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Gestational diabetes mellitus (GDM) is defined as the glucose intolerance that is not present or recognized prior to pregnancy.
Several risk factors of GDM depend on environmental factors that are thought to regulate the genome through epigenetic
mechanisms. Thus, epigenetic regulation could be involved in the development of GDM. In addition, the adverse intrauterine
environment in patients with GDM could also have a negative impact on the establishment of the epigenomes of the offspring.

1. Gestational Diabetes Mellitus

Late pregnancy is characterized by moderate peripheral
insulin resistance and hyperinsulinemia, both of which
are necessary to ensure an appropriate supply of nutrient
to the fetus. It is counteracted by the adaptation of the
islets of Langerhans to the higher insulin demand. This
adaptation is characterized by an increase of insulin biosyn-
thesis, enhanced glucose-stimulated insulin secretion, and
an increase of b-cell mass. It is not completely understood
why, in some individuals, the b-cell mass and function fail
to adapt to the metabolic demands of pregnancy and why
blood glucose concentration rises to pathological levels [1,
2]. Gestational diabetes mellitus (GDM) is defined as glucose
intolerance that was not present or recognized prior to
pregnancy and it is diagnosed when the pancreatic function
in women is not sufficient to control the diabetogenic
environment that pregnancy confers [3]. The diagnosis of
GDM also identifies pregnancies at increased risk of perinatal
morbidity [4].

The incidence of GDM differs among ethnic populations,
with higher rates in African American, Hispanic, American
Indian, and Asian women than in white women; values range

from 1.4% to 14% but overall the condition commonly
affects between 2% and 5% of pregnant women [5].

The frequency of GDM varies in direct proportion
to the prevalence of type II diabetes in populations, and
women who develop GDM during pregnancy have a higher
risk of developing type 2 diabetes (T2D) later in their
lives. These observations are important for relating the
two pathological situations and they probably arise from
common physiopathological mechanisms [6].

There are two different methods for classifying diabetes
in pregnancy. The most recent is the American Diabetes
Association (ADA) classification [7] but the White classifi-
cation is still useful [8] even though it was published in 1949.

1.1. Risk Factors for GDM. Several risk factors are associated
with the development of GDM. The most common is obesity
(body mass index over 30) diagnosed before pregnancy [9].
Being a member of an ethnic group with a higher rate of
type II diabetes (as mentioned above), polycystic ovarian
syndrome [10], essential hypertension, or pregnancy-related
hypertension [11], strong family history of diabetes in
first-degree relatives and a history of GDM in a pre-
vious pregnancy are other important risk factors [12].
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Nevertheless, no risk factors are known in around 50% of
patients with GDM.

There is enough evidence to assert that T2D has a
strong genetic component. The concordance of T2D in
monozygotic twins is approximately 70%, compared with
20%–30% in dizygotic twins [13, 14].

Family studies have prompted the emergence of new
perspectives regarding the identification of GDM suscep-
tibility genes. Familial clustering of GDM and T2D have
been studied, linking T2D and impaired glucose tolerance
in families with GDM [15] and there is evidence of a higher
incidence of T2D in mothers of women with GDM [16].

The latest genome-wide studies have identified a number
of genetic variants that can explain some of the interindi-
vidual discrepancies in diabetes susceptibility [17, 18] and
different genes have been associated with GDM and T2D
[19]. Although classical MHC class II molecules HLA-DR3
and DR4 were not found to be related to GDM [20],
recent studies have found genetic evidence from PPARG,
KCNJ11, TCF2/HNF1B, and WFS1 or HNF4A that is related
to dysfunctional pancreatic b-cell secretion and GDM,
suggesting new possibilities for the study of GDM [21, 22].

Some strands of scientific opinion suggest a possible
role for epigenetic factors in the complex interplay between
genes and the environment that are related to insulin
resistance, T2D, and GDM mellitus [23]. These pathological
conditions are associated with strong interactions between
genetic susceptibility (usually a polygenic contribution) and
environment influences over time, such as lifestyle and social
influences (e.g., overfeeding, sedentarism, and obesity), or
fetal surroundings (epidemiological studies suggest that
the perinatal environment can predispose human offspring
to developing obesity and T2D). These interactions may
bring about the activation and/or deactivation of genes by
epigenetic mechanisms, enabling adaptation to these various
environmental situations [24].

1.2. Pathophysiology and Medical Complications. The patho-
genesis of the most common type of GDM have been
described similar to that of type 2 diabetes (T2D), with both
pancreatic b-cell dysfunction and chronic insulin resistance
playing crucial roles [25]. Pregnancy as an insulin resistant
state may disclose pre-existing deficiency in insulin secretion
or insulin sensitivity being present relative b-cell failure
[26, 27].

Moreover, women with GDM after delivery often have
an increased risk for metabolic syndrome, and they have
been shown to express early markers of vascular dysfunction
such as increased intimamedia thickness of carotid arteries
[28]. Thus, pregnancy is a stress situation that may reveal
predisposition to T2D on women that provide early signs for
prevention of essential chronic diseases [29]. High maternal
adipose deposition [30] and low levels of exercise [31, 32]
also contribute to this state of relative insulin resistnce
something that classically occurs in T2D. Other releasing
factors, such as TNFα [33], leptin [34], human placental
lactogen, cortisol, which is an insulin antagonist, estrogen,
or progesterone have previously been found to affect the
glucose-insulin balance [35].

There are outstanding medical complications that have
been related to GDM for mother and also offspring. For
mothers, GDM development have been related to overweight
and obesity prior pregnancy [36] and also have been recog-
nised as a sign of increased risk of developing type 2 diabetes
(T2D) during life [37]. There are studies that have confirmed
the risk of developing T2D in previously diagnosed GDM
approximately 40% being followed up during ten year [38].
There is an increasing incidence of T2D (is highest in the first
5 years after pregnancy) which is frequently related with a
substantial increase in BMI in women with GDM [39].

Congenital anomalies are not more common in patients
with GDM but there is an increased incidence of stillbirth
when glucose control is poor [40]. Organogenesis usually
may start in the third week after fertilization, and it is
almost completed by the 8th or 10th week of gestation so
during the time most women are aware they are pregnant,
substantial organogenesis has occurred. Maternal insulin
does not cross the placental structures, and foetal beta islets
are not developed to produce insulin until 12th week of
gestation where early hyperglycemias can lead to congenital
malformations and miscarriages, something that is two or
three times more likely among patients with type 1 and type
2 diabetes than in healthy pregnancies [41].

This situation is also important because periconceptual
hyperglycemia is known to be teratogenic and undiagnosed
T2D might have a role in pregnancy outcome [42, 43].
Congenital abnormalities (3% incidence in total population)
are not found more frequently in the offspring of patients
with GDM when it is mostly diagnosed over 20th week of
gestation [44] but abnormalities are more common in the
offspring of patients with both T1D and T2D [45, 46].

Recent literature defines macrosomia as identical to large
for gestational age (LGA), which is size >90th percentile for
gestational age [47] but this term is habitually used as birth
weight over 4000 grams. When a fetus (over 12th week of
gestation) is exposed to high levels of maternal glucose, it
responds by secreting high levels of insulin in its circulation
to control these hyperglycemias. This is a “double sword”
mechanism where insulin that also has growth hormone
properties develops a high tendency for foetal macrosomia
and an increased rate of delivery complications [48]. Some
risk for macrosomic and LGA infants deliveries may be
found in the general population but is found higher in
GDM, T2D, or postprandial hyperglycemic patients as well
as high maternal prepregnancy weight or maternal age over
40 [49, 50].

Moreover, postpartum neonatal hypoglycemia may
occur when neonates are no longer exposed to high levels of
maternal glucose. At delivery, neonates continue producing
elevated rates of insulin, but without high levels of maternal
glucose that leads to a virtual neonatal hyperinsulinemia and
subsequent hypoglycemias, requiring glucose infusion after
delivery [51].

Finally, other important complications have been
described in offspring of diabetic gestations with repercus-
sions in future. Children who have been diagnosed LGA at
birth and were exposed to an intrauterine environment of
either diabetes or maternal obesity developed an increased
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risk of metabolic syndrome (MS) during childhood. This
increased rate of obesity prevalence among children and
adults may have implications for perpetuating the cycle of
obesity, insulin resistance, and their consequences (GDM,
T2DM, MS, and cardiovascular diseases) in subsequent
generations [52–54].

2. Epigenetic Regulation

Epigenetics is currently known as a science that studies
changes in gene activity that take place without a change
in the nucleotide sequence. Epigenetic modifications are
transmitted from one cell generation to the next (mitotic
inheritance) and can also be transmitted down organismal
generations (meiotic inheritance) [55]. Epigenetic modifi-
cations may be induced by the incidence of environmental
factors that affect these biological systems, making them
important pathogenic mechanisms in complex multifactorial
diseases.

Epigenetic modifications include DNA methylation, his-
tone modification, and those of the microRNA machinery.
These mechanisms explain how cells with identical genomic
information can differentiate into distinct cell types with
different phenotypes [56]. Cytosine residues present in CG
dinucleotides of gene promoters are targets for DNA methy-
lation, which is associated with transcriptional silencing
of these genes. This silencing can be caused by repressing
transcription factor binding or by recruiting proteins that
specifically bind to methylated CGs (methyl-CG-binding
proteins, e.g., MeCP2), which can further recruit histone
deacetyltransferases (HDACs) and corepressors.

The enzymes that lead to DNA methylation are methyl-
transferases (DNMTs), of which there are types: DNMT1,
which copies the pattern of DNA methylation during
replication (methylation maintenance), and DNMT3a and
DNMT3b, which are responsible for de novo DNA methy-
lation [57]. In contrast, processes that demethylate DNA
are not well understood. In eukaryotic cells genomic DNA
is bundled with particular proteins, known as histones, to
produce chromatin. The basic structure of chromatin is
the nucleosome, which consists of 147 base pairs of DNA
wrapped around an octamer of histone proteins consisting
of an H3-H4 tetramer flanked on either side by an H2A-H2B
dimer. Even if the core histones are densely packed, histone
modifying enzymes can modify their NH2-terminal tails
by acetylation, methylation, phosphorylation, sumoylation,
or ubiquitination [58]. These modifications determine the
accessibility of the DNA to the transcription machinery
as well as being essential for replication, recombination
and chromosomal organization. HDACs and histone acetyl
transferases (HATs), respectively, remove and add acetyl
groups to lysine residues on histone tails [59]. Although the
levels of HAT activity and histone acetylation are known
to correlate with those of gene transcription, the exact
mechanisms promoting transcription are not very clear [60].

Native lysine residues on histone tails bear a positive
charge that can bind negatively charged DNA to form
a condensed structure with low transcriptional activity.
An early suggestion was that histone acetylation removes

these positive charges, thereby relaxing chromatin structure
and facilitating access to the DNA for the transcriptional
machinery to initiate transcription [60]. However, differ-
ent models have recently been proposed wherein multi-
ple histone modifications act in combination to regulate
transcription [61]. Histone methylation can result in either
transcriptional activation or inactivation, depending on the
degree of methylation and the particular arginine and/or
lysine residues modified. Histone methyltransferases and
histone demethylases mediate these processes as well [62].

2.1. A possible Role of Epigenetic Mechanisms in GDM.
As we previously commented, pregnancy is a pathological
condition that may indicate a predisposition to develop T2D
in near future. Moreover, several studies point towards GDM
and T2D as different faces of the same disease at diverse
stages of life [63]. High maternal adipose deposition or low
levels of exercise contribute to insulin resistance in both
pathologies [64–66] meanwhile b-cell dysfunction has also
been recognized as an important factor to develop T2D and
GDM [67]. In this case, sharing the same predisposing con-
ditions and knowing that development of T2D is related to
important epigenetic mechanisms [68], it may be consistent
to identify the role of those epigenetic mechanisms in GDM
pathogenesis.

In T2D, b-cell damage usually arises as a result of a
combination of genetic susceptibility and acquired damage.
Numerous genes have been associated with islet cell dysfunc-
tion in T2D, including some that encode for transcription
factors, glucose metabolism proteins, and molecules of the
insulin signaling pathways [69].

Pdx-1 is a pancreatic homeobox transcription factor that
regulates pancreas development and b-cell differentiation.
A reduction in Pdx-1 expression in humans and animal
models has been shown to cause T2D, while mutations in
this gene also cause the monogenic form of diabetes (MODY
4) [70]. Also, Park et al. have recently associated intrauterine
growth retardation, impaired b-cell function, and T2D with
the silencing of Pdx-1 by epigenetic mechanisms [71].
Previous works have related the increased risk of developing
GDM with variants of MODY genes but further studies are
necessary to establish the possible role of Pdx-1 in GDM [72].

Glucose is an important physiological fuel for the b-cell,
initializing ATP production, insulin secretion, and prolifer-
ation. However, chronic hyperglycemia has severe adverse
effects on b-cell function, including glucose desensitization,
b-cell exhaustion and finally a lack of insulin secretion and
insulin storage [73].

Increased oxidative stress found in obese and T2D
patients, lead to decreased insulin gene transcription by
decreasing Pdx1 [74]. The mechanisms by which ROS
reduces b-cell mass and function are not completely under-
stood, but ROS can alter DNA methylation. The changes in
DNA methylation patterns have been shown to affect the
expression of multiple genes [75, 76]. Histones, because they
have abundant lysine residues, are also very susceptible to
oxidative stress [77]. Several studies have identified epige-
netic modifications in genes involved in the development of
T2D, as we previously described for the Pdx-1 gene.



4 Obstetrics and Gynecology International

Glucose transporters are involved in the transport of
glucose in most cells. GLUT4 is a member of the facilitative
glucose transporter (GLUT) family, characterized by prefer-
ential expression in muscle and adipose tissues, where it is
responsible for insulin-stimulated glucose uptake. GLUT4 is
essential for the maintenance of normal glucose homeostasis
[78].

In patients with T2D, insulin resistance is a product
of decreased insulin-stimulated skeletal muscle glycogen
synthesis, which can mostly be attributed to decreased
insulin-stimulated glucose transport (Glut 4) activity [79]
and similar alterations have been observed in maternal
skeletal muscle in GDM [80, 81]. Glut 4 expression is
further regulated by the interaction of the transcription
factor MEF2 (myocyte enhancer factor 2) with HDAC5
(histone deacetylase 5), which deacetylates histone tails at
Glut 4, resulting in a condensed chromatin structure and
subsequently reduced Glut 4 expression [82]. Moreover, the
MEF2 isoforms are differentially regulated in muscle and
adipose tissue during periods of insulin deficiency [83].
These mechanisms could also be involved in Glut 4 alteration
in GDM.

Insulin secretion in pancreatic islets is dependent
upon mitochondrial function and production of ATP. The
transcriptional coactivator peroxisome proliferator-activated
receptor gamma coactivator-1 alpha (protein PGC-1alpha;
gene PPARGC1A) is a master regulator of mitochondrial
genes, and its expression is weak and related to impaired
oxidative phosphorylation in the muscle of patients with
T2D [84]. DNA methylation of the PPARGC1A promoter
is greater in the pancreatic islets of patients with T2D
than in those of healthy controls, which correlates inversely
with PPARGC1A expression in diabetic islets. This weaker
PPARGC1A expression is correlated with impaired glucose-
stimulated insulin secretion, which is known to require
ATP, and suggests that epigenetic mechanisms may regulate
insulin secretion in human islets.

PPARGC1A is a coactivator of PPARG and PPARA
and regulates genes involved in energy metabolism [85].
An alteration in peroxisome proliferator-activated receptors
(PPARs) has been described in common complications of
pregnancy, including GDM, intrauterine growth restriction
(IUGR), and preeclampsia (PE) [86–88], which suggests the
existence of a similar epigenetic control of the PPAR or
PPARGC1A genes, as has been described for T2D.

2.2. Epigenetic Effects of GDM in Offspring. The epigenome is
most vulnerable to dysregulation during those phases of life
associated with higher rates of change for tissue development
and growth, like embryogenesis, fetal, and neonatal life and
puberty [89, 90].

Classical theories of disease development assumed that
genetic susceptibility and unhealthy adult lifestyle give rise
to insulin resistance and T2D, but observational studies
showed a link between intrauterine growth retardation and
subsequent development of T2D [91]. More recent theories
based on a model of the developmental origins of health and
disease (DOHaD) proposed that part of the susceptibility

to T2D originates during intrauterine life as a result of
altered environmental fetal programming, further amplified
by subsequent rapid childhood growth. Fetal undernutrition
(sometimes manifested as low birth weight) and postnatal
overnutrition can both increase the risk of future diabetes
[92]. This is also observed in animal models of intrauterine
growth retardation caused by uteroplacental insufficiency,
which limits the supply of critical substrates, nutrients, and
hormones to the fetus. This abnormal metabolic intrauter-
ine environment may affect the development of the fetus
in humans by inducing changes in gene expression by
epigenetic mechanisms of susceptible cells, leading to the
development of diabetes in adulthood.

In the case of GDM, glucose travels freely from the
mother to the fetus, but maternal insulin does not. Thus,
maternal GDM exposes the fetus to higher concentrations
of glucose than normal, forcing the fetus to increase its
own insulin production [93]. GDM has serious, long-
term consequences for both child and mother, including a
predisposition to obesity, metabolic syndrome, and diabetes
in later life [94]. The transgenerational persistence of the
insulin resistant phenotype may be related to nutritionally
induced epigenetic changes that influence the expression
of key genes. The observed heritability of some epigenetic
signatures in animal and human models suggests that the
epigenotype can be transmitted to the next generation
[95].

An adverse intrauterine milieu affects the development of
the fetus by modifying expression in both pluripotential cells
and terminally differentiated, poorly replicated cells and is
associated with epigenetically induced downregulation of key
genes controlling b-cell development, differentiation, and
function [96–99].

3. Conclusions

Gestational diabetes is a growing health concern, especially
in certain predisposed populations. Although traditionally
deemed not as dangerous for the developing fetus as
pregestational diabetes, recent findings indicate that GDM
may have serious long-term consequences for both child and
mother.

A conceptual developmental disease framework for
GDM emerges from the findings reviewed here. Epigenetic
mechanisms may control insulin resistance in mothers
during pregnancy diagnosed with GDM but could also
predispose offspring to developing T2D in later stages of
life. An increased need for insulin by the fetus to deal
with the high levels of glucose caused by GDM is an envi-
ronmental circumstance that probably triggers epigenetic
changes in that early stage of life, involving genes critical
to pancreatic development and b-cell function, peripheral
glucose uptake and insulin resistance. Understanding the
role of developmental programming genes is crucial to our
understanding of GDM and its consequences for the mother
and child and it might stimulate the development of further
epigenetic therapeutic agents as modern tools for treating
this disease.
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