues associated to radon gas are unquestionable, as already described in
Section 1 where, additionally, the main detection technologies are identified. The use of
expert systems allows increasing the validity of these technologies, as they allow combining
the data obtained through them with those derived from different atmospheric sensors,
in a way that by means of inference engines the interpretation of the results obtained by
the radon gas concentration measurement devices might be improved. In this sense, the
proposed methodology aims to optimize the components that constitute the measurement
system in a way that does not depend on the arrangement and/or the type of elements used
for the collection and processing of information. That is, the arrangement of the sensors
and other hardware elements is not a decisive factor in the application and development of
the methodology, which always will make use of the data stored into its knowledge base to
carry out the risk inference calculations and the final establishment of recommendations.
However, this independence does not downplay the importance of a correct design of
the hardware elements in charge of providing such data. Thus, as already mentioned
in Section 2.1.2, starting from a trusted arrangement, composed for example of a set of
active radon detectors together with a weather station, experimentally validated [26], the
methodology could add a further recommendation to the measurements obtained, not
only optimizing their interpretation but also detecting potential trends, biases or errors
associated to the implementation of the measurement system itself. The contribution does
not lie in the choice for a certain sensor, but in the implicit capability of the methodology
for inferring a potential risk associated to high gas concentration values by means of the
expert systems and their capabilities for the estimation of recommendations from a set of
data. According to the improvement of the inference capabilities of the expert systems, the
fine-tuning of the correlation coefficient and the data stored, the methodology will steadily
achieve more reliable predictive functionalities even if the measurement system might
become unreliable and indicate gas concentration values far from the actual ones. Thus, the
initial methodology may keep optimizing the rules of the inference engines by means of the
data stored, in such a way that the control of the results is progressively getting improved.
Finally, the methodology provides a diagram of recommendations that is determined from
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all the data processed: atmospheric sensors, radon detector, and risk and correction values,
derived from the use of regression trees based on the CART algorithm. This algorithm
allows to find a non-linear relationship between all the input data and to establish a level
of need in the interval [0, 5], associated to six different corrective recommendations. These
recommendations are grouped into two sets: on the one hand the preventive ones that
aim to lower harmful gas concentrations, while the checking actions, on the other hand,
aim to alert of an incorrect or failed operation of the methodology and its supporting
hardware. This last aspect must be highlighted, as the methodology is robust before the
possibility of detecting errors in the measurement sensors. Besides the monitoring that
the user might perform on the different values collected or inferred, there is an inherent
control in the application of the CART algorithm that allows detecting potential errors. In
the development of the first inference system, the calculation of the correlation coefficients
would provide a first warning about a potential malfunction in the radon sensor to the
user of the methodology, because the Pearson coefficient values would differ much from
those recorded in the history data base. In the case the user does not notice it, the system
would carry the error and would produce an erroneous correction factor value that would
in turn result in a radon risk value that is also in error. Thus, when those data were
inserted as a prediction line for the CART algorithm, depending on the stored history two
approaches show up, the first one of them associated to very early stages of the application
of the methodology, and therefore with a low number of records, where the regression
model obtained would provide results with a very low reliability, represented by a high
root-mean-square error (RMSE) value. The second one, associated to an advanced stage of
application, would have a high number of records and in it the regression model would
univocally determine a check sensors action, as it would connect the prediction data with
other similar data from the past that determined at that moment, after the review of the
results, the existence of errors in the radon sensor. This involves reinforcing the idea on
the non-dependence of the methodology with respect to the system of sensors and other
measurement hardware. As an example, many studies highlight the relationship that
exists between indoor radon gas concentration and indoor-soil pressure difference [28,111]
which might lead to the recommendation of incorporating a specific sensor. Even if this
metric were not initially considered, the evolution of the results, drifting away from the
actual conditions, would cause errors in the accuracy of the CART algorithm derived from
a wrong determination of the correlation coefficients. That would force the users of the
methodology to check, not only the status of the sensors but also their appropriateness
to the radon risk modeling by analyzing and interpreting the collected and inferred sets
of results. Thus, the incorporation of a specific sensor aimed to collect a particular value
would be straightforward for the user, as he would need only to adapt the membership
function that corresponds to the first inference system, and to update accordingly the table
of correlation coefficients.

The combination of the inference systems with a regression tree is one of the differential
aspects of the presented methodology. The main features and contributions of each one
of these approaches have been already pointed to in the paragraph above, so now a
combined analysis of them will be addressed, considering the methodology within its field
of study: the analysis, prevention and reduction of harmful concentrations of radon gas.
As described in Section 1.3.1, there are different approaches that relate the use of expert
systems with prevention systems. When adding to these the ones categorized as early
warning systems (described in the aforementioned section), then a big enough corpus of
knowledge would be available on which it would be possible to carry out a comparison.
Thus, the points of the methodology that might be highlighted when considering their
combined operation would be the following:

• Unlike early warning systems, the use of expert systems combined with decision trees
is not aimed only at minimizing the impact of radon gas concentrations, but it also
intends to mitigate the existing effects and to enrich the knowledge base of the system,
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in a way that allows to keep inserting and identifying factors influencing those gas
concentrations.

• When defined as expert systems, the decisions will always be subject to a final review
because, even if they may be understood as multi-criteria decision methods, in no
case they encompass all the criteria, viewpoints and scenarios that could show up. So,
its preventive effects would be a consequence of its evolution as knowledge-based
systems, while their derived decisions will always be interpreted by the users, who at
any moment may modify them, either inside or outside the methodology.

• The incorporation of modification mechanisms that are not related to the re-programming
of the software artifact is one of the key points of the methodology. It clearly increases
its versatility of use as well as its adaptation to different scenarios and circumstances.
Said scenarios, in principle related to buildings with a residential use and their as-
sociated environmental metrics, may be extended with a mere re-definition of the
membership functions and the dependent variables, defining through these all the spe-
cific circumstances for each scenario where the methodology is wished to be applied.
For example, if its use were focused on underground mines then it would be necessary
to re-define the intervals and qualifiers of the input variables to the first inference
system, as well as removing and considering recommended actions according to their
origins. In any case, those changes would be easily implemented.

• The necessary interpretation of the results derived from the algorithm establishes the
nature of expert systems, enriches their knowledge base, and incorporates a qualitative
control on the uncertainty that is associated to the definition and application of the
methodology. With all that, the uncertainty that is inherent both to data collection
and to their qualitative interpretation is reduced. Not only the uncertainty from the
randomness of measurements is reduced, but also the epistemic is—this one related to
the lack of information—and the one related with the own interaction of the systems,
algorithms and data collection processes as well. The fact of supervising the risk
determination by means of a correction factor, and the constant monitoring that is
provided by the definition of the membership functions, allows an expert user to
continuously improve the prediction capability of the methodology.

The results derived from the application of the methodology suggest, not only that
the needs established in Table 3 are met, but that they have been improved. The presented
interface, even if it is liable to further modifications to improve it, is clear and easy to use.
The collection of information, besides the calculations related to the inference system and to
the CART algorithm, are autonomous and do not require any user intervention. However,
even if the functional aspects of the software artifact are obvious, the results obtained also
invite one to consider an unquestionable reliability in its prediction capabilities. The final
suggestion resolves that it is necessary a corrective measure such as the—forced or natural—
ventilation, as the methodology predicts a trend towards harmful concentrations of radon
gas. The fact of having established a relationship between rainfall and radon gas concentra-
tion allows making predictions based on atmospheric variables, controlled by means of
regression trees. For example, in the case study, when both a trend is observed of rainfall
reduction and a medium value of radon gas concentration is detected, combined with an
increase in temperature difference, the methodology recommends preventive ventilation.

The use of expert systems as a support tool for decision-making is common in engi-
neering processes and, of course, a highly evolutionary and wide field of study. There
are nowadays applications that make use of the expert system concept in many fields,
from the civil to the health environment. In this sense, the use of expert systems allows
to diversify the collected information in such a way that it may be interpreted in a more
rational and normalized way. It also contributes with a feature to formalize the information
to optimize the risk value inferred by the methodology. It is precisely in this aspect where
the presented methodology distinguishes itself from other ones applied to environmental
systems. It is known the capability of expert systems to provide reasonable solutions to
undetermined problems. The already mentioned capabilities for diversification and formal-
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ization of information are a key difference in the decision support methodologies based
on these systems. By complementing these features with the use of regression trees for
establishing an assessment of the recommendations to be followed before a certain radon
gas risk value, a methodology has been built that is robust, efficient and differential. The
authors are not aware of any instance of the combined use of expert systems and regression
algorithms in the field of decision making related to the identification of harmful radon gas
concentrations. There are some works, already commented in Section 1.3.1, that suggest
the use of expert systems aimed to that same purpose, but the authors themselves point
to the future development of proposals that have been already included in the presented
methodology. As an example, Fang et al. [72] in their 1993 work pointed to the use of
correlation models as complementary to the predictions, besides highlighting the need for
using several expert systems to improve the acquisition of all the process information. In
the same sense Brambley et al. [67] take a stand by stating that the use of expert systems
applied to establish processes for radon gas mitigation need of an efficient data collection at
several different levels of application. All the previously mentioned works, as well as those
referenced in Section 1.3.1. are useful as a development base for the methodology proposed
in this article and make it possible to identify and contrast the presented improvements.

5. Conclusions

Both the radon gas detection technologies and the devices that implement them
constitute nowadays an industry with its own entity because of the undeniable health
problems associated to the exposure to high concentration levels of this gas. By proposing
a new methodology that will provide support to the decisions related to the prevention of
high concentrations of radon gas, a system for the prevention of the risk associated to the
exposure to radon gas with an increased effectiveness and reliability has been defined. The
use of expert systems combined with decision tree algorithms means a clear differentiation
of the presented methodology with respect to other ones that exist in the field of study.
Because of that, the proposed methodology not only presents a determined and measurable
control on the different types of uncertainty that exist in information systems, but also
allows establishing an objective measurement of the radon gas risk. Finding a reliable
metric for the risk of this gas, associated also to a graduation of recommendations to
be followed, makes possible to size the real use of the proposal made. Precisely, that
usability is shown in the case study, where it is highlighted the capability for stating the
relationship between different variables, first with radon gas concentration and second with
the proposed recommendations. It may be highlighted that all those features can always
be adapted to each specific user, either directly or indirectly, by means of the definition
of the software artifact. Considering all these aspects, the methodology presented in this
work makes possible a continuous improvement in the process for preventing exposure
to harmful radon gas concentrations, focused especially on dwellings and public and
residential buildings. Its implementation is not only recommended from the viewpoints
of engineering and healthcare, but it connects directly with the sustainable development
goals included in the Agenda 2030, specifically in reference to ‘ensure healthy lives and
promote well-being for all at all ages’ [40], as it allows an efficient reduction in a potential
risk to public health, as well as a future integration—as justified before—into an early
warning system.

Even so, there are still several limitations that must be subject to an important future
development. Expert systems show a strong dependency on both their knowledge base
and the inference engine used. This issue, together with the difficulties that the decision
tree-based regression model shows when the class variability is low, makes compelling to
improve the processes for the definition and the conceptualization of both the inference
models and the regression algorithms. In the same way, the use of both rule systems with
two antecedents, even if it eases its interpretation, at the same time limits the identifica-
tion of existing correlations between environmental variables. New approaches where an
efficient dynamic effect exists in the elaboration of the membership functions and the defi-
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nition of combination rules with several antecedents, together with the use of forest models
or support vectors, might improve the capability for prediction of the current methodology.
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