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Abstract: Myeloid-derived suppressor cells (MDSCs) are defined as negative regulators that suppress
the immune response through a variety of mechanisms, which usually cluster in cancer, inflammation,
and autoimmune diseases. This study aims to investigate the correlation between M-MDSCs and
the clinical features of diffuse large B-cell lymphoma (DLBCL) patients, as well as the possible
accumulation mechanism of M-MDSCs. The level of M-MDSCs is significantly increased in newly
diagnosed and relapsed DLBCL patients. Regarding newly diagnosed DLBCL patients, the frequency
of M-MDSCs is positively correlated with tumor progression and negatively correlated with overall
survival (OS). More importantly, the level of M-MDSCs can be defined as a biomarker for a poor
prognosis in DLBCL patients. Additionally, interleukin-35 (IL-35) mediates the accumulation of
M-MDSCs in DLBCL patients. Anti-IL-35 treatment significantly reduces levels of M-MDSCs in Ly8
tumor-bearing mice. Thus, M-MDSCs are involved in the pathological process of DLBCL. Targeting
M-MDSCs may be a promising therapeutic strategy for the treatment of DLBCL patients.

Keywords: myeloid-derived suppressor cells; diffuse large B-cell lymphoma; interleukin-35; tumor
progression; prognosis; immunosuppression

1. Introduction

Diffuse Large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin
lymphoma, which represents about 30–40% of lymphomas [1]. The chemotherapy reg-
imen of CHOP, defined as standard cyclophosphamide, doxorubicin, vincristine, and
prednisolone or R-CHOP in combination with rituximab (R), has significantly improved
survival outcomes in DLBCL patients [2]. However, approximately 30% of DLBCL patients
in stage III and IV remain intractable, and the disease could eventually relapse [3]. During
recent decades, the most commonly used standard indicator to assess prognosis in DLBCL
is the international prognostic index (IPI), which is based on clinical parameters, including
age, Eastern Cooperative Oncology Group(ECOG)performance status, Lactate Dehydroge-
nase (LDH)level, number of extranodal sites, and Ann Arbor stage. However, final survival
is different in patients with identical IPI scores [4]. This means the IPI score system needs
further improvement. It is notable that the IPI score system does not include the host tumor
microenvironment (TME). The clinical outcome is dependent on many factors, including
tumor histologic aggressiveness, immunologic status, and the tumor microenvironment,
especially the immunosuppressive regulators [5].

MDSCs is a heterogeneous, immature immunosuppressive cell population which
plays an important role in the occurrence and progression of tumors [6,7]. Considering
mice, MDSCs can be divided into two types according to the expression of Gr-1, includ-
ing the subtypes of Ly6G and Ly6C, which can be described as CD11b+Ly6ClowLy6G+

PMN-MDSCs and CD11b+Ly6ChighLy6G−M-MDSCs [8]. No human equivalent of Gr-1
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exists, so there is no uniform immunophenotype of human MDSCs. MDSCs promote
tumor progression by inhibiting host immune responses [9]. MDSCs exert their immuno-
suppressive effect through different mechanisms, including direct contact and secreting
immunomodulatory factors [10,11]. MDSCs have been described in hematological malig-
nancies, including lymphoma [12], leukemia [13] and multiple myeloma [14]. However,
the clinical significance of MDSCs in DLBCL has not been well investigated, especially
combined with clinical parameters and prognoses.

It has been proven that MDSCs are found to accumulate in the presence of several
biologic factors, such as cytokines, tumor cells, and complement proteins [15]. MDSCs
can be generated by interleukin-6 (IL-6) and Granulocyte-macrophage Colony Stimulat-
ing Factor (GM-CSF)in vitro [16]. Interleukin-35 (IL-35), composed of an IL-27 subunit
EBI3 and an IL-12 subunit p35, is an immunosuppressive cytokine defined as a negative
regulator of T cell response [17,18]. Previously, it was reported that IL-35 could induce
MDSC accumulation in the tumor microenvironment and promote tumor angiogenesis [19].
However, the role of IL-35 in the pathogenesis of DLBCL, as well as the effect on MDSCs
accumulation, have not been well studied.

Here, we investigate the level and possible accumulation mechanism of M-MDSCs,
which may be defined as a prognostic biomarker in DLBCL patients.

2. Materials and Methods
2.1. Patient and Sample

During January 2014 to June 2020, peripheral blood was collected from 65 newly
diagnosed, 12 relapsed, 26 remission DLBCL patients, and 30 healthy donors when the
state of the disease was defined, as shown in Table 1. All newly diagnosed DLBCL
were classified according to World Health Organization standards [20]. Eighteen newly
diagnosed DLBCL patients, who received at least 4 cycles of CHOP or R-CHOP regimen
and had a complete response, were successfully followed up. Blood samples were obtained
before receiving the 5th regimen. The response was assessed according to the RECIL-2017
for lymphoma [21]. Patients with other medical conditions, including infectious diseases,
autoimmune diseases, and other types of tumors, were excluded from the study. According
to the guidelines of the Helsinki Declaration, the Ethics’ Department of our University
committee approved the research program. All patients and volunteers gave written
informed consent.

Table 1. Characteristics of healthy donors and DLBCL patients.

State of Disease at Sample Draw No. of Patients Average Age (Range) Gender(M/F)

Newly diagnosed 65 58.7(28–80) 40/25
Disease stage

I-II 37 57.8(30–80) 20/17
III-IV 28 59.1(28–78) 20/8

B symptoms
YES 17 52.3(28–69) 9/8
NO 48 61.4(32–80) 31/17

GCB
YES 38 58.9(28–76) 23/15
NO 27 58.5(30–80) 17/10
LDH
Normal 30 60.4(30–80) 20/10
Increased 35 57.3(28–78) 20/15

IPI score
0–2 41 55.8(28–76) 24/17
3–5 24 63.7(32–80) 16/8
Relapsed 12 58.3(36–62) 9/3
Remission 26 62.3(31–76) 14/12
Healthy donors 30 60.1(30–78) 18/12

GCB germinal center B-cell-like, LDH lactate dehydrogenase, IPI International Prognostic Index. B symptoms: B symptoms refer to systemic
symptoms of fever, night sweats, and weight loss which can be associated with diffuse Large B-cell lymphoma (DLBCL).
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2.2. Flow Cytometry (FCM) Analysis

Monoclonal antibodies (mAbs) were purchased from Beckman Coulter–Immunotech:
FITC-labeled anti-CD14 (clone No. 116), APC-labeled anti-CD14 (clone No. RMO52),
PE-labeled anti-HLA-DR (clone No. B8.12.2), ECD-labeled anti-HLA-DR (clone No. Immu-
375), PE-labeled anti-CD4 (clone No. 13B8.2); Mouse FITC-labeled anti-Ly6G (clone No.
RB6–8C5), Mouse APC-labeled anti-Ly6C (clone No. ab93550), and Mouse PE-labeled
anti-CD11b (clone No. M1/70).

Peripheral blood mononuclear cells (PBMCs) were layered over Ficoll-Hypaque
(Amersham Biosciences, Sweden) and centrifuged at 500× g for 25 min. Following density
gradient centrifugation, PBMCs and plasma were collected. One hundred microliters of
PBMCs were used for flow cytometry (Flow Cytometer: FC500 MPL, Beckman Coulter,
Brea, CA, USA) and the rest for real-time PCR analysis. Ten thousand cells were analyzed
by FCM for each sample. Isotype-matched antibodies were used as controls. During
this study, the immunophenotype of M-MDSCs was defined as CD14+HLA-DR−/low in
humans and CD11b+Ly6C+Ly6G− in mice.

2.3. Cytokine Assay

A human IL-35 enzyme linked immunosorbent assay (ELISA) kit (Biolegend, San
Diego, CA, USA) was used to measure the concentration of IL-35 according to the instruc-
tions. Each sample was run in duplicate.

2.4. RT-PCR Analysis

TRizol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from
PBMCs. First-strand cDNA was synthesized using the First-Strand Synthesis System
(TaKaRa, Dalian, China). SYBR Green PCR Master mix (TaKaRa, Dalian, China) was used
to perform the Real-time PCR.

An Applied Biosystems 7500 Real-time Polymerase Chain Reaction (RT-PCR) system
was used to analyze the subunit EBI3 and p35 of IL-35. The following primers were em-
ployed in each reaction: EBI3, forward 5′-GGCAAGTAGCAAG GGCTTC-3′ and reverse
5′-AGTCGGTCATCTGAGGTTGC-3′; p35, forward 5′-TCCTCCTTGAAGAACCGGA-3′

and reverse 5′-TGA CAACGGTTTGGAGGGAC-3′. Glyceraldehyde phosphate dehydroge-
nase (GAPDH) was used as the control: forward 5′-CAGGAGGCCATTGCTGATGAT-3′

and reverse 5′-GAAGGCTGGGGCTCATTT-3′. The thermal cycling conditions are de-
scribed as follows: Following an initial denaturation step at 95 ◦C for 30 s, 40 cycles of
profile were carried out: 95 ◦C, 5 s; 60 ◦C, 34 s. Relative transcripts were determined by the
formular: 2−(CTtarget-CTcontrol).

2.5. Cell Culture and Cytokine Induction

PBMCs (1 × 106) were isolated from 5 healthy controls and incubated in the presence
or absence of rh-IL-35 (Recombinant Human Interleukin-35, 50 ng/mL, Sino Biological Inc.,
Beijing, China) in a 24-well plate for 72 h in vitro. To enhance cell viability, rh-GM-CSF
(10 ng/mL; Sigma, St. Louis, MI, USA) was added to the mixture [22]. PBMCs were
cultured alone as a control. Three replicates were performed for each condition. The
cells were cultured at 37 ◦C with an RPMI-1640 medium in a humidified CO2-containing
atmosphere.

2.6. Assay for Autologous T-Cell Proliferation

An MoFlo XDP cell sorter (Beckman Coulter, USA) was used to isolate CD14+HLA-
DR−/lowMDSCs(M-MDSCs) and CD14+HLA-DR+cells. Autologous CD4+T cells were
sorted by anti-CD4 beads (Miltenyi Biotec, Bergisch Gladbach, Germany) from the same
healthy control. The purity of sorted cells was >95%.

CD4+T cells were incubated with CFSE (0.5 µM, Invitrogen, USA). Next, M-MDSCs
and CD14+HLA-DR+cells were cocultured with CFSE-labeled CD4+T cells, respectively, in
a 96-well plate at the ratio of 1:1. CD4+ T cells were cultured alone as a positive control.
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All cells were cultured in an RPMI-1640 medium with anti-CD3 (2 µg/mL), anti-CD28
(5 µg/mL). The suppressive ability of M-MDSCs on CD4+T cells was analyzed 3 days
later. Supernatants of culture were obtained and stored at −80 ◦C until used. Interferon-γ
(IFN-γ) was detected using an ELISA Kit (R&D System; ESM, Minneapolis, MN, USA).

2.7. Animal Models and Treatments

To establish the Ly8 DLBCL tumor mouse model, 1 × 106 Ly8 cells were subcuta-
neously injected into the flank of NOD-SCID mice to form tumors. Seven days after tumor
cell injection (when the tumor surface area was ~100 mm2), mice received weekly ad-
ministration of anti-IL-35 (Clone V1.4F5.25) or IgG2b antibody (100 µg) where indicated.
Additional NOD-SCID mice without any treatment were regarded as the control group.
According to the experimental scheme, the mice were killed on Day 23 after tumor inoc-
ulation, and blood was collected. Blood was subsequently prepared for flow cytometry
analysis of the M-MDSCs population.

2.8. Statistical Analysis

Statistical analysis was conducted with the SPSS 17.0 software (SPSS Inc, Chicago,
IL, USA). The Mann-Whitney U-test, Student’s t test, and one-way ANOVA were used
to determine the statistical significance when appropriate. To evaluate the correlations,
Spearman’s coefficient test was used. The overall survival rate (OS) was defined as the
time from the start of treatment to death from any cause. The OS was determined using
the Kaplan-Meier method. The difference was assessed using the log-rank test. A COX
proportional hazard regression analysis identified independent prognostic factors for OS.
Regarding all analyses, a p value <0.05 was considered significant.

3. Results
3.1. Increased M-MDSCs in Newly Diagnosed and Relapsed DLBCL Patients

Cells with the immunophenotype of CD14+HLA-DR−/low were defined as monocytic
MDSCs (M-MDSCs). Compared to the 30 healthy controls, a significantly increased fre-
quency of M-MDSCs was found in the 65 newly diagnosed DLBCL patients (4.7 ± 3.6% vs.
25.4 ± 12.3%, p < 0.01, Figure 1A,B). However, no significant difference existed between
the groups by age, gender, and GCB, or B symptoms (Figure 1C,D).

Figure 1. The level of M-MDSCs in DLBCL patients. (A) FCM dot plots demonstrate the frequency of M-MDSCs. (B)
M-MDSCs in DLBCL patients compared to healthy controls. (C) M-MDSCs in GCB and no-GCB DLBCL patients. (D)
M-MDSCs in A and B symptoms in DLBCL patients. HC, healthy control; ND, newly diagnosed. ** p < 0.01.
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3.2. M-MDSCs Levels Correlate with Disease Progression in Newly Diagnosed DLBCL Patients

Many clinicopathological factors were used to indicate disease progression, including
the Ann Arbor Stage, LDH level, and disease status. DLBCL patients with stage III–IV were
found to have higher levels of M-MDSCs compared to patients with early stage I–II (32.4 ±
12.2% vs. 20.1 ± 9.5%, p < 0.01, Figure 2A). Higher levels of M-MDSCs were observed in
DLBCL patients with increased LDH levels (30.6 ± 11.3%) compared with the LDH normal
group (19.4 ± 10.7%, p < 0.01, Figure 2B). An increased frequency of M-MDSCs existed in
newly diagnosed (25.4 ± 12.3%) and relapsed (34.2 ± 17.0%) DLBCL patients compared to
remission (10.1 ± 3.5%, Figure 2C) patients. Regarding the 18 patients who received four
cycles of CHOP or R-CHOP regimens of chemotherapy, the frequency of M-MDSCs was
significantly decreased after therapy (28.6 ± 8.5% vs. 13.2 ± 5.3; p < 0.01, Figure 2D).

Figure 2. M-MDSCs were associated with tumor progression in DLBCL patients. (A) M-MDSCs were associated with
DLBCL clinical stages. (B) High LDH level DLBCL patients had an increased frequency of M-MDSCs. (C) Newly diagnosed
and relapsed patients had higher levels of M-MDSCs than remission patients. (D) The levels of M-MDSCs significantly
decreased after therapy. ND, newly diagnosed; Rel, relapsed; Rem, remission. * p < 0.05; ** p < 0.01.

3.3. The Association Between M-MDSCs and Prognosis of DLBCL Patient

First, the relationship between the IPI score and the expansion of M-MDSCs was
investigated. We found increased levels of M-MDSCs in the high IPI score (IPI score: 3–5)
DLBCL patients compared to the low IPI score (IPI score: 0–2) patients (35.3 ± 11.4% vs.
19.6 ± 8.7; p < 0.01, Figure 3A). Furthermore, the IPI score was significantly and positively
associated with the frequency of M-MDSCs (r = 0.65, p < 0.01, Figure 3B).

The follow-up time was 5–76 months from January 2014 to June 2020. The negative
correlation between the OS and the frequency of M-MDSCs was further validated (r = 0.47,
p < 0.01, Figure 3C). Based on the median value frequency of M-MDSCs (25.4%), DLBCL
patients were divided into two groups. Concerning the low group (n = 39), M-MDSCs
levels were defined as less than or equal to 25.4%. Regarding the high group (n = 26),
M-MDSCs levels were greater than 25.4%. A Kaplan-Meier analysis showed the OS of
DLBCL patients with low M-MDSC levels was significantly longer than those with high
M-MDSC levels (p < 0.01, Figure 3D).

A univariate analysis of prognostic factors for OS, including age, gender, disease
stage, LDH level, B symptoms, GCB, IPI score, and the frequency of M-MDSCs, was
conducted. Logically, disease stage, IPI score, LDH level, and the frequency of M-MDSCs
were significant prognostic indicators for OS (p < 0.05; Table 2). When adjusted for the key
clinical prognostic factors, a multivariate Cox regression analysis also was performed. The
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results showed the IPI score and M-MDSC levels were associated with prognosis and could
be recognized as independent prognostic factors for DLBCL patients (p < 0.05, Table 2).

Figure 3. Circulating M-MDSCs was a prognostic factor in DLBCL patients. (A) High IPI score DLBCL patients had an
increased frequency of M-MDSCs. (B) M-MDSCs levels were positively associated with the IPI score. (C) M-MDSC levels
were negatively correlated with the OS. (D) Short OS were shown in high M-MDSCs groups. The cut-off value is the median
of M-MDSC levels. ** p < 0.01.

Table 2. Univariate and Multivariate analysis of prognostic factors in patients with DLBCL.

Factor

Univariate
Analysis

Multivariate
Analysis

HR 95% CI p HR 95% CI p

Age (year)
(≤60 vs. >60) 1.511 0.811–2.817 0.194

Gender
(Male vs. Female) 1.127 0.601–2.112 0.709

Disease stage
(I-II vs. III-IV) 3.026 1.591–5.755 0.001 2.184 0.916–5.205 0.078
B symptoms
(No vs. Yes) 1.339 0.710–2.523 0.367

GCB
(No vs. Yes) 1.060 0.576–1.981 0.855

LDH
(Normal vs. Increased) 0.348 0.136–0.887 0.027 1.461 0.529–4.035 0.464

IPI score
(0–2 vs. 3–5) 2.976 1.549–5.717 0.001 0.271 0.103–0.712 0.008

MDSCs
(≤25.44% vs. >25.44%) 2.707 1.409–5.199 0.003 2.682 1.198–6.004 0.016

OS overall survival, HR hazard ratio, CI confidence interval, GCB germinal center B-cell-like, LDH lactate dehydrogenase, IPI International
Prognostic Index. MDSC level (high/low) is based on the median value of the MDSC frequency.

3.4. Increased IL-35 Induce the M-MDSCs Expansion

IL-35, as a novel inhibitory cytokine, is composed of the subsets of p35 and EBI3 [23].
First, relative expressions of p35 and EBI3 mRNA were detected. Significantly increased
expression of p35 mRNA was found in DLBCL patients compared to the healthy controls
(61.49 ± 13.58 vs. 20.34 ± 7.06; p < 0.01, Figure 4A), as well as expression of EBI3 mRNA
(21.88 ± 6.06 vs. 4.76 ± 2.43; p < 0.01, Figure 4B). Next, the concentration of IL-35 was
investigated. There was a significantly higher concentration of IL-35 in DLBCL patients
compared to the healthy controls (103.39 ± 57.53 pg/mL vs. 65.18 ± 18.23 pg/mL; p < 0.01,
Figure 4C).
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Figure 4. The levels of IL-35 in DLBCL patients and their effect on M-MDSCs. (A) p35 and (B) EBI3 mRNA expression in
DLBCL patients and healthy controls. (C) The concentration of IL-35 in DLBCL patients and healthy controls. (D) IL-35
induced the expansion of M-MDSCs in vitro. (E) FACS dot plots show the proliferation of M-MDSCs induced with IL-35.
Pre-cul, pre-culture; ** p < 0.01.

Next, the effect of IL-35 on the accumulation of M-MDSCs was investigated. First,
PBMCs, isolated from healthy controls, were cultured with rhIL-35(50 ng/mL) for 72 h
in vitro. GM-CSF (10 ng/mL; Sigma) was used to support cell viability. The percentage of
M-MDSCs was significantly increased with stimulation of IL-35 compared to the control
(p < 0.01, Figure 4D,E).

3.5. IL-35-Induced M-MDSCs Suppress CD4+ T Cell Response

Compared with the CD14+HLA-DR+ cells, M-MDSCs had a strong ability to suppress
CD4+T cell proliferation and reduce the production of IFN-γ (p < 0.01, Figure 5A,B).
CD14+HLA-DR+cells did not have this capacity (p < 0.01, Figure 5C).

Figure 5. Functional analysis of M-MDSCs on CD4+T cells. (A) CFSE-labeled CD4+T cells were suppressed by M-MDSCs,
(B) associated with a reduction of IFN-γ. (C) A flow cytometry histogram shows the suppressive activity of M-MDSCs. Ctrl,
control, ** p < 0.01.
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3.6. Anti-IL-35 Treatment Block M-MDSC Expansion In Vivo

To study the effect of IL-35 on MDSC expansion, NOD-SCID mice injected with Ly8
DLBCL tumor cells were treated with anti-IL-35 or IgG2b antibodies (Figure 6A). Additional
NOD-SCID mice without any treatment were regarded as the control group. Compared
with the IgG2b antibody, Anti-IL-35 treatment significantly reduced the plasma levels of
IL-35 in Ly8 tumor-bearing mice (p < 0.01, Figure 6B). Furthermore, obviously decreased
levels of M-MDSCs were found in mice treated with Anti-IL-35 (p < 0.01, Figure 6C,D,
P4 region).

Figure 6. Effect of IL-35 on M-MDSC expansion in vivo. (A) Schematic representation of the experimental design. (B)
Anti-IL-35 treatment reduced levels of IL-35. (C) Anti-IL-35 blocked the M-MDSC expansion in vivo. (D) Flow cytometry
dot plots show the level of M-MDSCs in the three groups (P4 region). ** p < 0.01.

4. Discussion

MDSCs are a heterogeneous, immature immunosuppressive cell population, which
has a positive role in tumorigenesis and tumor progression [24,25]. It has been proven
that the frequency of MDSCs in colorectal cancer [26], breast cancer [27], and multiple
myeloma [14] is significantly increased and closely related to the progression of the tumor.
The immunosuppressive capacity of M-MDSCs was more intensely compared with G-
MDSCs in the tumor microenvironment [28]. Additionally, G-MDSCs were absent from
PBMCs, and were only detected in whole blood in several malignancy patients [29]. Thus,
G-MDSCs are less studied than M-MDSCs in previous reports. M-MDSCs focused our
attention during this study.

During this study, the clinical parameters and prognostic significance associated
with the frequency of M-MDSCs was investigated in patients with DLBCL. First, the
frequency of M-MDSCs was significantly increased in newly diagnosed and relapsed
DLBCL patients and closely related to disease progression (disease stage, LDH levels, and
IPI score). Following chemotherapy, a significant decrease in the levels of M-MDSCs was
found. This indicated that the level of M-MDSCs reflected the disease progress of DLBCL
patients. Accompanying the reduction of the tumor burden, inflammatory cytokines
secreted by DLBCL cells significantly decreased, accompanied by reduced levels of M-
MDSCs. Concerning DLBCL patients, significant changes in M-MDSCs can be used to
indicate the outcome of chemotherapy.

During a previous study [30,31], the levels of MDSCs were significantly different
between GCB and non-GCB in poor and very good risk groups in DLBCL patients. Fol-
lowing chemotherapy, no significant difference existed in the five-year OS between GCB
and non-GCB-DLBCL patients. The levels of M-MDSCs can be indicated as a biomarker
to evaluate the prognosis of DLBCL patients. During the present study, the frequency of
M-MDSCs was positively associated with the IPI score and negatively correlated with the
OS in DLBCL patients. The group with a longer OS had a lower frequency of M-MDSCs.
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This proved that the level of M-MDSCs was a factor affecting the OS in DLBCL patients.
The results from a Cox regression analysis showed that M-MDSCs were associated with a
poor prognosis and could be defined as a prognostic biomarker for DLBCL patients.

Previous studies have shown that IL-35 exerts an immunosuppressive effect on in-
flammation related diseases [18]. The concentration of IL-35 increased in various tumor
patients, including colorectal cancer [32], acute myeloid leukemia [17], and hepatocellular
carcinoma [33]. However, to our best knowledge, there were few reports investigating
IL-35 in DLBCL patients, as well as the effect of IL-35 on MDSCs. Wang et al. found
that IL-35 has a strong ability to induce CD11b+Gr1+ myeloid cell accumulation in the
mouse tumor microenvironment [19]. The influence of IL-35 on the accumulation of human
M-MDSCs has not been reported before, to our knowledge. Data from the present study
demonstrated that the concentrations of IL-35, as well as p35 and EBI3 mRNA expressions,
were significantly elevated in DLBCL patients. Additionally, IL-35 has an ability to induce
M-MDSC accumulation. Regarding the experiment in mice, the direct depletion of IL-35
using a neutralizing antibody contributes to the decrease in M-MDSC accumulations in
mice with Ly8 DLBCL tumors. Interestingly, a decreased level of G-MDSCs also was found
with the treatment of Anti-IL-35. These results collectively demonstrated that Anti-IL-35
treatment significantly blocked M-MDSC expansion. IL-35 exerted an immunosuppressive
effect by inducing M-MDSC accumulations. Recently, however, the specific mechanism and
molecular pathway of IL-35-induced M-MDSC expression remains to be further elucidated.

The uniform phenotypic marker for MDSCs is still lacking. The critical feature in the
identification of MDSCs was the immunosuppressive capacity [34]. To identify whether the
IL-35 induced CD14+HLA-DR−/low cells have immunosuppressive effect, it was necessary
to evaluate the immunosuppressive activities of CD14+HLA-DR−/low cells on autologous
T cell proliferation and IFN-γ production. It was found that CD14+HLA-DR−/low cells
significantly suppressed the proliferation of CD4+ T cells compared to the CD14+HLA-
DR+ cells. Moreover, the production of IFN-γ was significantly decreased in CD4+ T
cells co-cultured with CD14+HLA-DR−/low cells. Strikingly, CD14+HLA-DR−/low cells
exerted a strong suppressive ability on T cell proliferation and IFN-γ production. Hence,
CD14+HLA-DR−/low cells could be considered as M-MDSCs in DLBCL patients.

5. Conclusions

Increased levels of M-MDSCs are positively associated with tumor progression and
inversely correlated with OS in DLBCL patients. The level of M-MDSCs is associated with
prognosis and could be defined as a prognostic indicator for DLBCL patients. Additionally,
IL-35 has an obvious ability to induce the accumulation of M-MDSCs. Therefore, M-MDSCs
participate in immune escape and have a prognostic value in DLBCL patients. Targeting
M-MDSCs may be a promising therapeutic strategy for DLBCL patients.

Author Contributions: Conceptualization, Z.Z.; resources, Z.W., R.J., and Q.L.; investigation, Z.W.,
and H.W.; resources, Z.W., R.J., Q.T., and Q.L.; statistical analysis, Z.W. and Q.L.; writing—original
draft preparation, Z.W., Q.L., and H.W.; writing—review and editing, Z.W. and Z.Z.; supervision,
Z.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (81670179) and
Anhui province (2008085QH372).

Institutional Review Board Statement: The study was approved by the local ethical committee
of the Second Affiliated Hospital of Anhui Medical University (protocol code: 20140322; date of
approval: 01.02.2014).

Informed Consent Statement: Informed consent was obtained from all subjects in volved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: All authors declare no conflict of interest.



J. Clin. Med. 2021, 10, 1768 10 of 11

References
1. Armitage, J.O.; Gascoyne, R.D.; Lunning, M.A.; Cavalli, F. Non-Hodgkin lymphoma. Lancet 2017, 390, 298–310. [CrossRef]
2. Coiffier, B. Rituximab in combination with CHOP improves survival in elderly patients with aggressive non-Hodgkin’s lymphoma.

Semin. Oncol. 2002, 29, 18–22. [CrossRef] [PubMed]
3. Shanbhag, S.; Ambinder, R.F. Hodgkin lymphoma: A review and update on recent progress. CA A Cancer J. Clin. 2018, 68, 116–132.

[CrossRef] [PubMed]
4. Tomita, N.; Yokoyama, M.; Yamamoto, W.; Watanabe, R.; Shimazu, Y.; Masaki, Y.; Tsunoda, S.; Hashimoto, C.; Murayama, K.;

Yano, T.; et al. The standard international prognostic index for predicting the risk of CNS involvement in DLBCL without specific
prophylaxis. Leuk. Lymphoma 2017, 59, 97–104. [CrossRef]

5. Chan, A.; Dogan, A. Prognostic and Predictive Biomarkers in Diffuse Large B-cell Lymphoma. Surg. Pathol. Clin. 2019, 12,
699–707. [CrossRef]

6. Pyzer, A.R.; Cole, L.; Rosenblatt, J.; Avigan, D.E. Myeloid-derived suppressor cells as effectors of immune suppression in cancer.
Int. J. Cancer 2016, 139, 1915–1926. [CrossRef]

7. Chen, M.-F.; Tsai, M.-S.; Chen, W.-C.; Chen, P.-T. Predictive Value of the Pretreatment Neutrophil-to-Lymphocyte Ratio in Head
and Neck Squamous Cell Carcinoma. J. Clin. Med. 2018, 7, 294. [CrossRef]

8. Chang, C.-J.; Yang, Y.-H.; Chiu, C.-J.; Lu, L.-C.; Liao, C.-C.; Liang, C.-W.; Hsu, C.-H.; Cheng, A.-L. Targeting tumor-infiltrating
Ly6G+ myeloid cells improves sorafenib efficacy in mouse orthotopic hepatocellular carcinoma. Int. J. Cancer 2018, 142, 1878–1889.
[CrossRef]

9. Marvel, D.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J. Clin.
Investig. 2015, 125, 3356–3364. [CrossRef]

10. Talmadge, J.E.; Gabrilovich, D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 2013, 13, 739–752. [CrossRef]
11. Iwata, T.; Kondo, Y.; Kimura, O.; Morosawa, T.; Fujisaka, Y.; Umetsu, T.; Kogure, T.; Inoue, J.; Nakagome, Y.; Shimosegawa, T.

PD-L1+MDSCs are increased in HCC patients and induced by soluble factor in the tumor microenvironment. Sci. Rep. 2016, 6,
39296. [CrossRef]

12. Zhang, H.; Li, Z.-L.; Ye, S.-B.; Ouyang, L.-Y.; Chen, Y.-S.; He, J.; Huang, H.-Q.; Zeng, Y.-X.; Zhang, X.-S.; Li, J. Myeloid-derived
suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: A novel prognostic indicator. Cancer
Immunol. Immunother. 2015, 64, 1587–1599. [CrossRef]

13. Yin, J.; Wang, C.; Huang, M.; Mao, X.; Zhou, J.; Zhang, Y. Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells
in leukemia patients with allogeneic hematopoietic stem cell transplantation: Novel clinical potential strategies for the prevention
and cellular therapy of graft-versus-host disease. Cancer Med. 2016, 5, 1654–1669. [CrossRef]

14. Wang, Z.; Zhang, L.; Wang, H.; Xiong, S.; Li, Y.; Tao, Q.; Xiao, W.; Qin, H.; Wang, Y.; Zhai, Z. Tumor-induced CD14+HLA-
DR−/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma
patients. Cancer Immunol. Immunother. 2015, 64, 389–399. [CrossRef]

15. Xiao, P.; Wan, X.; Cui, B.; Liu, Y.; Qiu, C.; Rong, J.; Zheng, M.; Song, Y.; Chen, L.; He, J.; et al. Interleukin 33 in tumor
microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. OncoImmunology 2015, 5,
e1063772. [CrossRef]

16. Lechner, M.G.; Liebertz, D.J.; Epstein, A.L. Characterization of Cytokine-Induced Myeloid-Derived Suppressor Cells from Normal
Human Peripheral Blood Mononuclear Cells. J. Immunol. 2010, 185, 2273–2284. [CrossRef]

17. Wang, J.; Tao, Q.; Wang, H.; Wang, Z.; Wu, F.; Pan, Y.; Tao, L.; Xiong, S.; Wang, Y.; Zhai, Z. Elevated IL-35 in bone marrow of the
patients with acute myeloid leukemia. Hum. Immunol. 2015, 76, 681–686. [CrossRef]

18. Tao, Q.; Pan, Y.; Wang, Y.; Wang, H.; Xiong, S.; Lili, T.; Wang, J.; Tao, L.; Wang, Z.; Wu, F.; et al. Regulatory T cells-derived IL-35
promotes the growth of adult acute myeloid leukemia blasts. Int. J. Cancer 2015, 137, 2384–2393. [CrossRef]

19. Wang, Z.; Liu, J.-Q.; Liu, Z.; Shen, R.; Zhang, G.; Xu, J.; Basu, S.; Feng, Y.; Bai, X.-F. Tumor-Derived IL-35 Promotes Tumor Growth
by Enhancing Myeloid Cell Accumulation and Angiogenesis. J. Immunol. 2013, 190, 2415–2423. [CrossRef]

20. Campo, E.; Swerdlow, S.H.; Harris, N.L.; Pileri, S.; Stein, H.; Jaffe, E.S. The 2008 WHO classification of lymphoid neoplasms and
beyond: Evolving concepts and practical applications. Blood 2011, 117, 5019–5032. [CrossRef]

21. Younes, A.; Hilden, P.; Coiffier, B.; Hagenbeek, A.; Salles, G.; Wilson, W.; Seymour, J.F.; Kelly, K.; Gribben, J.; Pfreunschuh, M.;
et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann. Oncol. 2017, 28,
1436–1447. [CrossRef]

22. Bayne, L.J.; Beatty, G.L.; Jhala, N.; Clark, C.E.; Rhim, A.D.; Stanger, B.Z.; Vonderheide, R.H. Tumor-Derived Granulocyte-
Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer. Cancer Cell
2012, 21, 822–835. [CrossRef]

23. Kanai, K.; Park, A.-M.; Yoshida, H.; Tsunoda, I.; Yoshie, O. IL-35 Suppresses Lipopolysaccharide-Induced Airway Eosinophilia in
EBI3-Deficient Mice. J. Immunol. 2016, 198, 119–127. [CrossRef]

24. Shu, C.-C.; Pan, S.-W.; Feng, J.-Y.; Wang, J.-Y.; Chan, Y.-J.; Yu, C.-J.; Su, W.-J. The Clinical Significance of Programmed Death-1,
Regulatory T Cells and Myeloid Derived Suppressor Cells in Patients with Nontuberculous Mycobacteria-Lung Disease. J. Clin.
Med. 2019, 8, 736. [CrossRef]

25. Malek, E.; de Lima, M.; Letterio, J.J.; Kim, B.-G.; Finke, J.H.; Driscoll, J.J.; Giralt, S.A. Myeloid-derived suppressor cells: The green
light for myeloma immune escape. Blood Rev. 2016, 30, 341–348. [CrossRef]

http://doi.org/10.1016/S0140-6736(16)32407-2
http://doi.org/10.1053/sonc.2002.32749
http://www.ncbi.nlm.nih.gov/pubmed/12040530
http://doi.org/10.3322/caac.21438
http://www.ncbi.nlm.nih.gov/pubmed/29194581
http://doi.org/10.1080/10428194.2017.1330541
http://doi.org/10.1016/j.path.2019.03.012
http://doi.org/10.1002/ijc.30232
http://doi.org/10.3390/jcm7100294
http://doi.org/10.1002/ijc.31216
http://doi.org/10.1172/JCI80005
http://doi.org/10.1038/nrc3581
http://doi.org/10.1038/srep39296
http://doi.org/10.1007/s00262-015-1765-6
http://doi.org/10.1002/cam4.688
http://doi.org/10.1007/s00262-014-1646-4
http://doi.org/10.1080/2162402X.2015.1063772
http://doi.org/10.4049/jimmunol.1000901
http://doi.org/10.1016/j.humimm.2015.09.020
http://doi.org/10.1002/ijc.29563
http://doi.org/10.4049/jimmunol.1202535
http://doi.org/10.1182/blood-2011-01-293050
http://doi.org/10.1093/annonc/mdx097
http://doi.org/10.1016/j.ccr.2012.04.025
http://doi.org/10.4049/jimmunol.1600506
http://doi.org/10.3390/jcm8050736
http://doi.org/10.1016/j.blre.2016.04.002


J. Clin. Med. 2021, 10, 1768 11 of 11

26. Wu, P.; Wu, D.; Ni, C.; Ye, J.; Chen, W.; Hu, G.; Wang, Z.; Wang, C.; Zhang, Z.; Xia, W.; et al. GammadeltaT17 cells promote
the accumulation and expression of myeloid-derived suppressor cells in human colorectal cancer. Immunity 2014, 40, 785–800.
[CrossRef]

27. Gonda, K.; Shibata, M.; Ohtake, T.; Matsumoto, Y.; Tachibana, K.; Abe, N.; Ohto, H.; Sakurai, K.; Takenoshita, S. Myeloid-derived
suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in
patients with breast cancer. Oncol. Lett. 2017, 14, 1766–1774. [CrossRef]

28. Haverkamp, J.M.; Smith, A.M.; Weinlich, R.; Dillon, C.P.; Qualls, J.E.; Neale, G.; Koss, B.; Kim, Y.; Bronte, V.; Herold, M.J.; et al.
Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and
Intrinsic Death Pathways. Immunity 2014, 41, 947–959. [CrossRef] [PubMed]

29. Azzaoui, I.; Uhel, F.; Rossille, D.; Pangault, C.; Dulong, J.; Le Priol, J.; Lamy, T.; Houot, R.; Le Gouill, S.; Cartron, G.; et al. T-cell
defect in diffuse large B-cell lymphomas involves expression of myeloid-derived suppressor cells. Blood 2016, 128, 1081–1092.
[CrossRef] [PubMed]

30. Wu, C.; Wu, X.; Liu, X.; Yang, P.; Xu, J.; Chai, Y.; Guo, Q.; Wang, Z.; Zhang, L. Prognostic Significance of Monocytes and Monocytic
Myeloid-Derived Suppressor Cells in Diffuse Large B-Cell Lymphoma Treated with R-CHOP. Cell. Physiol. Biochem. 2016, 39,
521–530. [CrossRef] [PubMed]

31. Wu, C.; Wu, X.; Zhang, X.; Chai, Y.; Guo, Q.; Li, L.; Yue, L.; Bai, J.; Wang, Z.; Zhang, L. Prognostic significance of peripheral
monocytic myeloid-derived suppressor cells and monocytes in patients newly diagnosed with diffuse large b-cell lymphoma. Int.
J. Clin. Exp. Med. 2015, 8, 15173–15181.

32. Wang, K.; Gong, H.; Chai, R.; Yuan, H.; Chen, Y.; Liu, J. RETRACTED: Aberrant frequency of IL-35 producing B cells in colorectal
cancer patients. Cytokine 2018, 102, 206–210. [CrossRef]

33. Long, J.; Guo, H.; Cui, S.; Zhang, H.; Liu, X.; Li, D.; Han, Z.; Xi, L.; Kou, W.; Xu, J.; et al. IL-35 expression in hepatocellular
carcinoma cells is associated with tumor progression. Oncotarget 2016, 7, 45678–45686. [CrossRef]

34. Bronte, V.; Brandau, S.; Chen, S.-H.; Colombo, M.P.; Frey, A.B.; Greten, T.F.; Mandruzzato, S.; Murray, P.J.; Ochoa, A.; Ostrand-
Rosenberg, S.; et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat.
Commun. 2016, 7, 12150. [CrossRef]

http://doi.org/10.1016/j.immuni.2014.03.013
http://doi.org/10.3892/ol.2017.6305
http://doi.org/10.1016/j.immuni.2014.10.020
http://www.ncbi.nlm.nih.gov/pubmed/25500368
http://doi.org/10.1182/blood-2015-08-662783
http://www.ncbi.nlm.nih.gov/pubmed/27338100
http://doi.org/10.1159/000445644
http://www.ncbi.nlm.nih.gov/pubmed/27383764
http://doi.org/10.1016/j.cyto.2017.10.011
http://doi.org/10.18632/oncotarget.10141
http://doi.org/10.1038/ncomms12150

	Introduction 
	Materials and Methods 
	Patient and Sample 
	Flow Cytometry (FCM) Analysis 
	Cytokine Assay 
	RT-PCR Analysis 
	Cell Culture and Cytokine Induction 
	Assay for Autologous T-Cell Proliferation 
	Animal Models and Treatments 
	Statistical Analysis 

	Results 
	Increased M-MDSCs in Newly Diagnosed and Relapsed DLBCL Patients 
	M-MDSCs Levels Correlate with Disease Progression in Newly Diagnosed DLBCL Patients 
	The Association Between M-MDSCs and Prognosis of DLBCL Patient 
	Increased IL-35 Induce the M-MDSCs Expansion 
	IL-35-Induced M-MDSCs Suppress CD4+ T Cell Response 
	Anti-IL-35 Treatment Block M-MDSC Expansion In Vivo 

	Discussion 
	Conclusions 
	References

