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Detection, characterization and classification of patterns within time series from

electrophysiological signals have been a challenge for neuroscientists due to their

complexity and variability. Here, we aimed to use graph theory to characterize and classify

waveforms within biological signals using maxcliques as a feature for a deep learning

method. We implemented a compact and easy to visualize algorithm and interface in

Python. This software uses time series as input. We applied themaxclique graph operator

in order to obtain further graph parameters. We extracted features of the time series by

processing all graph parameters through K-means, one of the simplest unsupervised

machine learning algorithms. As proof of principle, we analyzed integrated electrical

activity of XII nerve to identify waveforms. Our results show that the use of maxcliques

allows identification of two distinct types of waveforms that match expert classification.

We propose that our method can be a useful tool to characterize and classify other

electrophysiological signals in a short time and objectively. Reducing the classification

time improves efficiency for further analysis in order to compare between treatments or

conditions, e.g., pharmacological trials, injuries, or neurodegenerative diseases.

Keywords: visibility graphs, graph theory, maxcliques, electrophysiological signals, deep learning, pre-Bötzinger

complex, XII nerve, sigh

1. INTRODUCTION

To understand brain functioning neuroscientists use electrophysiological techniques (e.g., macro-
patch and patch-clamp recordings) to assess activity of neurons. Whereas, sharp-electrode and
patch-clamp techniques are used to record the activity of a single neuron, extracellular field
recordings and macropatch techniques allow recording the activity of many neurons within a
population. Macropatch suction electrodes are widely used to record motor nerve activity. The
inspiratory phase of the respiratory rhythm is generated in the pre-Bötzinger complex (pre-BötC),
a neuronal network in the ventrolateral medulla. In an in vitro preparation containing the pre-BötC,
inspiratory-related motor output can be recorded from the XII nerve. Nerve activity is integrated
and used to classify and characterize the inspiratory-related burst. Frequently, researchersmade this
manually; however, this is a time-consuming and very subjective task. Spike sorting, traditionally,
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is made measuring properties of the waveform (e.g., peak
latency, spike half-width, amplitude), determining which of these
properties or features are relevant (e.g., principal component
analysis) and performing cluster analysis (Rey et al., 2015). In
the literature, one can find several algorithms employed for
the spike sorting, following different steps and approaches. For
instance, some of the techniques are based on wavelets, or
combinations of wavelets and different approaches of principal
components, for a review one can see Rey et al. (2015) and
Lefebvrea et al. (2016). A more recent approach is based on
the shape, phase, and distribution features of each spike and
a clustering algorithm based on k-means (Caro-Martín et al.,
2018). Along with the spike sorting algorithms, methods that
validate them are necessary (Einevoll et al., 2012). However, in
the field of respiratory rhythm there are not automated methods
for the identification of sighs. In plethysmographic recordings,
sighs are identified visually by the expert. In electrophysiological
recordings from reduced preparations in vitro, the criteria
for defining a sigh are determined by the researcher and
therefore vary between research groups. Some groups consider
the amplitude as a relevant parameter (Lieske et al., 2000; Lieske
and Ramirez, 2006a,b; Ruangkittisakul et al., 2008); others the
presence of biphasic burst (Kam et al., 2013; Li P. et al., 2016).
Here, based on our analysis we propose to use graph theory
to characterize and classify waveforms within biological signals
using maxcliques as a feature for a deep learning method.

A network or graph is one of the most intuitive, explicit and
clear representation of a complex system. Such graphs consist
of nodes and links representing the participating elements and
the interactions among them. Therefore, graphs characterize the
structure of complex systems and how its elements interact. That
is, they can reflect the dynamics or functions of the complex
system if states and transitions are represented by nodes and
links, respectively (Gershenson and Niazi, 2013). If one can
understand the relationship between structure and function, then
the characterization and classification of complex systems can be
studied further.

In this work, each time series is associated with a simple
graph called visibility graph, as defined in Lacasa et al. (2008) and
studied in Lacasa and Flanagan (2015). As a remark, this graphs
inherits either the periodicity or the randomness of the original
time series. Even more, fractal time series are transformed
into scale-free graphs (Lacasa et al., 2008). We aimed to use
Graph Theory to characterize and classify visibility graphs using
maxcliques as a feature for a deep learning method. Here, we
analyzed in vitro recordings of XII nerve inspiratory activity to
classify sighs and non-sighs waveforms. The visibility graph of a
non-sighs shows a simpler structure than sighs. The interest of
the authors in sighs is its relevance in preventing lung collapses.

Recently, visibility graphs have been employed to analyze
the resulting time series from physiological data as in Hou
et al. (2016), Jiang et al. (2013), and Shao (2010), in the
analysis of complex networks for cardiorespiratory interactions
(Long, 2015) or a modified visibility graph for the suicidal
tendency (Bhaduri et al., 2016). However, in these works, the
concept of maxcliques from graph theory was not implemented
in the characterization and classification of waveforms.

We present a graphical interface, written in Python, that
helped in the process of constructing the visibility graph
from the time series and determining several parameters of
the resulting graph. Python is an open source interpreted
programming language. The simplicity of Python syntax makes
its code readable and understandable, facilitating its learning.
There are several Python libraries, such as pandas, numpy,
SciPy, and others that allow the user to process and analyze
data easily and quickly. Although a Python package with the
implementation of the algorithm described in Lacasa et al. (2008)
can be found in García-Herrera (2015), the one showed in
this work is more convenient and, as a consequence, easier to
visualize. The interface employs two Python libraries: NetworkX
(https://networkx.github.io/), where several algorithms of Graph
Theory have been already implemented, and matplotlib (https://
matplotlib.org/) for the graphs.

We claim that several aspects of a time series can be deduced
from certain parameters of the associated visibility graphs. In this
work in particular, that was the case with the maximum degree,
the clique number, and the number of cliques. They allowed to tell
sighs from non-sighs in the time series obtained in the waveforms
from in vitro recordings of XII nerve inspiratory activity.

2. MATERIALS AND METHODS

2.1. Graph Theory
As a mathematical concept, a graph G is composed by a set of
points denoted with V(G), and a set denoted by E(G) whose
elements are unordered pairs of elements of V(G). The elements
of V(G) are called vertices or nodes, and the elements of E(G)
are called edges or links. The number of vertices in a graph G
is called the order of the graph G and is denoted by |G|. If the
nodes v1, v2 are such that {v1, v2} ∈ E(G), we say that the vertices
v1, v2 are adjacent, and we denote that by v1 ∼ v2. Given a
vertex v, the number of vertices adjacent to v is called the degree
of v. As a starting point for the concepts from graph theory, we
recommend Harary (1969) and McKee and McMorris (1999).

Lacasa et al. (2008) associated for the first time a graph to
a given time series by a procedure they called the visibility
algorithm, which we now describe. Given a time series with data
pairs {(ta, ya)}, they obtain the visibility graph of the time series
as the graph where the vertex set is the set of all data pairs,
and define that the pairs (ta, ya), (tb, yb) are adjacent whenever
we have:

yc < yb + (ya − yb)
tb − tc

tb − ta
, (1)

for all data pairs (tc, yc) with ta < tc < tb. The geometric
visualization of this condition is shown in Figures 1A,B.

Given a graph G, a maxclique C is a subset of its nodes such
that every two nodes in C are adjacent, and there is no vertex inG
not in C that is adjacent to all the vertices of C. We follow McKee
and McMorris (1999) in the use of the term “maxclique,” in order
to avoid the ambiguity found in the literature on the meaning of
the word “clique.”
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FIGURE 1 | (A) The vertices (3, 2.2) and (5, 1.7) are adjacent in the visibility graph. (B) The vertices (2, 1.7) and (4, 1.5) are not adjacent in the visibility graph.

The maxclique graph is the graph that has as vertices the
maxcliques of G, and where two maxcliques C1, C2 are adjacent
whenever there is at least a vertex ofG that belongs to bothC1 and
C2. As a reference for maxclique graphs we mention Szwarcfiter
(2003). The maxclique graph of G will be denoted as K(G). It
follows then that a graph G has |K(G)|maxcliques.

We now define further parameters of a graph G that will be
considered in this work:

• Maximum degree: This is denoted by 1(G), and is the
maximum among all degrees of vertices of G.

• Clique number: This is the number of elements of the largest
maxclique of G. It is denoted by ω(G).

As an example of the concepts described here, consider the
time series given by

[(0, 1), (1, 1.3), (2, 1.7), (3, 2.2), (4, 1.5), (5, 1.7), (6, 0.8)] (2)

In Figure 1A, we show two vertices adjacent in the visibility
graph and in Figure 1B we show two non-adjacent vertices.

The visibility graphG of this time series is shown in Figure 2A.
The vertex with maximum degree is the vertex 3, and its degree
is 5, and so 1(G) = 5. The graph G has three maxcliques, so that
|K(G)| = 3. The three maxcliques are: {0, 1, 2, 3}, {3, 4, 5} and
{5, 6}, with 2, 3, and 4 vertices each. Since the greatest maxclique
of G has four elements, we obtain that ω(G) = 4. Finally, note
that the second clique intersects each of the other two, and the
first and the third do not intersect. So the graph K(G) has three
vertices, as it is shown in Figure 2B.

2.2. Interface to NetworkX in Python
The graph algorithms described in section 2.1 were implemented
in a Python interface using the PyQT5 library. The supported
files are of one or two columns (.txt or .csv format). One can
select the percentage of sampling frequency (recommended for
large signals), visibility graph style and an option to create the
maxclique graph (Figure 3).

With the signals loaded and setting the parameters, the
visibility graph G is created. The visibility graph G, the
maxclique graph K(G) (in format .png) and the parameters
that are calculated in each algorithm (in format .txt) are

saved to the signals folder. The interface has also a tool to
segment or auto segment signals (Figure 3). The button Start
segmentation enables a bar to select a region in the signal loaded.
For auto segment signals the user must introduce an upper
threshold, lower threshold, segment width and distance between
spikes. In Figure 3, we show a schematic representation of the
process to classify electrophysiological signals using maxclique
graph parameters.

2.3. Experiment
The pre-BötC (pre-Bötzinger complex) is a heterogeneous
network of interneurons. In rats this contains a population
of ∼1,000 neurons. In synaptic interactions between pre-BötC
neurons each neuron produces inspiratory rhythmic activity in
the form of synchronous depolarization of 10–20 mV with a
duration of 0.3–0.8 s and with waveforms called inspiratory
bursts. In addition to its role in the generation of the respiratory
rhythm, pre-BötC is essential for the formation of the respiratory
pattern. The protocol for obtaining respiratory rhythm records
consists in sectioning the brain stem of neonatal rats under the
microscope until the ambiguous nucleus and the inferior olive
appear (Figure 4).

We describe the electrophysiology in brief. Coronal sections
were cut (500–600µm) and the rhythmic activity was recorded
from the roots of the XII nerve (XIIn). Then the signal of the
XIIn motor neurons excited by pre-BötC neurons is transmitted,
obtaining the rhythmic activity of the XIIn (Figure 4). Once
baseline activity was established, drug application was performed
in the slice bath. In each experiment, two time series were
obtained, the first corresponding to control respiratory activity
(Figure 5A) and the second when the pre-BötC slice was exposed
to bombesin (Figure 5B). In Figure 4 we can observe two
components: normal respiratory rhythm (non-sigh) and long
inspirations known as sighs. Sighs are biphasic inspiratory bursts.
However, sighs can fulfill important regulatory functions. More
specifically, a sigh acts as a general restorative of the respiratory
system (Patroniti et al., 2002). In general, the pre-BötC generates
a normal inspiratory burst every 7–8 s (non-sigh) and every 30–
40 s generates a disturbance called a sigh. For more information
on how the experiment was done see Munoz-Ortiz et al. (2016).
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FIGURE 2 | (A) Visibility graph G. (B) Maxclique graph K(G).

FIGURE 3 | Schematic representation of the methodology. First, the interface identify and segment each potential of the electrophysiology recording. Then, a visibility

graph is created for each potential, for large signals a reduction of the sampling frequency is recommended. After that, from the maxcliques determined of the visibility

graph, the maxclique graph is created and its parameters are estimated. Finally, a K-means clustering is performed on the maxclique graph parameters. In this work,

the result is a classification of the potentials as sighs or non-sighs.
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FIGURE 4 | Coronal brainstem section that presents the anatomical marks to locate the pre-Bötzinger complex. Representative integrated activity of the XII nerve

showing characteristic waveform of sigh and non-sigh.

FIGURE 5 | Respiratory rhythm. (A) Control record and (B) Bombesin record. In asterisk (*) are shown sighs.

2.4. Statistical Analysis
Given that data did not follow a normal distribution
(Shapiro-Wilk test), the Box-Cox transformation was used,
as implemented in the R package fpp. With that, λ = −0.475
was determined as the value that maximized the log-likelihood
function and yield the best transformation to normality. Some
parameters of the visibility graph G associated to the time
series (1(G), ω(G), and |G|) and of the maxclique graph K(G)
(1(K(G)), ω(K(G)), and |K(G)|) were compared between
sigh and non-sigh using a two-way ANOVA, followed by

a Bonferroni’s multiple comparisons test. To evaluate the
performance of classification based on visibility or maxclique
graph parameters, we compared the number of sighs and non-
sighs identified by the three classifiers performing a chi-squared
test and a pairwise comparison with Bonferroni’s correction.
Then, we compared both classifications vs. the classifications
based on an expert determining the number of successes and
failures of each classification. Then, we performed a McNemar’s
test. Two-way ANOVA was performed in GraphPad Prism (v.
6.00, GraphPad Software, Ca, USA). Box-Cox transformation,
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FIGURE 6 | (A) Inspiratory burst recordings with its sampling frequency reduced to 5% of non-sigh and sigh time series from respiratory rhythm in vitro recordings.

(B) Circle visibility graphs constructed from time series shown in (A), for non-sigh G1 and sigh G2, respectively. The non-sigh circle visibility graph may appear to show

fewer connections than the sigh one. (C) Maxclique graphs for non-sigh and sigh. In this case, it is apparent that the number of connections (that is, edges) is much

larger for sigh (K(G2)) than non-sigh (K(G1)).

chi-squared andMcNemar’s tests were performed in R (v. 3.6.1—
“Action of the Toes”). Significant differences were considered at
P ≤ 0.05. Data is showed as mean± S.E.M.

3. RESULTS AND DISCUSSION

3.1. Results
As an example of usefulness, we employed in vitro recordings
from XII nerve respiratory rhythm activity of rats in order to
obtained time series describing burst amplitude. In this time
series, we can differentiate between sigh and non-sigh waveforms,
which were recorded in control and bombesin conditions. First
of all, we wanted to determine if the classification between sigh
and non-sighs was correct, independently of the experimental
condition. To achieve the latter, we used a short time series
composed of 17 potentials of control recording (Figure 5A),
which were previously classified by an expert in 14 non-sighs and
3 sighs. Likewise, we used a bombesin recording composed of 27
inspiratory bursts (Figure 5B), 22 non-sighs and 5 sighs.

To create the visibility graphs the sampling frequency of each
inspiratory burst was reduced to 5%, in both sighs and non-
sighs waveforms (Figure 6A). The visibility graph of the non-sigh
and sigh will be denoted by G1 and G2 (Figure 6B), respectively.
Now, for each visibility graph, G1 and G2, we constructed their
maxclique graphs, denoted as K(G1) and K(G2) (Figure 6C),
respectively. From both graphs, we calculated their maximum
degree 1(G1),1(G2), clique number ω(G1),ω(G2), and number
of cliques |K(G1)|, |K(G2)|.

Classification of waveforms was performed using K-means
clustering analysis with the three graph parameters [clique
number: ω(G), number of maxcliques: |K(G)|, and maximum
degree: 1(G)] of each graph [visibility, G and maxclique, K(G)],
comparing in pairs. Of these parameters, we observed that
clique number and number of maxcliques classify better both
waveforms, independently of experimental condition.

K-means clustering analysis with visibility graph parameters
resulted in 13 non-sighs and 4 sighs in the control recording,
and 21 non-sighs and 6 sighs in the bombesin recording
(Figure 7A). In contrast, K-means clustering analysis with
maxclique graph parameters resulted in 14 non-sighs and 3
sighs in the control recording, and 21 non-sighs and 6 sighs
in the bombesin recording (Figure 7B). In Figures 7C,D, we
show the inspiratory bursts as classified by the maxclique
graph parameters, in both control and bombesin condition,
which shows that this classification is accurate. Altogether,
these results show that the clique number and the number of
max cliques of the maxclique graph have a better classifying
waveforms performance.

In the previous description, we used an expert delimited
and classified waveforms. However, we created an automatic
segmentation and performed the same analysis to evaluate if the
classification remained consistent. In this case, we used a time
series composed of 39 and 99 inspiratory bursts, recorded in
control and bombesin conditions, respectively (Figure 8).

The automatic segmentation identified every single burst.
Classification based on visibility graph parameters resulted in
10 sighs and 29 non-sighs, in the control recording and 42
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FIGURE 7 | Classification according with clique’s parameters. Control on first column and bombesin recording on second column. (A) Visibility graph and (B)

Maxclique graph K-means cluster analysis, (C) non-sighs, and (D) sighs inspiratory bursts. In red are shown the means of all inspiratory bursts classified with

Maxclique graph.

sighs and 57 non-sighs, in the bombesin recording. On the
other hand, classification based on maxclique graph parameters
resulted in 5 sighs and 34 non-sighs, in the control recording
and 6 sighs and 93 non-sighs, in the bombesin recording.
The inspiratory bursts as classified by the maxclique graph
parameters, in both control and bombesin condition, are shown

in Figures 9A,B, respectively. This suggests that automatic
segmentation properly identifies potentials, regardless of the
waveform and experimental condition.

On previous results, we observed that maxclique parameters
seem to classify more accurately between both waveforms. Thus,
in order to determine if this is robust enough, we performed the
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FIGURE 8 | Respiratory rhythm recording and corresponding visibility graphs for (A) control with 39 and (B) bombesin with 99 inspiration burst. In asterisk (*) are

shown sighs.

analysis with a larger time series, composed of 182 potentials.
After K-means classification based on visibility or maxclique
parameters we compared between putative sigh (20 potentials)
and non-sigh (162 potentials) waveforms. Our analysis showed
that both visibility and maxclique graph parameters show
statistical difference between sigh (S) and non-sigh (NS) (graph
parameters, F5, 1080 = 579.2, P < 0.0001; waveform, F1, 1080 =

508.4, P < 0.0001; graph parameter*waveform, F5, 1080 = 14.66,
P < 0.0001). Bonferroni’s post-hoc test showed thatGmax degree
(S, 44.10 ± 1.60 vs. NS, 26.62 ± 0.48; P < 0.0001; Figure 10), G
clique num (S, 11.00 ± 0.27 vs. NS, 8.77 ± 0.10; P < 0.0001;
Figure 10), G number of max cliques (S, 260.60 ± 14.01 vs. NS,
92.10 ± 2.21; P < 0.0001; Figure 10), K(G) max degree (S,
137.40±10.26 vs. NS, 43.10±1.42; P < 0.0001; Figure 10), K(G)
clique num (S, 71.55 ± 6.69 vs. NS, 24.25 ± 0.85; P < 0.0001;
Figure 10), and K(G) number of max cliques (S, 779.40± 142.80
vs. NS, 66.32 ± 3.94; P < 0.0001; Figure 10) differed between
sighs and non-sighs. This suggest that the groups generated by
the K-means are authentic groups.

However, the above does not imply that these groups represent
real sighs and non-sighs. First, we compared the number of
sighs and non-sighs classified with both parameters and by an
expert, which resulted to be different (χ2 = 40.84; df = 2;
P < 0.0001). Our pairwise comparison analysis showed that
classification based on visibility graph parameters (S, 61; NS, 162)
is statistically different from that performed by the expert (S, 20;

NS, 162; χ2 = 25.41; df = 1; P < 0.0001). In contrast, the
classification based on maxclique graph parameter (S, 20; NS,
162) did not differ from the classification performed by the expert
(S, 20; NS, 162; χ2 = 0; df = 1; P = 1).

Although our previous results showed that maxclique
parameters identify the same number of sigh and non-sigh as
the expert, we determined the number of successes and failures
to assess the accuracy of classification. Our results showed that
the classification based on maxclique graph parameters had
six failures (three sighs and three non-sighs) and 176 success,
whereas classification based on visibility graph parameters had 41
failures (all non-sighs) and 141 successes. McNemar’s test showed
that maxclique graph parameters were better to correctly identify
and classify sigh and non-sigh waveforms (McNemar’s χ2 =

82.747, df = 1, P < 0.0001). Altogether, these results indicate
that the classification based on maxclique graph parameters is
robust to classify accurately between sighs and non-sighs. Also,
this suggests that these parameters should be used to classify
other waveforms.

3.2. Discussion
In this paper, we have presented a classification and
characterization of electrophysiological signals using graph
parameters applied to visibility graphs and to the result of a
graph operator called the maxclique graph, which is denoted by
K(G). The parameter ω(G), and the enumeration of the maximal
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FIGURE 9 | Inspiratory burst classification according with clique’s parameters in Maxclique graph. (A) Control with 39 inspiratory burst and (B) bombesin with 99

inspiratory burst. In red are shown the means of all inspiratory bursts classified.

FIGURE 10 | Visibility (1(G), ω(G), and |G|) and maxclique (1(K(G)), ω(K(G)), and |K(G)|) graph parameters of sigh and non-sigh waveforms. Data is showed as mean

± S.E.M. Significant differences between non-sigh and sigh were determined using a two-way ANOVA, followed by Bonferroni’s multiple comparisons. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001. Sighs, n = 20; non-sighs, n = 162.

cliques have already been considered in bioinformatics, for
example in proteins and genes (see Tomita et al., 2011).

The maxclique graph operator has already been applied
to Loop Quantum Gravity (for example see Requardt, 2000).
To the best of our knowledge, this is the first time that the
maxclique graph operator has been used in electrophysiological
signals characterization. We have verified the usefulness of
this operator for the task of identifying sighs and non-sighs
waveforms, using in vitro recordings of XII nerve respiratory

rhythm, and implementing in Python an interface using the
algorithms described in this work. We think that it is apparent
that this software can also be applied to characterize other
electrophysiological recordings. The advantage of using cliques
is the following:

• As shown in Figures 7A,B, the maxclique graph K(G) allows
us to differentiate sighs and non-sighs better than the visibility
graph alone.
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These results suggest that maxclique graph (K(G)), and
particularly its parameters of number of cliques (|K(G)|), and
clique number (ω(G)) have a better performance characterizing
and classifying these electrophysiological signals than a visual
inspection of the time series. This is because if the time series has
many small fluctuations (like sighs), then the visibility graph will
have many small cliques, therefore, the graph parameter |K(G)|
will be relatively big and the parameter ω(G) will be relatively
small. On the other hand, if in the time series there are few
fluctuations and a value of the data much larger than the others,
then there will be a big clique in the visibility graph, resulting in a
small value of |K(G)| and a larger value of ω(G) (like non-sighs).
Sighs, and other breathing patterns are embedded within eupneic
(normal breathing) signals. Unbiased detection of patterns is
a challenge for electrophysiologist. The use of visibility graphs
and maxclique analysis provides a tool for sorting waveforms
probing a larger number of parameters, instead of commonly
used peak amplitude, burst durations or the presence of
biphasic shape.

Our statistical analysis showed that visibility and maxclique
parameters differ between sigh and non-sigh. Nevertheless,
we need further studies to correlate these parameters with
their biological meaning to determine what these differences
could mean in physiology. Allowing us to implement these
graph parameters to compare between different conditions
and treatments.

3.3. Conclusion
Applying graph theory to electrophysiological recordings we
were able to characterize and classify sighs and non-sighs. The

visibility graphs and maximum degree allowed to characterize
and classify between sighs and non-sighs. Even though the
visibility graphs were not effective, the maxclique graphs and
parameters of clique algorithm generated a characterization
more effective with more successes. Altogether, these results
suggest that maxclique graphs and its parameters are more
suitable to characterize and classify electrophysiological signals.
Likewise, the graphical interface developed allows applying this
methodology to other electrophysiological signals.
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