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ABSTRACT
The role of the local tumour and stromal immune 
landscape is increasingly recognised to be important 
in cancer development, progression and response to 
therapy. The composition, function, spatial orientation 
and gene expression profile of the infiltrate of the 
innate and adaptive immune system at the tumour 
and surrounding tissue has an established prognostic 
role in colorectal cancer (CRC). Multiple studies have 
confirmed that a tumour immune microenvironment 
(TIME) reflective of a type 1 adaptive immune response 
is associated with improved prognosis. There have been 
significant efforts to evolve these observations into 
validated, histopathology-based prognostic biomarkers, 
such as the Immunoscore. However, the clinical need 
lies much more in the development of predictive, not 
prognostic, biomarkers which have the potential to 
improve patient outcomes. This is particularly pertinent 
to help guide cytotoxic chemotherapy use in CRC, which 
remains the standard of care. Cytotoxic chemotherapy 
has recognised immunomodulatory activity distinct from 
its antimitotic effects, including mechanisms such as 
immunogenic cell death (ICD) and induction/inhibition 
of key immune players. Response to chemotherapy 
may differ with regard to molecular subtype of CRC, 
which are strongly associated with immune phenotypes. 
Thus, immune markers are potentially useful, though 
under-reported, predictive biomarkers. In this review, we 
discuss the impact of the TIME on response to cytotoxic 
chemotherapy in CRC, with a focus on baseline immune 
markers, and associated genomic and transcriptomic 
signatures.

INTRODUCTION
The tumour immune microenvironment (TIME) 
has an important role in mediating cytotoxic 
drug response and resistance, as illustrated by the 
differences in efficacy between in vitro, ectopic 
tumour mouse models and humans.1 The TIME 
is extremely complex in colorectal cancer (CRC), 
reflecting genomic, host immunity and environ-
mental (including microbiome) diversity.2 The 
immune visibility and susceptibility of CRCs can 
vary widely, and explain differential prognosis. 
The baseline TIME may facilitate immune evasion 
through low antigenicity, paucity of immune effec-
tors or immunosuppressive mechanisms, which may 
contribute to primary resistance to chemotherapy. 
However, it is hypothesised that immunostimu-
latory chemotherapy may overcome these deficits 

specifically to improve prognosis, or conversely be 
redundant in an optimally infiltrated tumour. There 
is a significant clinical need to identify biomarkers 
of response to the standard cytotoxics used in 
CRC—the antimetabolites (5-fluorouracil (5-FU) 
and capecitabine), platinum derivatives (oxal-
iplatin) and topoisomerase inhibitors (irinotecan). 
This review will summarise the key literature and 
studies that focus on baseline, pretreatment TIME 
histopathological markers as potential predictive 
and prognostic biomarkers in patients with CRC 
receiving cytotoxic chemotherapy. Biomarkers rele-
vant to radiotherapy and novel immunotherapies 
are outside the scope of this review.

TIME ASSESSMENT IN CRC
The TIME is composed of various infiltrating 
cells of the innate and adaptive immune system 
and their associated mediators. Immune cells can 
be identified in the core of the tumour (CT), both 
in intraepithelial cancer cell nests, or the tumour 
stroma (CS); at the invasive margin (IM), and in 
organised tertiary lymphoid structures (TLS) distant 
from the tumour3 (figure 1). This nomenclature will 
be used in the review to identify biomarker loca-
tion where identified in respective papers. The cell 
type, location, density and functional orientation 
are all relevant for prognostication. Peritumoural 
infiltrates can be assessed on H&E-stained slides, 
using semiquantitative validated scoring systems 
including the Klintrup-Mäkinen (KM) grade4 and 
the Jass score.5 Multiplex immunohistochemical 
(IHC) techniques in clinically annotated tumour 
slides, to identify specific immune cells based on 
surface markers, is currently one of the key assess-
ments of the TIME. Whole slides can be assessed, 
or tissue microarray techniques used to allow high 
throughput of samples. Cell density estimation 
can be performed manually, or assessed through 
digital image analysis6 and machine learning algo-
rithms to allow objective quantification, although 
scoring methodology varies widely. Advances in 
RNA sequencing, proteomics and single-cell tech-
nologies are also increasingly used to assess the 
TIME. Techniques such as CIBERSOrT7 and MCP-
counter8 can estimate the abundance of immune 
infiltrate in the tumour using the gene expression 
data from bulk tissues. Mass cytometry provides 
data at the individual cell level, and single-cell RNA 
sequencing allows profiling and classification of 
individual immune cells.9 Tumour heterogeneity 
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and sampling issues add complexity to the use of biopsy-driven 
TIME biomarkers. Key cell types analysed using IHC techniques 
are listed in table 1, in addition to a summary of their known 
prognostic and predictive associations.

IMMUNOMODULATORY MECHANISM OF ACTION OF 
CYTOTOXIC CHEMOTHERAPY
Many chemotherapeutic agents, including oxaliplatin, fluoro-
pyrimidines and irinotecan, have local and systemic immuno-
modulatory effects beyond their cytostatic mechanisms.10–12 
Preclinical models demonstrate that chemotherapy can augment 
immune responses directly by activation of immune effector cells 
(eg, production of interferon (IFN)γ) or inhibition of immu-
nosuppressive factors (such as circulating regulatory T cells 
(Tregs)

13), or act on tumours directly to increase antigenicity,14 15 
immunogenicity15 or susceptibility to immune attack through 
other mechanisms.12 16 A small repertoire of chemotherapeu-
tics, including oxaliplatin, can generate a specific mechanism 
of cell death, termed ‘immunogenic cell death’ (ICD), whereby 
release of specific danger signals from dying tumour cells stim-
ulates a dendritic cell (DC)-mediated, cytotoxic T-helper 1 
(Th1) response to eradicate residual tumour cells.17–19 Platinum 
cytotoxics can cause DC maturation,14 downregulate immune 
checkpoints and thus increase CD8+ T cell activation.20 21 In 
vivo, fluoropyrimidines selectively deplete immunosuppressive 
myeloid-derived suppressor cells (MDSCs),22 although have 
also been associated with a pro-tumour Th17 response.23 24 The 
immunogenicity of irinotecan is less certain, although in vivo 
work has reported influence on Treg and MDSC infiltration,25 
and upregulation of tumour PD-L1.26 For clinical correlation, 
patients receiving neoadjuvant (preoperative) 5-FU/oxaliplatin 
show increased infiltration of CD3+,27 28 natural killer (NK) and 
CD8+ cells29 in resected liver metastases compared with patients 
undergoing upfront surgery. Neoadjuvant fluoropyrimidines 
increase the density of CD3+

CS and CD8+
CS cells in patients with 

resected rectal cancer compared with pretreatment biopsies.30 31

TIME BIOMARKERS
Inflammatory infiltrate
Increased tumour inflammatory infiltrate is strongly associated 
with improved survival,32 although most studies do not specify 
survival by subgroups based on chemotherapy utilisation. For 
those studies that do, an increased infiltrate seems to confer 
a positive prognostic advantage in patients receiving chemo-
therapy, mirroring the trend in the untreated population. A higher 
KM grade (more florid infiltrate at invasive margin) is associ-
ated with improved overall survival (OS) in patients receiving 
adjuvant chemotherapy (unspecified regimes)33 34 and FOLFOX 
(infusional 5-FU and oxaliplatin) chemotherapy.35 36 Tumour-
infiltrating lymphocyte (TIL) density CT and IM was not prognostic 
in stage II/III patients receiving adjuvant 5-FU plus oxaliplatin 
regimes37; however, increased primary TIL density was asso-
ciated with improved response rates (79% vs 48%, p=0.025) 
to doublet chemotherapy (oxaliplatin or irinotecan based) in 
patients with metastatic disease.38 This is notable as the primary 
tumour TIME appeared to impact on response rates at distant 
metastatic sites. Morris et al39 reported a significant survival 
benefit with adjuvant 5-FU chemotherapy versus observation in 
stage III patients (n=1156) with peritumoural TILs present (HR 
0.22, p<0.001) which was not evident in patients with absent 
TILs (HR 0.84, p=0.29). This suggests a possible predictive role, 
with 5-FU being more efficacious in patients with pre-existing 
immune recognition; however, non-standardised methods were 
used to identify TILs in this study which may impact validity.

CD3+/CD8+ T cells
The predominant infiltrating immune cells in CRC are T lympho-
cytes, identified by the generic CD3+ surface marker. Cytotoxic 
CD8+ T lymphocytes recognise tumour antigen presented by 
MHC class I molecules, thus providing the key antitumour 
immune response. High density of CD3+ and CD8+ T cells in 
the core tumour and invasive margin are well established as a 
positive prognostic marker in the majority of CRC studies.32 

Figure 1  Key cells and locations in the tumour immune microenvironment.
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Table 1  Primary tumour prognostic and predictive IHC-based TIME biomarkers in patients receiving chemotherapy

Immune biomarker Location
Prognostic role in early stage patients receiving 
adjuvant chemotherapy (regime)

Prognostic role in stage IV patients receiving 
palliative chemotherapy (regime)

Predictive role or differential biomarker 
prognostic role by treatment group

Specific immune cell

CD3+ CT Most studies - î density=positive prognostic assoc
►► Improved OS36 40 42 43 and DFS41 (5-FU)
►► Improved DFS (FOLFOX)44 45

Few studies – no association
►► OS (unspecified regimes)46 and DFS 

(5-FU+/-bevacizumab)47

î density=positive prognostic assoc
►► Improved OS (unspecified regimes)55

Possible negative predictive role (adjuvant 
chemotherapy unspecified)

►► î density (vs low density)=improved OS in 
observation group (not chemotherapy group)46

IM î density=mixed findings
►► No association DFS48 or OS40 (5-FU)
►► Improved DFS44 45 and OS49 (FOLFOX)

î density=positive prognostic assoc
►► Improved OS (unspecified regimes)55

CD8+ CT (CS) Most studies - î density=positive prognostic assoc
►► Improved OS42 46 50 and DFS47 51 (5-FU)
►► Improved DFS44 45 52 (FOLFOX)

Few studies – no association
►► OS (5-FU)40

î density=mixed findings
►► Improved OS (oxal/irinotecan+5-FU)54

►► No assoc OS (unspecified regime55 and FOLFOX)56

No predictive role (adjuvant 5-FU)
►► î density=improved OS in patients treated with 

and without adjuvant chemotherapy46

IM Most studies - î density=positive prognostic assoc
►► Improved OS (5-FU)53

►► Improved DFS (FOLFOX,45 CAPOX)52

Few studies – no association
►► OS (5-FU,40 unspecified regime)71

No prognostic assoc
►► OS (unspecified regime)55

Possible positive predictive role (adjuvant 5-FU)
►► î density (vs low density)=OS benefit 

greater for patients treated with adjuvant 
chemotherapy>observation53

CD4+ CT î density=mixed findings
►► Improved OS (unspecified regimes)55

►► No association OS (FOLFOX)56

IM î density=positive prognostic assoc
►► Improved OS (unspecified regimes)55

Immunoscore
(CD3+ and CD8+

CT 

+ IM)

0–4 High score=positive prognostic assoc
►► Improved DFS high-risk stage II (5-FU)65

►► Improved DFS stage III (FOLFOX)45 63

►► Improved OS stage III (5-FU,33 62 variable 
regimes)64

Positive predictive role stage III (various adjuvant 
regimes)

►► High IS (2-4)=DFS benefit with adjuvant 
chemotherapy (vs low IS 0–1—no benefit)64

Not predictive stage II (adjuvant 5-FU)65

Foxp3+ (Treg) CT î density=mixed findings
►► Improved OS (5-FU)40 42 46 50

►► No association DFS (5-FU)41

►► Worse DFS/OS (unspecified regime)70

î density=mixed findings
►► Improved OS (FOLFOX,56 5-FU+oxaliplatin or 

irinotecan)54

►► No association OS (unspecified regime)55

Mixed findings
►► Not predictive (adjuvant 5-FU)46

►► Possible negative predictive role (adjuvant 
chemotherapy unspecified)

–– î density (vs low density)=worse OS/DFS 
in adjuvant chemotherapy group (not 
observation group)70

IM No prognostic association
►► DFS/OS on multivariate analysis (unspecified 

regime)71

No prognostic association
►► OS (unspecified regime)55

Possible negative predictive role (adjuvant 
chemotherapy unspecified)

►► î density (vs low density)=improved OS in 
observation group (not chemotherapy group)71

CD66b+ (TAN) CT î density=positive prognostic association
►► Improved DFS/OS (5-FU,74 unspecified regime)70

Mixed findings
►► Possible negative predictive role (adjuvant 

chemotherapy unspecified)
–– î density=no OS/DFS benefit from adjuvant 

chemotherapy (vs observation); vs low 
density—possible OS/DFS detriment with 
adjuvant chemotherapy70

►► Positive predictive role (adjuvant 5-FU)
–– î density (vs low density)=improved DFS in 

adjuvant chemotherapy group; vs worse DFS 
in observation group74

IM î density=positive prognostic association
►► Improved DFS (5-FU)75

Possible positive predictive role (adjuvant 5-FU)
►► î density (vs low density)=improved DFS in 

chemotherapy group only (not observation 
group)75

CD68+ (general TAM 
marker)

CT No prognostic assoc stage II
►► DFS/OS (5-FU)77

î density=negative prognostic association
►► Worse OS (unspecified regimes)55

IM î density=positive prognostic association
►► Improved DFS (5-FU)75

No prognostic association
►► OS (unspecified regime55

Possible positive predictive role (adjuvant 5-FU)
►► î density (vs low density)=improved DFS in 

chemotherapy group (not observation group)75

CD163+ (M2 
polarised TAM)

CT î density=negative prognostic association
►► Worse DFS/OS (unspecified regime)70

î density=negative prognostic association
►► Worse OS (unspecified regimes)55

Possible negative predictive role (unspecified adjuvant 
regime)

►► î density (vs low density)=worse DFS in 
chemotherapy group (not observation group)70

IM No prognostic association
►► OS (unspecified regime)55

CD206+ (M2 
polarised TAM)

CT î density=negative prognostic association
►► Worse DFS/OS (5-FU)77

Possible positive predictive role (adjuvant 5-FU)
►► î ratio CD206+:CD68+ = improved DFS with 

adjuvant chemotherapy (vs low ratio—no 
benefit)77

CD45RO+ (memory 
T cell)

CT î density=positive prognostic association
►► Improved OS (5-FU)42 43

î density=positive prognostic association
►► Improved OS (oxal/irinotecan+5-FU)54

Continued
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However, location is relevant—tumours demonstrating a paucity 
of CD8+ cells in the tumour core, and lacking the activation 
markers granzyme-B and IFNγ, have been termed ‘infiltrated 
excluded’ with worse survival outcomes.1 The prognostic asso-
ciations in chemotherapy-treated patients are less well reported. 
Retrospective studies have confirmed a positive survival associ-
ation of increased density CD3+

CT in patients receiving single 
agent 5-FU40–43 and FOLFOX,44 45 although some groups have 
found no relationship.46 47 CD3+

IM was not prognostic for single 
agent 5-FU chemotherapy,40 48 and this may reflect the phenom-
enon of the ‘infiltrated excluded’ tumour discussed above, which 
could impact on 5-FU efficacy. In contrast, increased density of 
CD3+

IM did correlate with improved disease-free survival (DFS) 
in a large prospective phase III trials of patients receiving adju-
vant FOLFOX±cetuximab (an epidermal growth factor receptor 
monoclonal antibody).44 45 49 It is possible that the addition of 
oxaliplatin to 5-FU may influence the prognostic impact of inva-
sive margin T cells. Increased density of CD8+

CS was positively 
prognostic in patients with early stage disease receiving adjuvant 
5-FU single agent chemotherapy,42 46 50 51 ±bevacizumab,47 and 
high CD8+

CT/CS and IM was associated with improved DFS in patients 
receiving oxaliplatin doublet adjuvant chemotherapy.44 45 52 
Some studies have reported that the relative survival benefit of 
adjuvant 5-FU chemotherapy is much greater for patients with 
increased density of CD8+

CT compared with patients with low 
density,53 supporting Morris et al’s findings,39 and suggesting 
fluoropyrimidines may be more efficacious when a pre-existing 
Th1 response is present. However, a treatment interaction has 
not been confirmed by other groups.46 CD8+

CT as a prognostic 
marker in stage IV patients has shown contradictory results 
(see table  1).54–56 Multiple studies30 57 58 have correlated high 
pretreatment CD3+ and CD8+ cell density on rectal biopsy with 
increased response rates to neoadjuvant therapy and improved 
survival, although this has not been replicated in all reports,31 59 
and outcomes are mediated by the effects of radiotherapy and 
are thus outside the scope of this review.

Immunoscore
The Immunoscore (IS) was designed as a digitally quantified IHC 
assessment of CD8+

CT + IM and memory T cell (CD45RO+
CT+IM) 

densities added to produce a cumulative score.60 It has been 
validated to show prognostic ability superior to the traditional 
tumour/node/metastasis (TNM) staging system,61 with high scores 
conferring superior survival. CD3+ later replaced CD45RO+ 
due to superior antibody performance3 (figure 2). Its validity as 
a prognostic marker in patients receiving adjuvant 5-FU33 62 and 
FOLFOX45 63 chemotherapy has been reported, but its role as a 
predictive marker is less clear. In a recent multinational trial of 
stage III patients, those with a low IS (0–1) did not benefit from 
adjuvant chemotherapy (various regimes), whereas those with IS 
2–4 did, and the magnitude of the survival benefit was greater 
the higher the IS.64 In high-risk stage II disease, high IS was 
prognostic, but not a predictive discriminator of 5-FU benefit.65 

Interestingly, in an analysis of stage III patients in the IDEA 
collaboration (3 months vs 6 months of adjuvant FOLFOX), 
patients with IS 2–4 had a significantly improved DFS with 6 
months vs 3 months of FOLFOX (HR 0.53, p=0.0003), whereas 
patients with IS 0–1 did not derive a significant DFS benefit with 
extended treatment (HR 0.84, p=0.27).63 This suggests again 
possible futility of doublet regimes, irrespective of cumulative 
dose, in immune-excluded disease and a dose-dependent benefit 
of oxaliplatin regimes in tumours with a baseline cytotoxic T 
lymphocyte response.

CD4+/Foxp3+ T cells
CD4+ helper T cells, which aid tumour immune responses by 
activation of signalling to facilitate CD8+ T cell-mediated cell 
death, can exert both Th1 responses which promote antitumour 
effects with good prognostic association,66 and Th2 responses 
which are tumourigenic. CD4+

CT as a prognostic marker has 
shown positive association in only half of the studies it has been 
assessed, and in no studies of CD4+

IM.32 Adjuvant studies refer-
encing chemotherapy are lacking. Increased primary tumour 
CD4+

CS and IM was prognostic in some studies of stage IV patients 
receiving mixed palliative regimes55 but not in other cohorts 

Immune biomarker Location
Prognostic role in early stage patients receiving 
adjuvant chemotherapy (regime)

Prognostic role in stage IV patients receiving 
palliative chemotherapy (regime)

Predictive role or differential biomarker 
prognostic role by treatment group

IM î density=positive prognostic association
►► Improved OS (unspecified regime)71

No predictive role (adjuvant chemotherapy 
unspecified)

►► î density=improved OS in patients treated with 
and without adjuvant chemotherapy71

CS, core tumour stroma; CT, core tumour; DFS, disease-free survival; 5-FU, 5-fluorouracil; IHC, immunohistochemical; IM, invasive margin; OS, overall survival; TAM, tumour-associated macrophage; TAN, tumour-
associated neutrophil; TIME, tumour immune microenvironment; TLS, tertiary lymphoid structures.

Table 1  Continued

Figure 2  The Immunoscore (IS) is based on the numeration of two 
lymphocyte populations (CD3+ and CD8+) in the CT and IM. Density of 
cells is determined using an image analysis workstation. Each marker in 
a specified region is categorised as ‘Hi’ or ‘Lo’ based on predetermined 
cut-off values. Patients are stratified according to a score IS 0 to IS 4 
based on the total number of ‘Hi’ densities observed in the four regions.
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receiving oxaliplatin regimes.56 Tregs constitute a specific subtype 
of CD4+ T cell, identified by immunoprofile CD25+Foxp3+, and 
have general immunosuppressive functions, although this can 
vary depending on marker expression.67 Meta-analyses of prog-
nostic studies in CRC has reported a positive association with 
cancer-specific survival68 (CSS) and OS69 which is in contrast 
to other tumour types. High density of Foxp3+

CT/CS has been 
associated with improved OS in some cohorts receiving adjuvant 
5-FU chemotherapy,40 42 46 50 and palliative oxaliplatin,56 but 
not others.41 70 71 Some cohorts have suggested that increased 
Foxp3+ density may confer a positive prognostic association 
only in untreated patients, and not in patients receiving chemo-
therapy,70 71 although true predictive studies are required.

Tumour-associated neutrophil
Tumour-associated neutrophils (TANs), identified by their 
markers CD11b+, CD66+ and Ly6G+, are less populous than 
other cells, and subsets can be either tumour-suppressive or 
supportive depending on TGF-β and IFN-γ signalling.72 Prog-
nostic studies have reported conflicting results. In stage I-III 
patients (n=1008), high TAN (CD66+

CT) density conferred 
an excellent prognosis, and no benefit from adjuvant chemo-
therapy, whereas low density conferred worse prognosis and 
poorer survival in patients receiving adjuvant chemotherapy.70 
However, this unexpected result may be a reflection of treat-
ment bias and lack of adjustment for tumour stage and necrosis, 
which are associated with TAN density.73 In a contradictory 
smaller cohort of stage III patients, high TANCT density was 
reported as a negative prognostic marker in patients undergoing 
surgery (DFS HR 3.0, p=0.07). However, this impact was miti-
gated by the use of adjuvant 5-FU, whereby patients with high 
TANCT had improved prognosis.74 High CD66b+

IM was also a 
positive prognostic and predictive marker in stage III patients 
receiving adjuvant 5-FU.75 Contradictory results may also be 
explained in this and other studies by variations in methodology, 
including different prognostic associations depending on assess-
ment in invasive margin or core tumour,73 and variable marker 
categorisation.

Tumour-associated macrophages
Tumour-associated macrophages (TAMs), often identified by 
the non-specific CD68+ monocyte lineage marker, are broadly 
grouped into two phenotypes. The classically activated (M1) type 
(surface markers iNOS, CD86+, CD169+) that stimulate antitu-
mour immune responses, and the alternatively activated (M2) 
type (surface markers CD163+, CD206+, CD204+) that enhance 
tumour progression and suppress immune response (eg, NK and 
T cell mediated killing).76 Increased CD68+

IM density was a posi-
tive predictive marker of 5-FU benefit in a small cohort, and in 
a companion in vitro study, 5-FU and M1-macrophages showed 
synergistic impact on cell death in CRC cell lines.75 M2CT infil-
tration has been reported as negatively prognostic in several 
studies of patients treated with systemic chemotherapy.55 70 77 78 
In vitro work has suggested that M2 macrophages confer resis-
tance to 5-FU,79 and some studies suggest a negative predictive 
relationship.70 Feng et al77 reported high CD206+:CD68+ ratio 
(increased proportion of M2 macrophages) was a marker for 
poorer DFS and OS in stage II disease, although also predicted 
a significant survival benefit from adjuvant 5-FU-based chemo-
therapy versus observation (DFS HR 0.42, p=0.003) which was 
not present in the better prognostic group with a low ratio (HR 
0.99, p=0.99). Oxaliplatin plus trifluridine/tipiracil (an anti-
metabolite) depletes M2 macrophages, resulting in higher CD8+ 

infiltration and better therapeutic efficacy.80 Further exploration 
in patient cohorts using differential chemotherapy regimes is 
required.

CD45RO+ T cells
Central and effector memory T cells (characterised by CD45RO+ 
marker) drive secondary immune responses post exposure to 
primary antigens. Meta-analyses suggest a positive prognostic 
association for increased density of these cells both in the core 
tumour and invasive margin.32 High density of primary tumour 
CD45RO+

CT
42 43 and CD45RO+

IM
71 is an independent prog-

nostic factor for improved OS in early stage disease patients 
receiving 5-FU. High density was associated with better survival 
in patients with stage IV CRC undergoing adjuvant oxaliplatin 
or irinotecan chemotherapy post-curative intent resection (esti-
mated 3-year survival 62% vs 27%, p=0.007).54 High CCR7+

CS 
(used to identify CD8+ naïve and central memory T cells) was 
associated with improved OS in patients receiving palliative 
oxaliplatin-based regimes.81

Gamma delta (γδ) T cells
Gamma delta T cells are a rare subset of predominantly mucosal 
CD8-CD4- T cells with a broad functional role in cytokine 
(IFN-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17) and 
chemokine (RANTES, IP-10, lymphotactin) production, cytol-
ysis and coordination of antigen presentation.82 In vivo studies 
show that ICD-inducing chemotherapy causes a rapid invasion 
of γδ T lymphocytes prior to the invasion of CD8+ T cells, and 
that in TCR δ-/- mice, the therapeutic efficacy of chemotherapy 
was reduced.83 Increased expression of γδ T cells has been asso-
ciated with improved DFS in patients with CRC.84 While results 
from CRC cohorts receiving chemotherapy are under-reported, 
a series (n=463) of patients with gastric cancer receiving adju-
vant 5-FU chemotherapy suggest a significant survival advantage 
of chemotherapy versus observation if infiltrating γδ T cells were 
increased.85

B cells
B cells also recognise tumour antigens, produce tumour-specific 
antibodies and are identified through CD19+, CD20+ and 
CD78+ markers. High CD20+

CS has been associated with better 
prognosis in CRC,86 as has the presence of TLSs, which contain 
concentrated B cells.87 However, CD20+

CT or IM was not prog-
nostic in patients receiving adjuvant FOLFOX.45

Immune checkpoints
Multiple stimulatory and inhibitory immune checkpoints, crucial 
for self-tolerance, and co-opted by tumours to evade immuno-
surveillance, have been identified in the TIME. One such check-
point, programmed death-ligand 1 (PD-L1), is predominantly 
derived from the immune infiltrate,88 not tumour cells, in CRC. 
Immunodeficient murine xenograft models of PD-L1 knockout 
tumours display resistance to oxaliplatin,89 which contrasts with 
models in other tumour types. In early stage patients receiving 
5-FU chemotherapy, high tumour PD-L1 was not prognostic 
in some studies,40 42 although negatively impacted on DFS in 
another stage III cohort receiving adjuvant chemotherapy.90 In 
contrast, PD-L1 expression on immune infiltrating mononuclear 
cells was associated with longer DFS. Dunne et al91 reported that 
in stage III CRC (n=201), PD-L1low tumours conferred a signifi-
cant DFS benefit from adjuvant chemotherapy versus observation 
(adjusted HR 0.44, p=0.0062), and the use of adjuvant chemo-
therapy was able to overcome the negative prognostic impact of 
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low PD-L1. However, in contrast, PD-L1high expression resulted 
in inferior DFS post adjuvant chemotherapy versus observation 
(unadjusted HR 4.95, 95% CI 1.10 to 22.35, p=0.02), although 
the significance was lost on multivariate analysis. This is one of 
the first series to suggest a possible detrimental effect of chemo-
therapy in tumours which overexpress PD-L1.

Immune markers associated with microsatellite instability
Tumours harbouring microsatellite instability (MSI) have 
defects in the DNA mismatch repair system (dMMR), and thus 
display a hypermutable phenotype. The differential improved 
survival in patients with early stage dMMR tumours has been 
extensively reported and is partly attributable to increased 
immune stimulation in these tumours due to the increased 
neoantigen load. MSI tumours have a dense infiltration of 
CD8+ cells,92 a Th1 cytokine response, and also overexpress 
many inhibitory immune checkpoints (including PD-1, PD-L1, 
CTLA-4, LAG-3 and IDO).93 However, MSI tumours are more 
chemoresistant to 5-FU than microsatellite stable (MSS) lines 
in preclinical models.94 The relative survival benefit from 
FOLFOX compared with 5-FU is much greater in stage II-III 
dMMR patients compared with pMMR,95 suggesting possible 
resistance to 5-FU alone. However, in a recent report from the 
FoXTROT trial, dMMR colon cancers showed significantly 
reduced pathological response rates to neoadjuvant oxaliplatin 
doublet chemotherapy than pMMR,96 and clinical progres-
sion through this chemotherapy regime was more common in 
dMMR than pMMR rectal cancers (29% vs 0%, p=0.0001).97 

In contrast, in the metastatic setting, MSI status did not 
affect response rates to palliative FOLFOX chemotherapy.98 
Regarding irinotecan therapy, in both cell lines and tumour 
xenografts, dMMR tumours are more sensitive to irinotecan 
than MMR proficient (pMMR) lines.99 100 In a small retrospec-
tive cohort, response rates to palliative 5-FU plus irinotecan 
were much higher in MSI than MSS disease (57% vs 10%, 
p=0.009),101 and DFS was longer in MSI tumours receiving an 
irinotecan containing regime in a separate cohort.102 In a large 
adjuvant phase III trial, only patients with dMMR tumours 
received a DFS benefit from adding irinotecan to 5-FU,103 but 
this MSI/treatment interaction was not confirmed in another 
similar trial.104 The relevance of immunological variation on 
chemotherapeutic response in the context of genetic alter-
ations is largely unknown.

Immunogenic Cell Death markers
ICD is the cornerstone of the immunomodulatory action 
of oxaliplatin and associated markers are potential predic-
tive biomarkers (figure 3). DC activation is a key step in ICD. 
However, identification of DCs, which show functional diver-
sity and heterogeneous activation states, can be challenging 
and markers are variably reported between studies and may 
account for conflicting results reporting both good105–109 and 
bad110 prognostic association. In vivo studies have demonstrated 
that blockade of surface calreticulin exposure111 and HMGB1-
dependent TLR-4 signalling,112 both key steps in ICD, severely 
compromised the cytotoxicity of oxaliplatin chemotherapy. 

Figure 3  Key cells and pathways in immunogenic cell death as potential predictive biomarkers. IFNγ, interferon; IL, interleukin.
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Stromal calreticulin expression is associated with infiltration 
of CD45RO+ cells and improved OS in univariate analysis in 
patients receiving adjuvant 5-FU.113

Stromal markers
The tumour stroma plays a direct and indirect role in modu-
lating response to immunomodulatory chemotherapy. De 
novo drug resistance may occur from environment-mediated 
phenomena, where cancer cells are protected from treatment-
induced apoptosis by ‘barriers’, including either soluble 
secreted factors or cell-adhesion-mediated mechanisms.114 The 
tumour:stroma percentage is a validated prognostic marker, 
with increased stromal percentage associated with poorer 
prognosis, including in chemotherapy-treated patients.115 
Cancer-associated fibroblasts (CAFs) are a heterogeneous 
group of fibroblast-like cells that release certain cytokines, 
growth factors and proinflammatory factors. In vitro cell line 
studies suggest CAFs trigger a JAK/STAT pathway signalling 
cascade that leads to reduced response rates to oxaliplatin 
and 5-FU,116 and stromal CAF-derived conditioned medium 
primed the growth of cancer stem cells after treatment with 
5-FU and oxaliplatin, thus increasing their inherent chemo-
resistance.117 High CAF infiltration is associated with worse 
DFS in adjuvant-treated patients118 and associated-induced 
expression of their surrogate markers smooth muscle actin and 
survivin have been related to worse survival in 5-FU119 and 
oxaliplatin-treated advanced patients.120

Genomic markers and transcriptomic profiles
Recent advances in high-throughput gene testing technology have 
led to the development of some molecular signatures for chemo-
therapy prediction. Increased expression of infiltrating immune 
cells, as identified by CIBERSOrT, showed a trend to improved 
overall survival in patients receiving chemotherapy.121 Multiple 
classifications of CRC, based on molecular transcriptomic 
data, have been proposed in recent years, and unified into the 
Consensus Molecular Subtypes (CMS). This incorporates gene 
expression profiles from the tumour, stroma and immune cells 
to differentiate four groups (CMS1-4) and are highly correlated 
with immune cell infiltration patterns.122 The CMS1 subgroup 
(MSI-like) is enriched for genes coding for CD8+ and CD68+ 
cells, T-cell attracting chemokines, TLSs and Th1 cytokines. The 
CMS4 subgroup (mesenchymal) is enriched for expression of 
genes encoding CD8+ cells, MDSCs, Tregs, Th17+ cells, angio-
genic factors and immunosuppressive molecules (eg, TGFβ1). 
Both CMS2 (canonical) and CMS3 (metabolic) subgroups exhibit 
low-immune and low-inflammatory signatures. In a retrospective 
taxonomy study, only CMS2 and 3 subgroups derived a benefit 
from adjuvant chemotherapy (unspecified) in stage III disease, 
with CMS4 showing a trend to benefit.123 Song et al124 used an 
alternative transcriptomic classifier (CRCA) to examine patients 
in the NSABP-07 trial (adjuvant FOLFOX vs 5-FU), and reported 
only patients with an ‘enterocyte’ subtype (with immune features 
similar to the ‘cold’ CMS2) derived a benefit from the addition 
of oxaliplatin, with a significant interaction test. The same group 
repeated the analysis using patients enrolled on the MOSAIQ 
trial (adjuvant CAPOX vs capecitabine) but did not find any 
association,125 which may be due to different fluoropyrimidine 
use or oxaliplatin schedule, which have shown different interac-
tions in other immune biomarker studies.36 CMS1 patients have 
worse OS with FOLFIRI-based regimes compared with the other 
CMS subtypes in the FIRE-3 trial126; however, they also show 
improved OS with the addition of bevacizumab in the metastatic 

setting.127 Published studies suggest a trend to 5FU/oxaliplatin 
resistance in CMS4 (or similar classifier) patients, both in the 
adjuvant127 128 and metastatic setting,129 where first-line irino-
tecan regimes showed better response rates and survival.130 131

IMMUNE INFILTRATE IN RESECTED METASTASES
Several reports have assessed the prognostic and predictive 
impact of the TIME from resected metastases, predominantly 
liver metastases,132 which appears to correlate with the primary 
tumour. However, many of the studies include patients receiving 
neoadjuvant therapy, which can alter the immune infiltrate 
substantially. Metastatic disease has a different immunolog-
ical milieu which is defined by tumour immune evasion. Liver 
metastases with pretreatment high Immunoscore (and high 
CD3+, CD8+, and CD20+ cells133) are associated with increased 
response to chemotherapy (p=0.009) and improved DFS and 
OS.55 The type of postoperative chemotherapy/adjunct did not 
impact survival. However, a high IS is not tantamount to excel-
lent prognosis in this setting (as opposed to with early stage 
disease) as most patients relapsed after surgery. The authors 
showed the density of CD8+:CD20+

CT+IM to be an additional 
strong prognostic discriminator. A high ‘density score’ (based on 
a cumulative density of CD3+, CD8+ and granzyme B in liver 
metastases) was also reported by Halama et al134 to have signifi-
cant prognostic ability in stage IV patients receiving any regime 
of chemotherapy (HR OS 0.06, p<0.01).

CONCLUSIONS
Here, we have reviewed CRC studies focusing on the TIME 
and found that the prognostic ability of these markers in CRC 
is mediated in the context of chemotherapy, and true predic-
tive studies are under-reported. While prognostic biomarkers 
have been used as a surrogate for predictive markers, with 
an assumption that patients with ‘poor’ prognosis will gain 
a greater absolute benefit from chemotherapy, this may be 
untrue, especially if the biomarker is also a marker of therapy 
resistance. Nevertheless, current reports indicate that the rela-
tive benefit of 5-FU chemotherapy may be enhanced in the 
context of some pre-existing CD8+/CD3+ infiltration in core 
tumour, but may be unnecessary or importantly even detri-
mental in the milieu of a highly inflamed TIME. CRCs with 
high immunosuppressive pathways may also be more resis-
tant to oxaliplatin doublets. Furthermore, chemotherapy may 
improve prognosis in cancers driven by specific immune cell 
populations, such as TAMs and TANs. The emerging move 

Take home messages

►► The tumour immune microenvironment has an important role 
to play in mediating cytotoxic chemotherapy response and 
primary resistance.

►► Many chemotherapy agents used in colorectal cancer have 
local and systemic immunomodulatory effects.

►► Baseline tumour immune cells, including T cell subsets, 
tumour-associated neutrophils and macrophages, may 
represent potential predictive biomarker predicting response 
and resistance to cytotoxic chemotherapy.

►► Prospective trials using standardised validated markers, 
such as the Immunoscore, are required to rationalise the 
use of adjuvant chemotherapy and target different palliative 
chemotherapy regimes and adjuncts to patients more likely 
to respond.
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to standardise assessment of TILs/IHC-based markers in CRC 
reporting has the potential for more robust prospective trials. 
Such trials are needed to develop better clinical biomarkers for 
therapy benefit and cytotoxic effects of chemotherapy. Patients 
likely having adverse effects may require de-escalated or even 
no therapy, and some may require alternative or combina-
tion agents, which have shown early promise.135 Significant 
research and development is in progress with regard to such 
adjuncts, which include various combination approaches with 
synergistic benefits136 and novel immunotherapies, to improve 
precision medicine in the future.
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