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 Abstract 

 Failure  to  rapidly  diagnose  tuberculosis  disease  (TB)  and  initiate  treatment  is  a  driving  factor  of 
 TB  as  a  leading  cause  of  death  in  children.  Current  TB  diagnostic  assays  have  poor 
 performance  in  children,  and  identifying  novel  non-sputum-based  TB  biomarkers  to  improve 
 pediatric  TB  diagnosis  is  a  global  priority.  We  sought  to  develop  a  plasma  biosignature  for  TB  by 
 probing  the  plasma  proteome  of  511  children  stratified  by  TB  diagnostic  classification  and  HIV 
 status  from  sites  in  four  low-  and  middle-income  countries,  using  high-throughput 
 data-independent  acquisition  mass-spectrometry  (DIA-PASEF-MS).  We  identified  47  proteins 
 differentially  regulated  (BH  adjusted  p-values  <  1%)  between  children  with  microbiologically 
 confirmed  TB  and  children  with  non-TB  respiratory  diseases  (Unlikely  TB).  We  further  employed 
 machine  learning  to  derive  three  parsimonious  biosignatures  encompassing  4,  5,  or  6  proteins 
 that  achieved  AUCs  of  0.86-0.88  all  of  which  exceeded  the  minimum  WHO  target  product  profile 
 accuracy  thresholds  for  a  TB  screening  test  (70%  specificity  at  90%  sensitivity,  PPV  0.65-0.74, 
 NPV  0.92-0.95).  This  work  provides  insights  into  the  unique  host  response  in  pediatric  TB 
 disease,  as  well  as  a  non-sputum  biosignature  that  could  reduce  delays  in  TB  diagnosis  and 
 improve detection and management of TB in children worldwide. 

 Introduction 
 Tuberculosis  (TB)  is  the  leading  cause  of  mortality  from  an  infectious  disease  worldwide,  with 
 10.6  million  cases  and  1.3  million  deaths  each  year  1  .  Children  suffer  a  disproportionate  burden: 
 12%  of  TB  disease  occurs  in  children,  but  children  account  for  16%  of  TB  deaths.  This  disparity 
 is  largely  due  to  delays  in  diagnosis  and  proper  treatment  initiation,  as  96%  of  deaths  are  in 
 children  for  whom  treatment  had  not  been  initiated.  While  sputum-based  diagnostic  testing  is 
 routinely  performed  in  adults,  children  are  unable  to  reliably  expectorate  sputum,  and  sputum 
 induction  is  typically  required.  Moreover,  microbiological  testing  has  sub-optimal  sensitivity  due 
 to  paucibacillary  disease  with  low  bacterial  burden  in  children  2  .  As  a  consequence,  there  is  a 
 large  case  detection  gap  where  an  estimated  half  of  the  children  with  TB  disease,  and  two-thirds 
 of  those  less  than  5  years  old,  are  not  reported  to  public  health  programs.  Consequently,  the 
 development  of  non-sputum  biomarker  TB  tests  is  a  global  priority  to  improve  TB  diagnosis  in 
 children. 

 Host  plasma  protein  biosignatures  have  shown  promise  for  TB  screening  in  adults,  and  have  the 
 potential  to  be  translated  into  a  simple  point-of-care  test  3–6  .  However,  these  signatures  have 
 been  largely  derived  from  adult  samples  which  poorly  translate  to  pediatric  TB  disease  due  to 
 different  immune  responses  and  disease  manifestations  in  children.  The  development  of 
 pediatric-specific  host  biosignatures  is  a  global  priority  for  early  detection  of  pediatric  TB  cases  7  . 
 While  mass  spectrometry  (MS)  based  proteomic  analysis  enables  a  broad  untargeted  approach 
 to  biomarker  discovery,  previous  plasma  proteomics  efforts  to  identify  plasma  biosignatures  of 
 pediatric  TB  disease  have  been  limited  by  small  sample  size,  variable  reference  standards,  and 
 exclusive  use  of  healthy  controls  that  overestimate  performance  by  selection  of  general 
 inflammation  markers  rather  than  TB-specific  markers  5,8  .  Past  studies  also  frequently  utilized 
 samples  from  a  single  region,  leading  to  the  discovery  of  candidate  biomarkers  that  may  reflect 
 the  co-morbidities  and  environment  specific  to  the  setting,  and  that  fail  to  validate  elsewhere. 
 Here  we  have  utilized  high-throughput  plasma  proteomics  and  well-characterized  pediatric  TB 
 cohorts  across  four  countries  to  derive  a  host-based  biomarker  signature  aimed  at  differentiating 
 childhood TB disease from other causes of respiratory disease. 
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 Results 

 Clinical Characteristics of the Cohort 
 We  included  plasma  samples  from  511  children  with  presumptive  pulmonary  TB  from  The 
 Gambia  (n=120),  Peru  (n=100),  South  Africa  (n=111),  and  Uganda  (n=180),  of  which  133  (26%) 
 had  microbiologically  Confirmed  TB,  120  (23.4%)  Unconfirmed  TB  (clinically  diagnosed),  and 
 231  (45.2%)  Unlikely  TB  (non-TB  LRTI)  based  on  NIH  consensus  definitions.  In  addition,  we 
 included  27  asymptomatic  healthy  children,  of  whom  8  (30%)  had  evidence  of  Latent  TB 
 infection  based  on  a  positive  QuantiFERON-Gold  test.  Demographic  and  clinical  characteristics 
 are  summarized  in  Table  1  and  provided  for  each  patient  in  Supplementary  Table  1;  the  median 
 age  was  4  years  (IQR  2-7),  46.4%  were  female,  11.2%  were  living  with  HIV,  and  52.6%  were 
 underweight. 

 Table 1. Cohort demographic and clinical characteristics (N=511) 

 Age in years 
 (median, IQR) 

 <5 years 
 n (%) 

 5-14 years 
 n (%) 

 Female 
 n (%) 

 HIV 
 infected 

 n (%) 
 Underweight  # 

 n (%) 

 Confirmed TB (n=133, 26%)  3 (1-7)  77 (57.9%)  56 (42.1%)  64 (48.1%)  23 (17.3%)  83 (62.4%) 

 Unconfirmed TB (n=120, 23.4%)  3 (2-7)  82 (68.3%)  38 (31.7%)  53 (44.2%)  16 (13.3%)  69 (57.5%) 

 Unlikely TB (n=231, 45.2%)  4 (2-8)  129 (55.8%)  102 (44.2%)  109 (47.2%)  18 (7.8%)  117 (50.6%) 

 Healthy  Control  no  TB  infection 
 (n=19, 3.7%)  5 (3.5-6.5)  7 (36.8%)  12 (63.2%)  7 (36.8%)  0  0 

 Healthy  Control  with  Latent  TB 
 infection  (n=8, 1.6%)  4 (3-6.3)  5 (62.5%)  3 (37.5%)  4 (50%)  0  0 

 All (N=511)  4 (2-7)  300 (58.7%)  211 (41.3%)  237 (46.4%)  57 (11.2%)  269 (52.6%) 

 #  Underweight defined as weight-for-age Z score < -2  if less than 5 years old, or body mass index < 18.5 if 5-14 years. 

 DIA-PASEF  enabled  high-throughput  and  comprehensive  plasma 
 proteomics 

 For  all  children,  we  started  from  1uL  of  undepleted  plasma  and  performed  high-throughput 
 proteomics  sample  preparation  using  a  filter-based  processing  in  96-well  plates  10  ,  and  followed 
 by  mass  spectrometry  analysis  on  a  Bruker  TimsTOF  Pro  mass  spectrometer  operating  in 
 data-independent  acquisition  mode  (DIA-PASEF)  (  Fig.  1A  )  11  .  In  total,  we  quantified  7,102 
 peptides  and  859  proteins  using  a  high  throughput  (30  min  sample-to-sample)  DIA-PASEF 
 acquisition  (  Fig.  1B  ),  with  an  average  detection  of  2,628  peptides  and  498  proteins  per  sample 
 (  Fig.  1C-D  ,  Supplementary  Table  2).  From  this  analysis,  we  removed  7  outlier  samples  showing 
 low  numbers  of  peptides  and  proteins,  resulting  in  504  samples  in  total.  We  achieved  an 
 average  data  completeness  of  60.4%,  with  241  proteins  detected  in  all  504  samples  and  411 
 detected  in  more  than  75%  of  the  samples  (  Fig.  1E  ).  The  concentration  of  proteins  in  plasma 
 exists  over  a  wide  dynamic  range  exceeding  10  orders  of  magnitude,  with  a  subset  of  proteins 
 having  very  high  concentrations  (e.g.  albumin)  that  can  preclude  the  detection  of  lower 
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 abundance  proteins.  As  we  did  not  use  immunodepletion  to  remove  proteins  of  high 
 concentration  12  ,  we  evaluated  the  dynamic  range  in  proteins  detected  in  our  proteomics 
 experiments  using  reference  concentration  values  from  antibody  and  MS  based-assays 
 (HumanProteinAtlas  9  ).  Based  on  this  analysis,  we  were  able  to  quantify  proteins  over  >4  orders 
 of  magnitude  and  down  to  a  level  of  12.1  ng/L  concentration  (SERPINF2),  with  a  median 
 concentration of 40 ng/L (  Fig. 1F  ). 

 Figure  1.  A  high-throughput  workflow  for  plasma  proteomics.  A.  Plasma  proteomics  workflow  and  experimental 
 design.  B.  Barplot  showing  the  total  number  of  unique  peptide  sequences  and  protein  groups  identified.  C-D.  Number 
 of  peptides  (  C  ),  and  proteins  (  D  )  identified  per  MS  injection.  E.  Percentage  of  identifications  (Y  axis)  versus  the 
 number  of  identified  proteins  (X  axis).  F.  Density  for  the  concentration  range  covered.  X-axis  represents  the  logged 
 ng/L  concentration  determined  from  HumanProteinAtlas  9  ,  identified  proteins  are  represented  by  the  yellow  density, 
 while purple density represents remaining proteins. 

 We  next  evaluated  our  data  across  samples  from  the  four  clinical  sites  (  Fig.  2A  ),  and  observed 
 a  consistent  signal  distribution  of  MS  protein  abundances,  devoid  of  upper-end  skewing,  across 
 5  orders  of  magnitude  (  Fig.  2B  ).  This  resulted  in  highly  consistent  protein  detections  across 
 countries,  in  which  88.7%  of  all  proteins  were  detected  across  all  sites,  with  less  than  1%  of  all 
 proteins  displaying  country-specific  identification  patterns  (  Fig.  2C  ).  To  normalize  any  variation 
 between  the  various  clinical  sites,  batches  of  sample  preparation,  or  MS  acquisition  batches,  we 
 utilized  COMBAT  13  ,  a  parametric  approach  to  mitigate  batch  effect  commonly  used  in 
 proteomics  14  .  We  used  as  batches  the  various  clinical  sites,  with  added  covariates  of  the  MS 
 acquisition  and  sample  preparation  batches.  After  normalization  and  COMBAT  correction,  we 
 reduced  our  data  to  two  dimensions  using  single-value  decomposition  to  visualize  the  sample 
 distribution  after  PCA  and  positively  reduced  batch  effects  for  most  samples  as  exemplified  by 
 the  majority  of  the  samples  not  being  separated  by  first  or  second  component  (  Fig.  2D  ).  Lastly, 
 from  a  quantitative  standpoint,  we  achieved  a  low  coefficient  of  variation  (CV)  both  within  each 
 country  (average  =  7.9%)  and  across  all  countries  (~8%)  (  Fig.  2E  ).  Importantly,  this  analysis 
 was  performed  using  only  proteins  identified  across  more  than  75%  of  the  samples  (n=411)  to 
 avoid  artificially  decreasing  the  CV  due  to  the  imputation  process  (see  Methods).  Overall,  this 
 suggests  the  absence  of  substantial  country-specific  protein  abundance  differences  and  the 
 possibility  of  using  the  combined  data  from  all  clinical  sites  for  analysis  of  TB  specific 
 differences. 
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 Figure  2.  Quality  control  and  reproducibility  of  plasma  proteomics  across  multiple  clinical  sites.  A.  Pie  chart 
 illustrating  the  number  of  samples  originating  from  each  clinical  site.  B.  Empirical  cumulative  distribution  function  plot 
 for  the  raw  MS  intensity  of  the  samples  (X  axis)  from  the  various  clinical  sites.  C.  Upset  plot  showing  the  overlap  in 
 protein  identifications  between  the  different  clinical  sites.  D  .  Principal  Component  Analysis  (PCA)  of  the  DIA-PASEF 
 dataset  following  COMBAT  batch  correction.  X  axis  shows  the  first  component  (10%  variance)  and  Y  axis  the  second 
 component  (6%  variance).  Each  point  represents  a  sample,  while  the  color  code  indicates  the  clinical  site.  E.  Protein 
 level coefficient of variation within each clinical site and across all samples. 

 Differential analysis to identify active TB candidate biomarkers 
 We  first  evaluated  the  ability  of  plasma  proteomics  to  separate  healthy  children  from 
 symptomatic  children  undergoing  evaluation  for  pulmonary  TB  by  comparing  the  protein  levels 
 of  known  inflammatory  markers.  As  expected,  serum  amyloid  protein  1,  2,  4  (SAA1,  SAA2, 
 SAA4)  and  C-reactive  protein  (CRP)  were  all  significantly  upregulated  among  symptomatic 
 children,  with  SAA2  displaying  the  greatest  difference  amongst  the  acute  phase  proteins  (  Fig. 
 3A  ).  However  these  inflammatory  markers  were  not  able  to  significantly  distinguish  between  the 
 different groups of symptomatic children (i.e. Confirmed, Unconfirmed, or Unlikely TB) (  Fig. 3A  ). 

 We  next  focused  on  comparing  plasma  protein  levels  in  children  with  Confirmed  TB  (n=112)  and 
 Unlikely  TB  (n=235)  to  identify  biomarkers  that  could  distinguish  TB  disease  from  other  non-TB 
 respiratory  diseases.  To  identify  pathways  with  dysregulated  patterns  between  Confirmed  TB 
 and  Unlikely  TB,  we  performed  a  pathway  enrichment  analysis  on  each  pathway  included  in  the 
 KEGG  and  REACTOME  databases,  using  only  gene  sets  with  more  than  50%  of  overlap  with 
 our  plasma  proteomic  datasets.  In  total,  14  pathways  showed  significant  differential  means  with 
 Benjamini-Hochberg  adjusted  p-value  <  0.05  (  Fig.  3B,  only  pathways  with  over  60%  overlap  are 
 represented).  Amongst  the  pathways  showing  significant  regulation,  we  identified  several 
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 related  to  complement  activation,  which  have  also  been  identified  in  studies  of  whole  blood 
 transcriptomics  in  TB  15,16  .  Complement  upregulation  in  the  context  of  TB  may  reflect  activation  of 
 the  classical  pathway  by  antigen-antibody  complexes,  activation  of  the  alternative  pathway  or 
 mannose-binding  lectin  pathway  by  components  of  the  Mtb  cell  envelope  or  cell  wall,  and/or 
 through increased synthesis as acute phase proteins. 

 Figure  3.  Abundance  proteomics  analysis  of  pediatric  TB  cohorts.  A.  Benchmark  of  data  between  patients  with 
 respiratory  burden  and  healthy  controls  (excluding  Latent  TB  Infection).  X  axis  shows  the  TB  classification  status 
 while  Y  axis  represents  the  protein-level  intensity.  Box  shows  the  IQR  and  its  Kruskal-Wallis  test  is  represented  as 
 *for  p  <  0.01,  ***  for  p  <  0.0001,  and  ****  for  p  <  0.000001.  B.  Gene  set  enrichment  analysis  for  identification  of 
 dysregulated  pathways  between  Confirmed  TB  and  Unlikely  TB.  Dot  size  represents  the  Benjamini-Hochberg  (BH) 
 adjusted  p  from  a  mean  difference  (MD)  test.  Colors  indicate  the  overlap  between  each  signaling  pathway  and  the 
 protein  dataset.  C.  Volcano  plot  between  Confirmed  and  Unlikely  TB.  The  X-axis  shows  the  Log2  fold  change  at  the 
 protein  level,  while  the  Y-axis  represents  the  significance  as  -log10  of  the  BH  corrected  p-values.  Significant  proteins 
 (BH-adjusted  p  <  5%)  are  shown  in  red  and  blue.  Barplot  showing  the  number  of  differentially  expressed  proteins 
 (DEPs)  divided  in  upregulated  (red)  and  downregulated  (blue).  D.  Density  plot  showing  the  z-scored  intensity  for  the 
 most  significantly  regulated  protein  (IGHV3-30),  divided  by  TB  status  in  confirmed  TB  (red),  unconfirmed  TB  (green) 
 and unlikely TB (blue). 

 From  this  comparison  between  Confirmed  and  Unlikely  TB,  we  identified  47  proteins  displaying 
 significantly  different  abundances,  of  which  30  displayed  downregulation  and  17  displayed 
 upregulation  (  Fig.  3C  ,  Supplementary  Table  3).  Interestingly,  one  of  the  the  proteins  displaying 
 the  most  statistically  significant  regulation  was  the  tryptophanyl  t-RNA  synthetase  WARS1, 
 which  was  increased  in  children  with  Confirmed  TB  vs.  Unlikely  TB  (log2FC  =  0.39,  BH  adjusted 
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 p  =  3.3*10-5)  (  Fig.  3C  ),  and  is  linked  to  TB  infection  via  multiple  mechanisms.  Overall,  the 
 majority  of  these  are  known  plasma  proteins  with  previous  classifications  as  secreted  or 
 extracellular  proteins  (38/48),  minimizing  the  possibility  of  random  variation  in  tissue  leakage 
 driving  the  distinction  between  groups.  For  the  remaining  10  (WARS1,  DBH,  TUBA1A,  ICAM1, 
 GSN,  LTA4H,  SDC1,  CSF1R,  THBS4,  CDH13),  manual  curation  of  their  localization 
 demonstrated  the  majority  being  potentially  secreted  (9/10)  with  only  one  (TUB1A1)  not  having 
 reported extracellular localization. 

 We  further  identified  upregulation  of  multiple  specific  immunoglobulin  heavy  (IGHV1-18, 
 IGHV1-3,  IGHV2-26,  IGHV3-23,  IGHV3-30)  and  light  chain  variable  domains  (IGKV1-16, 
 IGKV1D-33  and  IGKV3-20)  across  several  countries  (  Fig.  3D,  Supplementary  Fig.  S1) 
 potentially  suggesting  an  oligoclonal  humoral  response  to  TB  disease.  Additionally,  we  observed 
 significantly  different  levels  of  several  proteins  (APOM,  PON1,  CPB2)  (  Fig.  3C  ),  which  have 
 been  previously  identified  in  plasma  proteomic  studies  of  severe  vs  non  severe  COVID-19  17  and 
 an  adult  TB  study  5  ,  potentially  pointing  towards  those  proteins  as  general  markers  of  lung 
 inflammation rather than specific markers of pediatric TB disease. 

 Machine  learning  for  identification  of  a  host-protein  biosignature  of  active 
 pulmonary TB disease 
 To  identify  the  smallest  subset  of  features  achieving  the  required  target  product  profile  (TPP)  for 
 a  screening  test  (70%  specificity  at  90%  sensitivity),  we  first  utilized  LASSO  to  reduce  the 
 number  of  features  to  a  subset  that  would  allow  exhaustive  brute-force  approaches.  The  choice 
 of  LASSO  over  other  feature  selection  approaches  like  Tree-based  or  recursive  feature 
 elimination  (forward  or  reverse)  was  due  to  the  inherent  sparsity  of  the  resulting  solutions  and 
 the  computational  performance.  We  utilized  LASSO  using  20-fold  cross-validation,  which  led  to 
 removal  of  a  large  portion  of  features  resulting  in  67  with  non-0  LASSO  coefficients  (  Fig.  4A  and 
 Supplementary  Table  S4).  Notably,  simply  selecting  the  top  N  most  important  proteins  by  their 
 LASSO  feature  importance  did  not  reach  the  WHO  TPP  for  any  of  the  N  utilized  (Supplementary 
 Fig.  S2),  which  suggests  the  use  of  deep  combinatorial  analysis  to  evaluate  the  performance  of 
 a small subset of features. 

 Thus,  we  decided  to  investigate  the  best  combination  of  a  small  subset  of  features  using  the 
 WHO  TPP  as  an  objective  function.  Specifically,  we  calculated  all  possible  combinations  of  N 
 features  (from  1  to  6)  and  selected  the  combinations  maximizing  the  specificity  at  90% 
 sensitivity.  We  derived  six  linear  models  (trained  on  a  75%  balanced  subset  of  the  data  and 
 tested  on  25%  of  the  remaining  samples),  of  which  three  exceeded  the  WHO  TPP  for  a 
 screening  test  (  Fig.  4B  )  consisting  of  4,  5,  or  6  proteins.  The  4  and  5  proteins  models  achieved 
 93%  sensitivity  at  70%  specificity  (95%  CI  for  4  protein  model  0.73-0.97,  95%  CI  for  5  protein 
 model  0.78-0.99),  and  the  6  protein  models  achieved  96.7%  sensitivity  at  70%  specificity  (95% 
 CI  0.83-0.99)  on  our  test  data  (  Fig.  4C  ,  n=83,  30  positive,  53  negative).  The  derived  features  for 
 the  4  to  6  protein  models  were  mostly  shared,  with  APOM  and  WARS1  being  shared  across  the 
 4,  5,  and  6  protein  models  (  Fig.  4D  ).  The  selected  proteins  for  most  models  showed  small 
 variance  and  significantly  different  means  across  all  TB  classes  (  Fig.  4E  ),  potentially  suggesting 
 their  relevance  in  TB  disease.  Two  proteins  further  showed  regulation  when  comparing 
 Confirmed  TB  and  Unlikely  TB:  WARS1  (log2FC  0.38,  q=10x  -  5)  and  APOM  (log2FC  -0.45, 
 q=10x  -  5)  (  Fig.  4E  ).  Each  individual  showed  a  low  AUC  ranging  from  0.577  (HEG1)  to  0.745 
 (APOM),  suggesting  the  lack  of  a  single  indicative  feature  driving  the  AUC  and  the  need  for  at 
 least 4 proteins to achieve the WHO TPP (Supplementary Fig. S3). 
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 Figure  4.  Machine  learning  to  develop  a  parsimonious  biosignature  for  pediatric  TB  disease.  A.  Absolute 
 feature  importance  from  a  LASSO  model  for  the  top10  most  important  features  .  B.  ROC  curves  for  best-scoring 
 combination  of  features.  Each  curve  represents  the  feature  subset  achieving  the  highest  AUC  derived  from  all 
 combinations  of  1  (n=67),  2  (n=2210),  3  (n=  47904,)  4(n=766479),  5  (n=  9657647)  and  6  (n=  99795695  )  features. 
 WHO  TPP  for  a  screening  test  (70%  specificity  and  90%  sensitivity)  is  denoted  by  the  black  circle.  C.  Barplot  for  the 
 sensitivity  achieved  at  70%  specificity  for  all  6  models.  Dotted  red  line  represents  90%  sensitivity.  D.  Venn  diagram  of 
 the  overlap  in  proteins  from  the  4-,  5-,  or  6-protein  model.  E.  Dotplot  representing  the  mean  (dot)  and  the  standard 
 deviation  (line)  for  the  proposed  biosignature  proteins  across  the  three  models  achieving  the  WHO  TPP.  Different 
 colors  highlight  the  different  TB  classes  according  to  NIH  consensus  definition.  Each  protein  is  normalized  to  the 
 Unlikely TB protein abundance for that respective protein. 

 Detection of Unconfirmed TB 
 We  tested  the  derived  biosignatures  on  115  Unconfirmed  TB  cases  that  passed  our  proteomics 
 quality  control  filtering  to  assess  if  we  could  further  identify  TB  cases  in  symptomatic  children 
 with  culture-negative  disease  .  In  this  comparison  we  only  used  biosignatures  exceeding  the 
 WHO  TPP  for  a  screening  test  (4,  5,  and  6  protein  models)  and  utilized  as  probability  threshold 
 for  classification  the  AUC  point  that  achieved  the  WHO  TPP.  The  various  models  supported  the 
 diagnosis  of  TB  in  Unconfirmed  TB  (negative  by  sputum-based  testing)  in  ~30%  of  the  cases, 
 with  the  4  protein  model  predicting  49/115  positive  TB  cases,  the  5  protein  model  35/115  cases 
 and  the  6  protein  model  42/115  positives  (  Fig.  5A  ).  We  observed  good  agreement  between 
 predictions,  with  26/115  samples  (22%)  positively  predicted  by  all  models  and  42  (36%) 
 positively  predicted  by  at  least  2  models  (  Fig.  5B  ).  Importantly,  we  did  not  observe  separation 
 between  healthy  and  latent  TB  when  utilizing  any  of  these  three  biosignatures,  suggesting  that 
 these  are  specific  for  active  TB  disease  (Supplementary  Fig.  S4).  When  evaluating  the 
 separation  between  the  various  Unconfirmed  TB  samples  and  the  Confirmed  TB  group  using  all 
 identified  proteins,  we  observed  a  trend  where  samples  positively  predicted  by  the  three  models 
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 (n=26),  clustered  more  closely  to  the  Confirmed  TB  group  in  latent  space  derived  by  PCA,  and 
 showed  separation  on  the  first  component  from  the  negatively  predicted  unconfirmed  samples 
 (n=60)  (  Fig.  5C  ).  This  suggests  that  we  robustly  extrapolated  a  valid  biosignature  as  the 
 individual  contribution  of  these  8  proteins  on  the  total  number  of  proteins  identified  (850)  is  small 
 with  only  TNC  ranking  amongst  the  top  20%  features  driving  the  separation  on  the  first 
 component (Supplementary Fig. 5). 

 Figure  5.  Detection  of  Unconfirmed  TB.  A.  Barplot  showing  the  number  of  positive  predicted  (yellow)  and  negative 
 predicted  (purple)  in  the  proposed  linear  models  using  4,  5,  or  6  proteins.  Values  in  the  barplot  indicate  the  number  of 
 positive  predicted  cases.  B.  Upset  plot  displaying  the  overlap  between  all  predictions.  C.  Principal  component 
 analysis  of  Confirmed  and  Unconfirmed  TB.  X-axis  shows  the  first  component  and  Y-axis  shows  the  second 
 component.  Each  dot  represents  a  sample.  Samples  are  color  coded  based  on  either  TB  status  (Confirmed  TB, 
 black)  and  further  for  the  Unconfirmed  TB  based  on  the  prediction  of  the  various  models  (⅓  models  cyan,  ⅔  models 
 green,  or  all  models  yellow).  Samples  negatively  predicted  by  all  models  (Negative  Unconfirmed)  are  shown  in 
 orange. 

 Discussion 
 This  study  represents  the  largest  TB  plasma  proteomics  study  in  children  to  date,  and 
 encompasses  a  diverse  pediatric  cohort  of  >500  samples  across  clinical  sites  in  four  LMIC  and 
 two  continents.  The  scale  of  this  analysis  was  made  possible  by  the  use  of  data-independent 
 acquisition  to  provide  high-throughput,  accurate,  and  precise  quantification  of  hundreds  of 
 proteins  within  only  ~30  minutes  of  MS  acquisition.  This  is  in  contrast  to  previous  work  for  the 
 development  of  host-based  biomarker  for  TB  using  plasma  proteomics,  which  have  revolved 
 around  the  use  of  proteomics  multiplexing  for  quantification  (e.g.  ITRAQ)  and  long  acquisition 
 times,  both  of  which  are  detrimental  for  acquisition  of  large  clinical  cohorts.  Furthermore,  the 
 power  of  this  study  is  amplified  by  our  cohort  design,  which  includes  both  healthy  controls  and 
 >200  controls  with  non-TB  respiratory  diseases.  The  inclusion  of  a  non-TB  respiratory  disease 
 control  group  addresses  a  key  clinical  diagnostic  challenge  to  distinguish  children  with 
 pulmonary  TB  disease  from  those  with  symptoms  due  to  other  causes.  Inclusion  of  this  control 
 group  avoids  the  detection  of  candidate  TB  biomarkers  that  are  non-specific  inflammatory 
 markers  that  cannot  differentiate  among  symptomatic  states,  as  observed  with  CRP,  SAA1, 
 SAA2,  SAA3,  and  SAA4,  and  which  were  included  in  previous  plasma  proteomic 
 biosignatures  5,8  . 
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 An  important  milestone  of  this  work  is  the  application  of  machine  learning  to  develop  a  minimal 
 host-based  biosignature  consisting  of  4-6  proteins  that  separate  children  with  Confirmed  TB  vs. 
 Unlikely  TB  at  a  level  of  specificity  and  sensitivity  that  meets  or  exceeds  the  WHO  criteria  for  a 
 TB  screening  test  19  .  We  found  WARS1  to  be  a  common  protein  among  all  protein  biosignatures. 
 WARS1  (also  known  as  TrpRS)  has  previously  been  linked  to  TB  infection  by  multiple 
 mechanisms.  First,  upon  M.  tuberculosis  infection,  a  multitude  of  lymphocytes,  including  CD4 
 and  CD8  T  cells,  noncanonical  T  cells,  natural  killer  cells,  and  type  1  innate  lymphoid  cells  19 

 up-regulate  interferon  gamma  (IFNγ)  as  part  of  the  host  immune  response,  which  in  turn 
 induces  WARS1  expression.  WARS1  is  also  induced  by  tryptophan  depletion.  Tryptophan 
 depletion  by  the  kynurenine  pathway  has  been  detected  in  multiple  metabolomic  studies  in 
 active  TB  disease  20–23  ,  hence  our  data  further  supports  previous  reports  on  the  importance  of 
 Tryptophan metabolism in active TB diseases versus other respiratory illnesses. 

 Importantly,  our  protein  biosignatures  did  not  separate  between  healthy  children  and  children 
 with  latent  TB  infection  for  any  of  the  tested  models,  suggesting  that  these  protein  biosignatures 
 are  specific  for  active  TB  disease.  Moreover,  application  of  these  host-biosignatures  to  children 
 with  Unconfirmed  TB  was  able  to  further  support  the  diagnosis  of  TB  in  ~30%  of  cases  that  were 
 negative  by  sputum-based  testing.  While  this  work  represents  the  first  untargeted 
 discovery-proteomics  biosignature  for  childhood  TB,  there  have  been  several  cytokine-based 
 signatures  identified  for  TB  in  children.  However,  these  targeted  analyses  were  completed  at  a 
 single  center  with  a  small  sample  size.  For  example,  prior  work  identified  a  3-cytokine  signature 
 to  distinguish  children  with  TB  disease  from  other  respiratory  diseases  in  the  Gambia,  but  they 
 achieved  a  lower  AUC  of  0.74  and  72.2%  sensitivity  18  .  Our  study  benefited  from  a  large  sample 
 size,  representation  from  four  countries,  with  a  high  proportion  who  were  under  five  years  old, 
 living  with  HIV,  and  were  undernourished.  While  further  prospective  validation  and  subgroup 
 analyses  are  needed  to  evaluate  robustness  and  reproducibility,  our  findings  suggest  that  a 
 simple  host-based  proteomic  signature  could  be  integrated  into  a  point-of-care  device  for 
 non-sputum TB screening for children. 

 In  conclusion,  untargeted  proteomics  was  able  to  broadly  evaluate  the  plasma  of  children 
 across  four  countries,  and  identify  candidate  host  protein  biomarkers  that  could  distinguish 
 pediatric  TB  disease  from  other  respiratory  diseases.  Moreover,  from  these  candidate  markers, 
 we  identified  novel  plasma  protein  biosignatures  of  only  4-6  proteins  for  childhood  TB  disease 
 that  achieved  the  minimum  accuracy  for  a  TB  screening  tool.  These  efforts  have  provided 
 greater  characterization  of  the  unique  immune  response  in  pediatric  TB  disease,  while  providing 
 a  new  non-sputum  biosignature  that  could  reduce  delays  in  TB  diagnosis  and  improve  detection 
 and management of TB in children worldwide. 

 Data availability 
 The  supporting  MS  data  is  available  via  the  MassIVE  repository  with  Dataset  Identifier: 
 MSV00000096394. 
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 Supplementary figures 

 Supplementary  Figure  1.  Upregulated  IGg  level,  expressed  as  protein  intensity  normalized  to  the  global  amount  of 
 the Unlikely TB condition (Y axis) stratified by clinical site (X axis). 
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 Supplementary  Figure  2.  ROC  Curves  for  various  number  of  features  comparing  the  best  combination  (BestN,  blue 
 line) to the corresponding number of most important ones from the LASSO feature importance (TopN, red line). 
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 Supplementary  Figure  3.  Individual  ROC  curves  for  the  proteins  from  the  developed  biosignatures.  The  black  circle 
 designates the WHO target product profile sensitivity and specificity. 

 Supplementary  Figure  4.  Principal  component  analysis  of  healthy  and  latent  TB  utilizing  the  derived  biosignatures. 
 X-axis shows the first component and Y-axis shows the second component. 
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 Supplementary  Figure  5.  Rank  Plot  showing  the  contribution  of  each  gene  to  the  separation  in  the  first  component 
 between  confirmed  +  unconfirmed  TB  (all  models).  Y  axis  shows  the  feature  loadings  in  absolute  value  and  X  axis 
 displays the corresponding rank. Biosignature proteins are highlighted in red. 

 Supplementary Tables 
 Supplementary Table S1. Clinical information table with clinical features and sample IDs. 
 Supplementary Table S2. Full proteomics output matrix of protein abundance by sample IDs. 
 Supplementary Table S3. Quantitative comparisons of Confirmed vs Unlikely TB. 
 Supplementary Table S4. Feature importance from lasso model. 

 Material and methods 

 Pediatric TB cohort 
 We  analyzed  plasma  samples  from  children  less  than  15  years  old  evaluated  for  pulmonary  TB 
 as  part  of  prospective  diagnostic  cohort  studies  in  the  Gambia,  Peru,  South  Africa,  and  Uganda. 
 Children  were  included  if  they  had  signs  and  symptoms  of  pulmonary  TB,  and  excluded  if  they 
 were  already  taking  treatment  for  TB  infection  or  disease  for  more  than  72  hours.  All  children 
 completed  a  standard  TB  evaluation,  including  clinical  exam,  chest  X-ray,  and  respiratory 
 sample  collection  for  Xpert  MTB/RIF  molecular  testing  and  mycobacterial  culture.  All  children 
 had  follow  up  after  2-3  months,  and  were  assessed  for  clinical  response  to  any  treatment.  They 
 were  classified  according  to  NIH  consensus  definitions  as  Confirmed,  Unconfirmed,  or  Unlikely 
 TB.  Confirmed  TB  was  defined  as  having  microbiological  evidence  of  TB  disease  by  a  positive 
 Xpert  MTB/RIF  Ultra  or  mycobacterial  culture  positive  for  M.  tuberculosis  .  Unconfirmed  TB 
 cases  did  not  have  microbiological  evidence  of  TB,  but  had  signs  and  symptoms  of  TB  disease 
 with  other  clinical  signs  or  risk  factors  suggestive  of  TB  including  abnormal  chest  X-ray,  known 
 TB  contact,  and  response  to  empiric  anti-TB  treatment.  Unlikely  TB  cases  were  symptomatic, 
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 but  did  not  have  microbiological  evidence  of  TB  disease  nor  other  signs  or  risk  factors.  In 
 addition,  asymptomatic  healthy  children  from  Uganda  were  enrolled,  who  had  interferon-gamma 
 release  assay  (IGRA)  testing  with  Quantiferon-Gold  (Qiagen,  Hilden,  Germany)  testing  for  TB 
 infection.  Healthy  controls  were  defined  as  asymptomatic  and  IGRA  negative,  while  Latent  TB 
 infection  cases  were  defined  as  asymptomatic  with  positive  IGRA  results.  All  caregivers 
 completed  a  written  informed  consent,  including  for  storage  of  samples  for  future  studies,  and 
 children  completed  an  assent  as  applicable.  The  studies  were  approved  by  the  Mulago  Hospital 
 Ethics  Research  Committee,  Gambian  Government  and  MRC  joint  ethics  committee,  London 
 School  of  Hygiene  and  Tropical  Medicine,  Institutional  Ethics  Committee  for  Research  of 
 National  Institute  of  Health  -  Peru,  University  of  Cape  Town,  and  the  University  of  California, 
 San Francisco (UCSF) IRB. 

 Sample Collection 
 Trained  staff  performed  venipuncture  and  collected  blood  samples  in  all  children  at  baseline  and 
 within  72  hours  of  any  TB  treatment.  Blood  samples  were  centrifuged  and  plasma  samples 
 aliquoted and placed in -80C freezers. 

 Sample preparation for plasma proteomics 
 One  uL  of  undepleted  plasma  was  transferred  in  a  96  well  plate  with  200  uL  of  inactivation 
 buffer  (8M  urea,  100  mM  ammonium  bicarbonate,  150  mM  NaCl)  and  0.75  uL/mL  of  RNAse 
 (NEB)  was  added.  The  proteins  were  transferred  to  a  96  well  filter  plate  and  processed  similarly 
 to  what  we  previously  described  10  .  Briefly,  the  plates  were  dried  by  centrifugation  (1800  rpm  at 
 25C  for  30  minutes)  and  50  uL  of  TUA  buffer  (8M  urea,  20  mM  ammonium  bicarbonate,  5  mM 
 TCEP)  were  added.  Following  incubation  at  RT  on  a  shaker  (500  rpm,  25  C),  chloroacetamide 
 (CAA)  was  added  to  10  mM  final  concentration  and  the  plates  were  incubated  in  the  dark  for  1 
 hr  at  room  temperature.  TCEP/CAA  were  removed  by  centrifugation  and  the  plates  were 
 washed  thrice  with  200  uL  of  ddH20.  Trypsin  was  added  in  a  1:50  ratio  and  the  samples  were 
 digested  overnight  at  37°C  on  a  shaker  (800  rpm).  Peptides  were  collected  by  centrifugation 
 and  the  plate  was  washed  once  with  100  uL  of  ddH20.  Resulting  peptides  were  dried  under 
 vacuum  and  were  resuspended  at  approximately  200  ng/uL.  A  representative  pool  of  HIV 
 positive  and  TB  positive  samples  was  further  high-pH  fractionated  on  a  C18  tips  following  our 
 previous work  20  . 

 Data acquisition for abundance proteomics 
 Approx  200  ng  per  sample  were  analyzed  on  a  Bruker  TimsTOF  Pro  interfaced  with  a  Ultimate 
 3000  UHPLC.  Peptides  were  separated  using  a  15  cm  PepSep  column  (Bruker,  150  cm  length, 
 1.7  um  beads)  and  sprayed  into  the  Captive  source  kept  at  1700  V  and  200  C.  The  peptides 
 were  separated  from  2  to  33%  of  buffer  B  (0.1%  FA  in  ACN)  for  26  minutes,  then  B  was 
 increased  to  90%  buffer  B  for  5  minutes,  and  then  the  column  was  re-equilibrated  at  5%  buffer  B 
 for  2  minutes,  reaching  a  total  gradient  time  of  33  min.  The  samples  were  acquired  in 
 DIA-PASEF  mode  using  nine  32  m/z  DIA-PASEF  windows  (500-966  mz)  and  ion  mobility 
 between 0.85 and 1.3 Vs/cm2. 
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 DDA-PASEF data analysis 
 Library  files  were  searched  using  MSfragger  21  within  the  FragPipe  toolkit  using  the  library 
 generation  workflow  ('DIA-Speclib-quant')  using  a  human  FASTA  (20408  entries).  The 
 generated  library  and  our  previous  reported  plasma  library  were  merged  using  easypqp 
 (https://github.com/grosenberger/easypqp). 

 DIA-PASEF data analysis 
 All  samples  were  searched  with  DIA-NN  (v1.8)  22  using  a  library-based  strategy.  MS1  and  MS2 
 tolerances  were  set  to  10  ppm.  Protein  grouping  was  performed  based  on  the  library  ids  and 
 cross  run-normalization  was  disabled.  Following  search,  the  global  report  file  was  filtered  to  <= 
 1%  protein  group  Q-values  ('Lib.PG.Q.Value')  The  peptide-level  data  was  normalized  using 
 median-centering of the peptides identified in all samples. 
 Following  normalization,  the  missing  values  were  imputed  utilizing  an  heuristic  strategy  based 
 on their identification frequency to leverage the large number of samples analyzed in this study. 
 The following rules were applied: 

 -  Peptides  identified  in  >  50%  of  the  samples  (at  least  250  independent  identifications) 
 were imputed with the mean identification value, 

 -  Peptides  identified  in  <  50%  but  >  10%  of  the  samples  were  imputed  utilizing  a  random 
 value  extracted  from  a  generated  gaussian  distribution  with  mu  and  sigma  of  the  data 
 downshifted 1.8 x sigma 

 -  Peptides identified in < 10% of the samples were removed. 
 Following  imputation,  the  peptide-level  data  was  batch  corrected  using  COMBAT  13  to  normalize 
 any  variation  between  the  clinical  sites,  batches  of  sample  preparation,  or  MS  acquisition 
 batches.  We  used  as  batches  the  various  clinical  sites,  with  added  covariates  of  the  MS 
 acquisition  and  sample  preparation  batches  (i.e  the  different  plates).  Peptides  were  rolled  into 
 proteins  utilizing  only  proteotypic  peptides  and  a  topN  strategy  (max  3  proteotypic  peptides  per 
 protein), using the mean intensity to represent a protein intensity. 

 Machine  learning  for  identification  of  a  proteomic  biosignature  for  childhood 
 TB disease 
 Protein-level  intensities  after  normalization  across  all  clinical  sites  and  HIV  status  for  Confirmed 
 TB  (n=120)  and  Unlikely  TB  (n=211)  were  selected  and  z-scored.  Confirmed  TB  and  Unlikely  TB 
 cases  were  included  given  clear  reference  standards  for  TB  and  not  TB.  First,  a  random  75%  of 
 the  data  was  selected  for  training  a  LASSO  model  using  scikit-learn  LASSOCv  function  (20 
 folds  stratified  by  TB  class,  max_iter=10000,  tol=0.0001).  The  feature  importance  was 
 calculated  and  the  proteins  with  non  0  coefficients  were  used  for  combinational  analysis  (n=67 
 proteins).  In  this  analysis,  we  generated  all  possible  combinations  of  features  ranging  from  1  (67 
 combinations)  to  6  (n=  99795695  combinations)  and  trained  a  linear  regression  model  based  on 
 the  z-scored  abundance  for  each  specific  combination.  Models  for  every  N  were  ranked  based 
 on  the  sensitivity  achieved  at  90%  specificity  (on  our  25%  test  split)  and  the  top  scoring  models 
 for  every  N  were  kept  for  subsequent  analysis.  Confidence  intervals  were  calculated  using  the 
 Clopper-Pearson  (exact  binomial)  method.  We  then  applied  models  achieving  the  required 
 WHO  TPP  (4,  5,  and  6  protein  models)  to  the  Unconfirmed  TB  cases  to  determine  what 
 proportion could be diagnosed using this model. 
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