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Primary cilia are small, antenna-like organelles that detect and transduce chemical
and mechanical cues in the extracellular environment, regulating cell behavior and, in
turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar
transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme.
Ranging from 1 to 10 µm long, these organelles typically reach a characteristic
length dependent on cell type, likely for optimum fulfillment of their specific roles. The
importance of an optimal cilia length is underscored by the findings that perturbation
of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating
mechanisms of cilia length regulation is important for understanding the pathobiology
of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review
the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary
transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational
modification. Additionally, since the environment of a cell influences cilia length, we also
review the various stimuli encountered by renal epithelia in healthy and diseased states
that alter cilia length and IFT.
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INTRODUCTION

Cilia or flagella are evolutionarily conserved organelles that protrude from a wide range of
eukaryotic cells, from single-celled protists, like Chlamydomonas reinhardtii, to almost every
vertebrate cell. Cilia are classified by function and structure into two general categories: motile and
non-motile. Motile cilia not only generate motion but also contain receptors that provide sensory
function (Jain et al., 2012). Motile cilia propel C. reinhardtii, as well as sperm, and sweep fluid
and particles along the mammalian brain ventricles and respiratory and reproductive tracts. Non-
motile cilia, also termed primary cilia, have chemo- and mechanosensory roles and are present on
the sensory neurons of Caenorhabditis elegans and on most vertebrate cells. Primary cilia transduce
light and mechanical and chemical cues (Poole et al., 1985; R Ferreira et al., 2019), mediate
signaling pathways (Huangfu et al., 2003; Corbit et al., 2008; Wheway et al., 2018), and regulate
cell cycle (Pan et al., 2013), cell differentiation (Ezratty et al., 2011; Forcioli-Conti et al., 2015),
cell–cell communication (Viau et al., 2018), and autophagy (Pampliega et al., 2013; Orhon et al.,
2016). The multiplicity and importance of these functions render primary cilia vital for organismal
development and homeostasis (Badano et al., 2006).
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A cilium is comprised of a microtubule-based axoneme
that extends from a modified centriole, the basal body, and is
ensheathed by a ciliary membrane (Figure 1). In most motile
cilia, nine doublet peripheral microtubules are arranged in a
circle around two single central microtubules, while in motile
cilia of the embryonic node as well as in non-motile cilia, only
nine doublet peripheral microtubules comprise the axoneme,
forming “9 + 2” and “9 + 0” conformations, respectively (Satir,
2005). Distal to the basal body is the ciliary gate, consisting of
transition fibers that join the basal body to the base of the ciliary
membrane, and the transition zone, comprised of modules and
has Y-links that tether the most proximal part of the axoneme
to the ciliary membrane. The transition fibers and transition
zone regulate ciliary entry and exit of proteins, allowing for
compartmentalization and formation of a unique environment,
such that the cilioplasm and ciliary membrane are composed of
proteins, second messengers, and phospholipids, distinct from
that of the cytosol and plasma membrane (Deane et al., 2001;
Stephan et al., 2007; Garcia-Gonzalo et al., 2011; Williams et al.,
2011; Garcia-Gonzalo and Reiter, 2017; Gonçalves and Pelletier,
2017).

Primary cilia are dynamic structures that assemble and
disassemble in coordination with the cell cycle. Cilia form when
cells become quiescent, in G1 and G0, and begin disassembly
before cells re-enter the cell cycle (Nigg and Stearns, 2011;
Paridaen et al., 2013; Malicki and Johnson, 2017). The assembly
and maintenance of cilia require intraflagellar transport (IFT),
which was first observed in C. reinhardtii (Kozminski et al.,
1993) and mediates the bidirectional transport of structural
and signaling molecules along the microtubular axoneme. IFT
is mediated by multiprotein complexes that can be dissociated
biochemically into IFT complexes B (IFT-B) and A (IFT-
A), consisting of 10 and 6 subunits, respectively. These IFT
complexes form linear arrays or “trains” that are transported from
the base to the tip of the cilium in anterograde IFT, powered
by the kinesin-2 motor (Cole et al., 1998), then returned to the
ciliary base in retrograde IFT, driven by cytoplasmic dynein-2
(Pazour et al., 1998, 1999; Porter et al., 1999; Signor et al., 1999).
Another multiprotein complex, the BBSome, acts like an adaptor
connecting IFT complexes to signaling molecules and is required
for the ciliary export of activated signaling receptors (Nachury,
2018; Ye et al., 2018).

Primary cilia typically obtain a characteristic length for a cell
type (Table 1), likely to achieve optimal function. In humans,
mutation of ciliary genes results in disease syndromes, termed
ciliopathies, which can manifest craniofacial defects, skeletal
dysplasia, brain and cognitive defects, retinal degeneration,
obesity, and fibrocystic disease of the liver, pancreas, and kidney
(Badano et al., 2006; Hildebrandt et al., 2011). These mutations
can cause signaling defects as well as cilia length differences
(Bredrup et al., 2011; Halbritter et al., 2013; Alazami et al., 2014;
Zhang et al., 2016; Duran et al., 2017; Shaheen et al., 2020).
Additionally, in complex diseases and conditions not caused by
a primary cilia genetic lesion, such as in obesity and type 2
diabetes and kidney injury, cilia lengths have also been reported
to be shortened or lengthened on affected cells (Verghese et al.,
2008; Han et al., 2014; Ritter et al., 2018; Yu et al., 2019). Thus,

understanding cilia length regulation is critical to understanding
the pathobiology of cilia-related disease.

Cilia length is determined by the balance of cilia assembly
and disassembly (Marshall and Rosenbaum, 2001; Marshall et al.,
2005). In C. reinhardtii, live imaging has revealed that frequency
of IFT train ciliary entry, IFT train size and speed, and cargo
loading vary with cilia length, which has led to various models
of cilia length control (Marshall et al., 2005; Wren et al., 2013;
Chien et al., 2017; Fai et al., 2019; Wemmer et al., 2020). However,
primary cilia length regulation in mammalian cells has been
much less studied. Here, we review the primary cilia phenotypes
of IFT-B and IFT-A mammalian mutants to glean mechanisms
by which IFT proteins influence cilia assembly/disassembly.
This includes roles of IFT in ciliary trafficking of tubulin and
membrane-associated proteins and in influencing ectocytosis.
Since posttranslational modification of axonemal tubulin can
promote cilia assembly or disassembly, we also review the effects
of glutamylation and O-GlcNAcylation on IFT. In addition to
these intrinsic ciliary factors, primary cilia lengths are modulated
by changes in the extracellular environment. In the kidney,
cilia lengths change in healthy and diseased states, including in
polycystic kidney disease and during kidney injury and repair.
Thus, we also review the effects of chemical and mechanical
signals in the renal environment on cilia length and IFT.

IFT IN CILIARY IMPORT OF
STRUCTURAL AND MEMBRANE
PROTEINS AFFECTING CILIOGENESIS

To initiate ciliogenesis, the mother centriole matures into the
basal body and migrates and docks at the plasma membrane.
During migration of the mother centriole, preciliary vesicles
derived from the Golgi and recycling endosome attach to the
subdistal appendages of the maturing mother centriole and fuse
into a larger ciliary vesicle (Sorokin, 1962). Centriolar coiled coil
protein 110 (CP110) localizes to the distal end of the mother
centriole and regulates the start of cilium extension (Chen et al.,
2002; Yadav et al., 2016). Rab8a is recruited to the mother
centriole and activated by Rab11 and Rabin8 to enable ciliary
membrane assembly (Westlake et al., 2011). This, together with
the recruitment of IFT and transition zone proteins to the cilia
base, allows for cilium extension (Deane et al., 2001; Rosenbaum
and Witman, 2002; Wang and Dynlacht, 2018).

Ciliary Import of Tubulin
To extend the axoneme, α- and β-tubulin are imported into
primary cilia and are added to the distal plus ends of microtubules
at the cilia tip (Witman, 1975; Johnson and Rosenbaum, 1992).
Live imaging of green fluorescent protein (GFP)-tagged tubulin
in C. reinhardtii demonstrates that both diffusion and IFT allow
for tubulin ciliary import (Craft et al., 2015; Craft Van De
Weghe et al., 2020). In cells with growing cilia, anterograde
transport of tubulin was increased, and in flagella length mutants,
tubulin transport was dysregulated (elevated and reduced in long
flagella2-1 and short flagella2 mutants, respectively, relative to
steady-state wild-type cilia), suggesting a possible link between
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FIGURE 1 | The primary cilium and roles of IFT in cilium assembly/disassembly. Consisting of a 9 + 0 arrangement of a microtubular axoneme ensheathed by a
specialized ciliary membrane, the primary cilium assembles initially within the cytoplasm at the modified centriole (1), which becomes the basal body that forms the
base of the primary cilium at the plasma membrane. Extension and maintenance of the cilium, along with the entry and exit of structural and functional components
and the BBSome, are mediated by IFT (2–4). Roles for IFT in ectocytosis (5) and cilia disassembly (6) have also been implicated (see text for details). The positive (+)
and negative (–) ends of axonemal and cytoplasmic microtubules are indicated. The polycystins, PC1 and PC2, are localized at the ciliary membrane and are
mutated in ADPKD.

IFT-mediated transport of tubulin and regulation of cilia length
(Craft et al., 2015; Wemmer et al., 2020).

In most IFT-B mutants, cilia are shortened or even lost
(Table 2), indicating that the IFT-B complex is essential for
ciliogenesis. The IFT-B complex consists of a 10-subunit core
subcomplex and a 6-subunit peripheral subcomplex (IFT38,
IFT57, IFT80, IFT20, IFT172, IFT54) (Katoh et al., 2016;
Taschner et al., 2016). The core can be separated further into
Core 1 (IFT25, IFT27, IFT74, IFT81, IFT22) and Core 2 (IFT56,
IFT46, IFT52, IFT88, IFT70) subcomplexes (Nakayama and
Katoh, 2020). Except for IFT74, all IFT-B components have been
knocked out or mutated in mammalian cells with primary cilia
(Table 2). Generally, loss of most Core 2 or peripheral subunits,
with exception of IFT56, results in severely shortened or absent
primary cilia. In contrast, deletion of Core 1 subunits has much
milder effects, with many mutants lacking overt cilia length
defects, although ciliary localization of signaling molecules and
membrane-associated proteins is aberrant. Mammalian IFT70A
and IFT70B constitute the orthologs of C. reinhardtii IFT70. Loss
of both IFT70A and IFT70B in retinal pigment epithelial (RPE)
cells causes the absence of cilia, while re-expression of either

IFT70A or IFT70B restores ciliogenesis, revealing redundancy
between IFT70A and IFT70B (Takei et al., 2018). In certain
cases, cilia phenotypes are more severe in C. reinhardtii than
in mammalian cells. For instance, IFT56-deficient C. reinhardtii
have shortened cilia (Ishikawa et al., 2014), but Ift56-null mice
do not (Xin et al., 2017). This may reflect greater functional
redundancy among mammalian IFT proteins. Furthermore,
deletion versus deficiency of an IFT protein can result in
different ciliary phenotypes. Depletion of IFT80 in C3H10T1/2
mesenchymal cells causes a lack of cilia (Yang and Wang, 2012),
while hypomorphic mutation of Ift80 in mice results in normal
cilia morphology (Rix et al., 2011), suggesting a threshold of IFT
deficiency which can be tolerated.

Given that axonemal elongation requires anterograde
transport of tubulin (Craft et al., 2015), the ciliogenesis defects of
IFT-B mutants could result from the lack of IFT-based transport
of tubulin. In C. reinhardtii, the N-termini of IFT74 and IFT81
dimerize and bind α- and β-tubulin as cargo of anterograde IFT
(Bhogaraju et al., 2013; Kubo et al., 2016). Additionally, IFT
proteins are designed to form protein–protein interactions, and
the loss of an IFT-B subunit can cause destabilization of the
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TABLE 1 | Mammalian cilia lengths.

Cell type Average cilia length, mm (range) References

Renal epithelia Collecting ducts, 6 wks ∼4 Tran et al., 2014

Tubules distal to the proximal tubule, P7 3.5 ± 1.7 Pazour et al., 2000

Cholangiocyte 5–12 months 3.26 ± 1.29 Stroope et al., 2010

Neuron Hypothalamic arcuate nucleus, 21–30 weeks ∼3.5 Lee et al., 2020

Hypothalamus E12.5, E15.5 ∼0.5

E18.5 P1 ∼1

P7 ∼1.5

P14 ∼2

P28, P60 ∼3.5

Hippocampal dentate gyrus, P14 ∼2.8

Hippocampus, P15 ∼3.2

Cerebellum, 3–5 months ∼3.8 (1–8) Diaz et al., 2020

Neural tube E9.5 ∼1 (0.5–2) Nandadasa et al., 2019

Osteocyte In vivo 1 month 2.3 (1.5–3.4) Lim et al., 2020

In vitro MLO-Y4 cells ∼2.8 Spasic and Jacobs, 2017

Osteoblast In vivo 1 month 2.9 (1.4–4.3) Lim et al., 2020

In vitro Primary osteoblasts, P0 ∼2.6 Teves et al., 2015

MC3T3-E1 3 ± 0.8 (1–5) Li et al., 2020

Chondrocyte In vivo E16.5 1.20 ± 0.01 Martin et al., 2018

P1 1.19 ± 0.02 (1–1.7) Kunova Bosakova et al., 2018

P3 ∼1.6 (1–3)

P5 ∼1.9 (1–3)

In vitro Primary chondrocytes, E16.5 2.82 ± 0.05 Martin et al., 2018

Primary chondrocytes, P0, P7 ∼3 Teves et al., 2015; Liu et al., 2020

Endothelia In vitro Primary endothelial cells, E15.5 ∼0.85 Abdul-Majeed and Nauli, 2011

Values are of mouse tissues or cells. ∼ Indicates values were obtained from a graph within the publication. P, postnatal day; E, embryonic day; wks, weeks of age.

IFT-B complex. The molecular architecture of the IFT-B complex
appears conserved between C. reinhardtii and mammalian
cells (Katoh et al., 2016). IFT88, together with IFT52, connects
the IFT-B core and peripheral complexes (Taschner et al.,
2016). In fibroblasts of a ciliopathy patient with short rib
polydactyly, mutation of IFT52 greatly reduced IFT52 protein
levels, leading to a destabilized anterograde IFT complex,
demonstrated by reduced cellular levels of IFT88, IFT74, IFT81,
and ADP ribosylation factor like GTPase 13B (ARL13B), a ciliary
membrane protein, as well as reduced IFT88 in cilia (Zhang
et al., 2016). This anterograde IFT defect caused the presence
of less ciliated cells and irregular distribution of ciliary lengths
in patient cells.

Beyond the role of IFT-B subunits to form the IFT-B complex,
IFT-B proteins also connect the IFT-B and IFT-A complexes, as
well as anterograde and retrograde IFT. In C. reinhardtii, IFT74
was shown to associate IFT-B and IFT-A particles at the flagellar
base and to be essential for flagellar import of IFT-A. Loss of
the IFT74 residues required to bind IFT-A caused stunted cilia,
thus revealing a role for the interdependence between IFT-B
and IFT-A in ciliogenesis (Brown et al., 2015). Additionally, in
mammalian retinal pigment epithelial (RPE) cells, expression of
a truncated form of IFT88 on a CRISPR/Cas9-mediated IFT88
knockout background produced a ciliary phenotype similar to
IFT-A knockout cells (Kobayashi et al., 2021). In C. reinhardtii
and in mice, Ift54-null mutants lack cilia (Berbari et al., 2011; Zhu

et al., 2017b), and a recent study showed that in C. reinhardtii
and mammalian cells, IFT54 interacts with both the kinesin-2
and dynein motors (Zhu et al., 2020). Deletion of the IFT54
residues required to bind kinesin-2 reduced anterograde IFT,
causing IFT motors and proteins to accumulate in the proximal
region of cilia, while deletion of the residues that bind dynein
impaired retrograde IFT, causing accumulation of IFT proteins
at the distal tip (Zhu et al., 2020). Thus, IFT-B and IFT-A as well
as anterograde and retrograde transport are interconnected, and
these interconnections are integral to ciliogenesis.

Ciliary Import of Membrane-Associated
Proteins
The IFT-A complex consists of three core subunits
(IFT122/IFT140/IFT144) and three peripheral subunits
(IFT42/IFT121/IFT139) (Nakayama and Katoh, 2020). In
mammals, the IFT139 homolog consists of two paralogs,
THM1/TTC21B and THM2/TTC21A (Tran et al., 2008; Wang
et al., 2020). With the exception of THM2, loss of any IFT-A
core or peripheral subunit can result in shortened cilia with
bulbous distal tips (Table 3). The severity of cilia phenotypes
varies with cell type and/or in vitro or in vivo contexts.
Additionally, as observed with IFT56, the occurrence of a more
severe phenotype – loss of cilia – in ift140-null C. reinhardtii
mutants (Picariello et al., 2019) compared to shortened cilia in
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TABLE 2 | Mammalian IFT-B ciliary phenotypes.

IFT-B Cilia structure Cell type Cilia localization of proteins References

Core 1

Ift25 ko No cilia length defects MEF Less GLI2 at ciliary tip, increased ciliary
PTCH1 and SMO

Keady et al., 2012

Ift27/Rabl4/Bbs19 ko No cilia length defects MEF, primary dermal
fibroblasts

Increased ciliary SMO; diminished GLI2
at ciliary distal tip; decreased BBS and
Arl6

Eguether et al., 2014;
Liew et al., 2014; Yang
et al., 2015

Ift81 (deficiency) Increased cilia length Patient chondrocytes None reported Duran et al., 2016

Ift81 loss-of-STOP mutation Reduced ciliated cells and reduced
number of cilia longer than 3 mm

Patient fibroblasts No abnormalities in IFT or Hh protein
ciliary localization but increased mRNA
expression of Gli2

Perrault et al., 2015

Ift22/Rabl5 ko No cilia length defects RPE Takei et al., 2018

Core 2

Ift56hop/hop (null) or ko No cilia length defects but reduced
numbers of microtubule doublets and
disrupted circular arrangement of
microtubules

Neural tube, RPE Reduced GLI2 and GLI3 at ciliary tip;
no KIF17 at ciliary tip

Funabashi et al., 2017;
Xin et al., 2017

Ift46 ko Loss of nodal cilia Mouse node Lee et al., 2015

Ift52 (deficiency) Shortened cilia but wider range of cilia
lengths

Patient fibroblasts Reduced IFT88 Zhang et al., 2016

Ift88 ko No cilia Mesenchymal cells,
renal epithelial cells,
bone cells

Pazour et al., 2000;
Haycraft et al., 2007

Ift70A;Ift70B dko No cilia RPE Takei et al., 2018

Peripheral

Ift38/Cluap1 ko No cilia MEF, node Botilde et al., 2013

Ift57 deficiency No cilia length defects Patient fibroblasts Altered ciliary distribution pattern of
Ift57

Thevenon et al., 2016

Ift80 ko No cilia C3H10T1/2
mesenchymal cells

Yang and Wang, 2012

Ift80gt/gt hypomorph No cilia length defects MEF, renal epithelial
cells

None reported but decreased Gli1 and
Ptch1 mRNA expression in response to
Hh agonist

Rix et al., 2011

Ift20 strong kd/ko; mild kd No cilia/less ciliated cells; no
abnormalities

RPE, NIH/3T3 In mild Ift20 kd, reduced ciliary
polycystin 2

Follit et al., 2006

Ift172wim/wim; ko No cilia or severely shortened Mouse node,
embryonic
neuroepithelium

Huangfu et al., 2003;
Gorivodsky et al., 2009

Ift54/Trap3ip1GT/GT No cilia MEF, neural tube Berbari et al., 2011

ko, knockout; dko, double ko; kd, knockdown; gt or GT, gene trap; MEF, mouse embryonic fibroblasts; RPE, retinal pigment epithelial cells; Hh, Hedgehog.

mammalian cells (Liem et al., 2012; Hirano et al., 2017) supports
that there may be greater redundancy among IFT proteins in
mammalian cells or that other compensatory mechanisms exist.

Live imaging of short hairpin RNA (shRNA)-mediated
Thm1 knockdown inner medullary collecting duct (IMCD) cells
expressing IFT88-eYFP demonstrates that a mammalian IFT-
A subunit is required for retrograde IFT (Tran et al., 2008).
Consistent with a general role for IFT-A in retrograde IFT,
bulbous distal tips with sequestered IFT-B, IFT-A, BBS, and
signaling proteins in mutants of both the IFT-A core and
peripheral complexes indicate defective retrograde IFT (Table 3).
Since retrograde IFT is required to bring back IFT proteins to
the base for their recycling and re-entry into cilia, this could
be a contributing mechanism by which IFT-A loss or deficiency
decreases cilia assembly and, in turn, cilia length.

A comprehensive study examining ciliogenesis in
Ift121/Wdr35 knockout RPE cells showed that cilia assembly

was reduced and delayed due to disruption of the ciliary
import and export of the various cargoes of IFT-A (Fu
et al., 2016). Rab8 localization near centrioles was reduced,
suggesting that early formation of cilium membrane assembly
is disrupted. Additionally, the localization of centriolar satellite
proteins was misregulated. Centriolar satellites regulate
protein composition of cilia and are essential for efficient
ciliogenesis (Odabasi et al., 2019). Ciliary entry of ciliary
membrane proteins, ARL13B and inositol polyphosphate-
5-phosphatase E (INNP5E), was also impeded. This could
contribute to impaired ciliogenesis, since ARL13B is essential
for ciliary membrane extension, which is coupled to axoneme
elongation (Lu et al., 2015). Ciliary ARL13B is also lost in
Ift144 knockout and Ift43 knockdown cells and reduced in
Thm1-null mouse embryonic fibroblasts (MEFs) (Liem et al.,
2012; Fu et al., 2016; Wang et al., 2020). Furthermore, ARL13B
was shown to bind to IFT43, IFT122, and IFT139/THM1,
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TABLE 3 | Mammalian IFT-A ciliary phenotypes.

IFT-A Cilia structure Cell type Cilia localization of proteins References

Core

Ift144dmhd/dmhd (null) Extremely short cilia Neural tube, MEF No Arl13B, ACIII, or SMO entry; IFT-B
accumulation

Liem et al., 2012

Ift144 ko or kd Slightly shortened
cilia with bulbous
distal tip

RPE Loss of IFT-A around basal body, no
entry of SMO or ARL13B; IFT-B, BBS4
accumulation

Fu et al., 2016; Hirano
et al., 2017

Ift144twt/twt hypomorph No obvious length
defects

Neural tube, MEF Decreased ACIII; slightly increased GLI2
at ciliary distal tip

Liem et al., 2012

Ift122sopb/sopb (null) Short with bulbous
distal tip

Mouse node, MEF Increased IFT-B, Gli2, Gli3 at distal tip;
no TULP3

Qin et al., 2011

Ift122 ko No cilia RPE Loss of IFT-A and GPR161 around
basal body, normal IFT-B around basal
body; no SMO entry

Takahara et al., 2018

Ift140 cauli/cauli Short with bulbous
distal tip

Limb buds Miller et al., 2013

Peripheral

Ift121/Wdr35 mutant and ko Shortened cilia with
bulbous distal tip

Patient fibroblasts; RPE Increased BBS4 and BBS5, Gli2, IFT-B,
IFT-A, Kif3A; no ARL13B, INNP5E,
SSTR3, MCHR1, serotonin receptor;
reduced SMO

Fu et al., 2016; Duran
et al., 2017

Ift43 kd Shortened cilia with
bulbous distal tip

RPE Increased IFT88, BBS4; no ARL13B Fu et al., 2016

Ift43 deficiency Shortened cilia Patient fibroblasts Duran et al., 2017

Thm1/Ttc21baln/aln (null) or kd Shortened with
bulbous distal tip

Limb bud, MEF,
3T3-LT1, renal epithelial

IFT-B, IFT-A, BBS, SMO accumulation
at distal tip; decreased Arl13B,
INNP5E, IFT-A

Tran et al., 2008; Tran
et al., 2014; Jacobs
et al., 2020; Wang
et al., 2020

IFT139/Ttc21b ko Normal cilia length
with bulbous distal
tip

RPE IFT-B, IFT-A, SMO, GPR161
accumulation at distal tip

Hirano et al., 2017

Thm2/Ttc21a-null Normal MEF Normal Wang et al., 2020

Adaptor

Tulp3 kd; cko and K407I (deficiency) No length defects RPE; renal epithelia Decreased SSTR3 and MCHR1;
severely reduced ARL13B, reduced
polycystin 2

Mukhopadhyay et al.,
2010; Hwang et al.,
2019; Legue and Liem,
2019

Tulp3 ko Shortened RPE No ARL13B or INNP5E Han et al., 2019

SSTR3, somatostatin receptor 3; Mchr1, melanin-concentrating receptor 1; ACIII, adenylate cyclase type III.

suggesting that ARL13B is a cargo passenger of IFT-A
(Fu et al., 2016).

Fu et al. (2016) proposed a unifying mechanism for the
IFT-A mutant defects in ciliary entry of membrane proteins
and in retrograde IFT: that IFT-A mutation causes a defect
in trafficking cargo to the minus ends of both axonemal and
cytoplasmic microtubules. In Ift122 knockout RPE cells, IFT-
A localization around the basal body was lost, suggesting that
IFT122 transports IFT-A proteins to the cilium base (Takahara
et al., 2018). Similarly, in C. reinhardtii, loss of IFT43 resulted
in reduced IFT proteins in the peri-basal body region, and
both IFT43 and IFT140 were demonstrated to transport ciliary
proteins from the cytosol to the peri-basal body region (Zhu et al.,
2017a). These data support a defect in transporting cargo to the
minus ends of microtubules with loss of IFT-A.

Depletion of IFT-A also causes ciliary localization defects of
the transmembrane Hedgehog transducer, Smoothened (SMO).
Loss of IFT-A core components, IFT144 and IFT122, results

in absence of SMO in cilia (Liem et al., 2012; Hirano et al.,
2017; Takahara et al., 2018), while loss of peripheral subunit
IFT121 results in reduced SMO in cilia (Fu et al., 2016). In
contrast, loss of THM1 causes increased ciliary SMO and its
accumulation at the distal tip (Wang et al., 2020). While ciliary
localization defects of SMO do not overtly affect cilia length,
these differential phenotypes may reflect differences in cargoes
or protein interactions of core versus peripheral subcomplexes
or of individual IFT proteins. Like IFT121, THM1 is part of
the peripheral subcomplex, and except for the opposing SMO
ciliary localization defect, Thm1-null MEF show ciliary protein
localization defects as well as reduced and delayed ciliogenesis
(Wang et al., 2020), similar to Ift121-depleted RPE cells (Fu et al.,
2016). However, while contrasting from other IFT-A mutants,
the increased ciliary SMO in Thm1-null MEF could be due to a
similar mechanism that causes increased ciliary SMO in Ift25-
and Ift27-null IFT-B Core 1 mutants. IFT25 and IFT27 form
a heterodimer and connect IFT to the BBSome, which exports
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signaling molecules out of primary cilia (Keady et al., 2012;
Eguether et al., 2014; Liew et al., 2014).

In mammalian cells, the IFT-A core also binds to the tubby-
related protein 3 (TULP3), which acts like an adaptor to import
a subset of G protein-coupled receptors (GPCRs) into primary
cilia. These GPCRs include melanin-concentrating hormone
receptor (MCHR1), somatostatin receptor subtype 3 (SSTR3),
GPR161, neuropeptide Y receptor 2 (NPY2R), and free fatty
acid receptor 4 (FFAR4) (Mukhopadhyay et al., 2010, 2013;
Badgandi et al., 2017; Hilgendorf et al., 2019). Consistent with
the requirement of the IFT-A core for ciliary entry of TULP3,
TULP3 was absent from cilia of an Ift122-null mutant mouse
(Qin et al., 2011). Tulp3 knockdown RPE cells, a Tulp3 kidney-
specific knockout mouse and a Tulp3 hypomorphic mutant
mouse showed a lack of ciliary ARL13B but normal cilia length
(Mukhopadhyay et al., 2010; Hwang et al., 2019; Legue and Liem,
2019). However, Tulp3 knockout RPE cells showed absent ciliary
ARL13B as well as shortened cilia lengths (Han et al., 2019).
Thus, cell specificity, extent of Tulp3 depletion, and in vitro versus
in vivo contexts, which would expose cilia to various extracellular
factors, likely contribute to affecting cilia length. Unlike the loss
of IFT-A core and peripheral subunits, Tulp3 knockdown did
not cause accumulation of ciliary IFT-B proteins (Mukhopadhyay
et al., 2010), indicating Tulp3 is not required for retrograde IFT.

Since loss of many IFT-B proteins results in absence of
primary cilia, the role of IFT-B in ciliary entry of membrane-
associated proteins is comparatively less explored. IFT25 and
IFT27, which are components of IFT-B Core 1, are dispensible
for cilia formation but are required for ciliary removal of the
BBsome and associated cargo (Keady et al., 2012; Eguether et al.,
2014; Liew et al., 2014). Conversely, since ciliary entry of SSTR3
or SMO is not impeded in Ift25- or Ift27-null mutants, this may
indicate that ciliary import of these receptors may not require
IFT-B (Eguether et al., 2018; Ye et al., 2018). However, the role
of other IFT-B proteins in SSTR3 and SMO ciliary import has not
been investigated. Knockdown of Ift57 and Ift172 in IMCD cells
severely reduced ciliogenesis, but in cells retaining primary cilia,
D1-type dopaminergic receptors in the ciliary membrane was
reduced, suggesting that IFT-B is required for ciliary import of
certain membrane-associated signaling receptors (Leaf and Von
Zastrow, 2015). This requirement for IFT-B in ciliary membrane
import of D1-type dopaminergic receptors also involves Rab23
and Kif17. Supporting a role for IFT172 in associating with the
membrane, C. reinhardtii IFT172 was shown to interact with
and remodel membrane, and in mammalian (RPE) cells, IFT172
localized to the ciliary membrane (Wang et al., 2018).

IFT IN MODULATING ECTOCYTOSIS

Primary cilia can release small vesicles or ectosomes, containing
components from the ciliary membrane in a process termed
ectocytosis (Long and Huang, 2019). This secretion function
of cilia was first discovered in C. reinhardtii and now has
been observed in multiple species, including in C. elegans,
Trypanosoma brucei, and in mammalian cells (Wood et al.,
2013; Wang et al., 2014; Long et al., 2016; Szempruch et al.,

2016; Nager et al., 2017; Phua et al., 2017). Shedding of
ciliary ectosomes or extracellular vesicles regulates ciliary
compartmentalization and homeostasis, signaling, and
organismal and intercellular communication.

There is some variation in the release of ciliary vesicles and
their contents across organisms. In C. reinhardtii, ectosomes
are released from the ciliary tip in a process that requires
the endosomal sorting complex required for transport (ESCRT)
pathway. C. reinhardtii ectosomes contain ciliary membrane
proteins, enzymes, ubiquitinated proteins, and ESCRT proteins
(Long et al., 2016). In C. elegans, sensory neurons release
extracellular vesicles from the cilia base in a process that is
ESCRT independent but requires IFT-B and IFT-A (Wang et al.,
2014). These extracellular vesicles contain LOV-1 and PKD-2,
the C. elegans polycystin orthologs, and regulate communication
and mating-related behavior. In mammalian cells, ectocytosis
occurs from the ciliary tip upon stimulation with growth factors,
which changes the phospholipid content of the ciliary membrane
via INNP5E (Phua et al., 2017). Mammalian ectosomes contain
ciliary membrane proteins, GPCRs (Nager et al., 2017), as well
as IFT-B proteins, which are not present in ciliary vesicles of
C. reinhardtii and C. elegans (Phua et al., 2017). Ectocytosis is
linked to cilia resorption and disassembly in C. reinhardtii and
mammalian cells (Long et al., 2016; Phua et al., 2017), and the
containment of IFT-B proteins in mammalian ectosomes may be
a mechanism by which primary cilia dispose of IFT-B proteins
and become primed for disassembly (Phua et al., 2017).

Studies with BBS and IFT mutants shed additional light on
the regulation of ectocytosis. In IMCD cells null for regulators
or subunits of the BBSome, such as IFT27, ARL6, or BBS2,
failure of BBSome-mediated ciliary removal of activated GPCRs
caused accumulation of active GPCRs at the ciliary tip, which was
followed by ectocytosis (Nager et al., 2017). In Thm1-null MEF,
which sequester proteins at the ciliary tip, serum stimulation
following starvation caused an increased presence of IFT-B foci
that were separate from and distal to the cilia tip (Wang et al.,
2020). Such observations likely reflect ectocytosis. In RPE cells
depleted of mitogen-activated protein kinase-like kinase, ICK,
which binds to IFT-B and localizes at ciliary tips, cilia were
lengthened with an accumulation of IFT and signaling proteins at
the distal tip, indicative of impaired retrograde IFT. Furthermore,
these accumulated proteins were released in extracellular vesicles
at the distal tip, indicative of ectocytosis (Nakamura et al., 2020).
Collectively, these studies suggest that defective retrograde IFT
promotes ectocytosis.

Ectocytosis precedes cilium resorption and disassembly (Phua
et al., 2017). Consistent with this pattern, Thm1-null MEF, which
exhibit a phenomenon consistent with increased ectocytosis
also show enhanced serum-induced cilia loss (Wang et al.,
2020). Cilia disassembly can occur via cilia resorption, which
shortens cilia length gradually; complete cilia shedding, which
severs the entire cilium; and a combination of both. Complete
cilia shedding was found to be the predominant mechanism of
cilia disassembly in wild-type mammalian cells (Mirvis et al.,
2019). Future investigation into the role of IFT in regulating
cilia disassembly could deepen our understanding of why one
mechanism prevails over another.
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TUBULIN POSTTRANSLATIONAL
MODIFICATION AND IFT

Posttranslational modification (PTM) of the axonemal
microtubules affects their stability, promoting either cilia
assembly or disassembly. Acetylation, glutamylation, and
glycylation stabilize the axoneme, favoring cilia assembly
(Pugacheva et al., 2007; Shida et al., 2010; Gadadhar et al., 2017;
He et al., 2018). In contrast, ubiquitination destabilizes the
axoneme, leading to cilia disassembly (Huang et al., 2009; Wang
et al., 2019).

Studies also suggest that PTMs regulate IFT. In shortening
flagella of Chlamydomonas, IFT139 was identified to be
ubiquitinated and to interact with ubiquitylated α-tubulin,
suggesting that the IFT-A complex may traffic ubiquitylated
axonemal proteins out of flagella, thus contributing to cilia
disassembly (Wang et al., 2019). In C. elegans, a ccpp-1
deglutamylase mutant altered stability of the axonemal β-tubules
and increased velocity of the kinesin 3 KSP-6 and kinesin 2
SOM-3/KIF17 accessory motors (O’hagan et al., 2011). Also
in C. elegans, starvation activated tubulin glutamate ligase 4
(TTLL4), which increased glutamylation, as well as the speed of
the kinesin II canonical motor and, hence, of anterograde IFT
(Kimura et al., 2018).

Recently, N-acetylglucosamine (GlcNAc), a nutrient sensor
and product of the hexosamine biosynthetic pathway that can be
linked enzymatically to serine/threonine residues of a multitude
of intracellular proteins (Hart et al., 2011), has been shown to
regulate cilia length (Tian and Qin, 2019; Yu et al., 2019, 2020).
Both tubulin and histone deacetylase 6 (HDAC6, which regulates
cilia disassembly) (Pugacheva et al., 2007), are O-GlcNAcylated
(Tian and Qin, 2019). In one study, pharmacological and genetic
inhibition of O-GlcNAc transferase (OGT), which transfers the
GlcNAc moiety onto protein substrates, increased cilia length
in RPE and IMCD cells (Tian and Qin, 2019). In another
study, tissues (retinal photoreceptors, trachea) of Ogt knockout
mice and RPE cells treated with an OGT inhibitor displayed
shortened primary cilia with an accumulation of IFT proteins in
bulbous distal tips, suggesting impaired retrograde IFT (Yu et al.,
2020). While more investigations are required to reconcile these
opposing results, these studies indicate that O-GlcNAcylation is
another PTM affecting cilia length and IFT.

Together, these studies hint at a role for IFT in mediating the
cilium assembly/disassembly associated with a particular PTM.
Live imaging of IFT in mammalian cells following a PTM event
is required to establish that PTMs affect IFT and to explore how
PTMs regulate the IFT machinery.

MODULATION OF RENAL EPITHELIAL
CILIA LENGTH AND RENAL FUNCTION

In a context-dependent manner, primary cilia demonstrate
multiple roles. These organelles sense and transduce light,
chemical, and mechanical cues and are hubs for multiple
signaling pathways, including Hedgehog, Wnt, Notch,
transforming growth factor beta (TGFβ), platelet-derived

growth factor receptor (PDGFR), and G protein coupled
receptor (GPCR) (Huangfu et al., 2003; Schneider et al., 2005;
Eggenschwiler and Anderson, 2007; Corbit et al., 2008; Ezratty
et al., 2011; Clement et al., 2013; Anvarian et al., 2019). Activation
or downregulation of these signaling pathways regulates cell
behavioral response, including proliferation, differentiation,
and tissue organization. Mutation of ciliary genes reveals
importance of primary cilia in multiple organ systems. The
presence or absence as well as severity of phenotypes or clinical
manifestations reflect the cell-specific and developmental and
homeostatic roles of primary cilia.

Among the first revelations that primary cilia are essential
to mammalian health was the discovery that mutation of IFT
causes renal cysts (Yoder et al., 1995, 2002; Pazour et al., 2000).
In renal tubules, cilia extend from the apical surface of most
epithelial cells, suggesting that the role of renal tubular epithelial
cilia is to sense the environment of the renal tubular lumen
and transmit this information into the epithelium and possibly
to “downstream” tubule segments (via ectosomes). Analyses of
human kidneys reveal that cilia lengths change with nephron
segment, as well as with development, being shortest in renal
vesicles (0.59 µm) and lengthening as fetal nephrons mature
(3.04 µm) (Saraga-Babic et al., 2012). Additionally, mutation
of genes required for ciliogenesis usually causes shortened or
absent cilia, and less commonly lengthened cilia, and often
results in fibrocystic renal disease (Davis et al., 2011; Srivastava
et al., 2017). In mice, the mutation and/or deletion of IFT
genes models this phenomenon (Yoder et al., 1995, 2002; Pazour
et al., 2000; Jonassen et al., 2008, 2012; Patel et al., 2008; Tran
et al., 2014). Together, these findings indicate that the presence
and architecture of primary cilia regulate kidney development,
morphology, and function.

In autosomal dominant polycystic kidney disease (ADPKD),
the majority of mutations occur in PKD1 and PKD2, which
encode polycystin 1 and polycystin 2, which form a complex and
function at the primary cilium (Freedman et al., 2013; Cai et al.,
2014; Walker et al., 2019). In renal tissue of ADPKD patients as
well as of orthologous mouse models, cilia lengths are increased
(Hopp et al., 2012; Liu et al., 2018; Shao et al., 2020). Similarly, in
the jck non-orthologous mouse model of ADPKD, renal primary
cilia are also lengthened (Smith et al., 2006). Interestingly,
deletion of Kif3a, Ift20, and Ift88 in Pkd1 and Pkd2 conditional
knockout mice ablated or shortened primary cilia and markedly
attenuated the ADPKD cystic phenotype (Ma et al., 2013;
Viau et al., 2018; Shao et al., 2020). Similarly, pharmacological
shortening of primary cilia (via a CDK5 inhibitor) in jck mice
ameliorated the cystic disease (Husson et al., 2016). Conversely,
genetic and pharmacological inhibition of cilia disassembly in
Pkd1 conditional knockout mice increased renal cilia lengths
and worsened ADPKD severity (Nikonova et al., 2014). These
data suggest that cilia length may be an important modifier
of ADPKD severity.

Renal epithelial cilia lengths also change during acute and
chronic kidney injury and repair. A variety of methods have
been employed to induce renal injury in both in vitro and
in vivo model systems (Table 4). Acute injury, or the exposure
to hypoxia to model chronic injury, appears to cause deciliation
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TABLE 4 | Modulators of renal cilia length.

Cilia length Cell type Mechanism or cellular effect References

In vitro

↓ intracellular Ca2+
↑ IMCD, MEK, BME Increased anterograde IFT speed Besschetnova et al., 2010

↑ intracellular cAMP ↑ IMCD, MEK, BME Activated PKA; increased anterograde
IFT speed

Besschetnova et al., 2010

Fluid flow ↓ IMCD, MEK, BME ↓ cAMP; decreased cAMP and cilia
length response abolished by Pkd1 and
Pkd2 kd or mutation

Besschetnova et al., 2010

H2O2 (reactive oxygen
species)

Deciliation MDCK Kim et al., 2013

Dopamine ↑ LLC-PK1 Increased cilia length increases
intracellular Ca2+ response to fluid
shear stress

Upadhyay et al., 2014

Cobalt chloride (hypoxia) ↑ MDCK Increased HIF1-alpha Verghese et al., 2011

aldosterone ↑ mCCD Reduced degradation of IFT88 Komarynets et al., 2020

In vivo

Pkd1RC/RC; Pkd1 ko or
Pkd2 ko; Pkd1RC/RC:Pkhd1
ko

↑ Collecting duct; cyst-lining renal
epithelia

Hopp et al., 2012; Liu et al.,
2018; Olson et al., 2019

Nek8jck/jck mutant ↑ Cyst lining renal epithelia Smith et al., 2006

Ischemia ↓ 1 day after; ↑ 8 days after Bowman’s capsule parietal
epithelium, proximal tubule,
collecting duct

Deciliation Verghese et al., 2008; Kim
et al., 2013

RBPj ko (Notch signaling
downregulation)

↑ Cystic renal epithelia of
developing kidney

Increased Akap12, a scaffolding protein
that interacts with PKA, cyclins, and
protein kinase C

Mukherjee et al., 2020

Hypoxia (chronic renal
injury)

↑ Fetal ovine renal epithelia Increased cilia length increased
intracellular Ca2+ response to fluid
shear stress

Shamloo et al., 2017

Mineralocorticoid receptor
ko

↓ Distal nephron Inability to respond to aldosterone Komarynets et al., 2020

IMCD, mouse inner medullary collecting duct cells; MEK, mouse embryonic kidney cells; BME, bone mesenchymal cells; MDCK, Madin–Darby Canine Kidney cells;
LLC-PK1, Lilly Laboratories Cell-Porcine Kidney 1 cells; mCCD, murine cortical collecting duct cells.

followed by elongation of cilia and eventual return to normal
cilia length. Such alterations in cilia length are proposed to alter
cilium sensing function and to form part of an epithelial repair
mechanism whereby cilia regulate changes in signaling pathways
appropriate for normal repair of injured renal tubules (Verghese
et al., 2019). This dynamic modulation of renal cilia lengths
during renal injury and repair suggests that cilia lengths are
tuned to maintain normal renal tubular structure and function
(Verghese et al., 2008, 2009; Han et al., 2017; Park, 2018).

Cellular signaling pathways and signals from the local
environment modulate cilium length. As renal primary cilia
protrude into the tubular lumen, cilia are exposed to filtrate
flow. In response to fluid flow, primary cilia of cultured
renal epithelial cells deflect, and intracellular calcium (Ca2+)
increases (Praetorius and Spring, 2001, 2003). In cells that
are stimulated resulting in lengthened cilia, the increase in
intracellular Ca2+ induced by fluid flow is elevated, indicating
that increased cilia length increases sensitivity to fluid flow
(Upadhyay et al., 2014; R Ferreira et al., 2019). Conversely,
in cells mutant for Pkd1 or Pkd2, the increased intracellular
Ca2+ response to fluid flow is abrogated (Nauli et al., 2003). In
ADPKD cells, intracellular Ca2+ is decreased, and intracellular
cyclic AMP (cAMP) is increased (Yamaguchi et al., 2004).

Treatments to decrease intracellular Ca2+ and to elevate
intracellular cAMP of cultured IMCD cells increased primary
cilium lengths (Besschetnova et al., 2010). Using live microscopy,
the increase in cilia length coincided with increased velocity of
anterograde IFT. Additionally, fluid shear-mediated deflection
reduced cilia length, decreased intracellular cAMP, and reduced
the intracellular Ca2+ response to fluid flow, indicating the
presence of a negative feedback loop. In Pkd1- or Pkd2-deficient
cells, the Ca2+ response to fluid flow was abolished, and so was
the negative feedback loop. In the absence of fluid flow, cultured
Pkd1 MEF and renal epithelia also displayed reduced cilia
disassembly via disruption of a centrosomal integrity pathway
mediated by p53 (Gerakopoulos et al., 2020). In contrast, Streets
et al. reported shortened primary cilia in Pkd1-mutant renal
epithelial cells via increased actin polymerization mediated by
RhoA (Streets et al., 2020). These varied results may reflect
that the altered cilia lengths are captured at a particular time
point during dynamic modulation of cilia length by these
individual pathways. Together, these studies demonstrate that
regulation of cilia length and cilia-mediated function is tightly
connected. Furthermore, the disruption of this connection
in ADPKD suggests that this connection may be critical to
staving off disease.
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Extrinsic factors that regulate kidney homeostasis have also
been shown to alter cilia length. Dopamine activates the
intrarenal dopaminergic pathway to reduce salt and water
reabsorption by the kidney, and dysregulation of intrarenal
dopaminergic signaling increases risk for essential hypertension
(Harris and Zhang, 2012). Treatment of LLC-PK1 porcine
kidney epithelial cells with dopamine and fenoldopam to activate
ciliary-localized dopamine receptor type-5 increased cilia length
(Upadhyay et al., 2014). Fenoldopam caused a greater increase
in cilia length than dopamine, and increased cilia length
correlated with the sensitivity of the cells to fluid shear stress
as measured by the increase in intracellular Ca2+, substantiating
the interconnection between cilia length modulation and ciliary
signaling. Aldosterone, a mineralocorticoid steroid hormone that
is produced by the adrenal cortex, conserves sodium in the
kidney. In a mineralocorticoid knockout mouse, cilia of multiple
tubule types were shortened. Explaining this result, treatment of
cultured cortical collecting duct cells with aldosterone increased
primary cilia length, and this increase correlated with intensity
of the transepithelial Na+ transport and was demonstrated to
occur via reduced degradation of IFT88 (Komarynets et al.,
2020). Thus, modulation of cilia length is inherent to kidney
homeostasis and physiology.

DISCUSSION

Primary cilia lengths differ with cell type, developmental
stage, disease state, and in response to injury or repair.
Multiple intrinsic (IFT and ciliary proteins) and extrinsic factors
contribute to modulating cilia length, and these factors are
likely intertwined to control cilia length and function. More
analyses in mammalian cells are required to determine the extent
to which mechanisms discovered in C. reinhardtii and other
ciliated organisms are similar or diverge in mammalian cells.
The redundancy of IFT proteins in mammalian cells suggests
a means of additional species- or cell-specific roles for these
proteins in regulating cilia length and function. High-resolution
live microscopy of IFT and associated cargo in mammalian cells
will be instrumental in obtaining new mechanistic insights.

Signaling events can affect cilia length, which in turn
influences sensitivity to external factors, such as fluid flow in the
kidney. Expanding our knowledge of the signaling pathways that
influence cilia lengths and those that are affected by cilia length
would contribute to a regulatory network of cilia length control.
Since studies suggest that cell type and in vitro versus in vivo

contexts can produce differential results, expansion of cell types
and development of in vitro models that more closely mimic the
in vivo setting, such as 3D models and cultures that implement
multiple cell types, may help to reconcile these differences.

Given that rescue of the increased cilia length in ADPKD
mouse models correlates with attenuation of the disease, could
cilia length in certain cases be a therapeutic target? In a
developmental study, the rescue of cilia length and structure
of Dync2h1-null embryos via deletion of one allele of Ift172
mitigated the Hh signaling defects and early embryonic lethality,
suggesting that Ift mutations cause their phenotypes primarily
by affecting cilia architecture rather than by directly regulating
signaling (Ocbina et al., 2011). Since Ift genes have differential
roles, determining how to rescue cilia architecture for each
Ift gene deletion would require expanding digenic analyses to
multiple Ift genes. Additionally, cancer studies show that drugs
can have differential effects on cilia lengths of different cell types
within a tissue, emphasizing cell-specific control of ciliogenesis
(Kiseleva et al., 2019).

However, in ciliopathy patient cells, cilia length is not always
altered, or inconsistencies exist in whether a gene mutation
causes cilia to be lengthened or shortened. This could suggest
that clinical manifestations are due to signaling defects and that
cilia length alterations per se may not be the primary cause of
perturbed signaling. Rather, IFT proteins may regulate both cilia
architecture and signaling pathways. Technologies to target a
signaling pathway of a specific cell (Shillingford et al., 2012) or
cilia (Pala et al., 2019a,b) of a particular cell type may further help
provide the molecular tools to treat cilia-related disease.
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