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SUMMARY

Transfer RNAs (tRNAs) link the genetic code in the
form of messenger RNA (mRNA) to protein
sequence. Translocation of tRNAs through the ribo-
some from aminoacyl (A) site to peptidyl (P) site
and from P site to exit site is catalyzed in eukaryotes
by the translocase elongation factor 2 (EF-2) and in
prokaryotes by its homolog EF-G. During tRNA
movement one or more ‘‘hybrid’’ states (A/P) is occu-
pied, but molecular details of them and of the trans-
location process are limited. Here we show by cryo-
electron microscopy that a population of mammalian
ribosomes stalled at an mRNA pseudoknot structure
contains structurally distorted tRNAs in two different
A/P hybrid states. In one (A/P0), the tRNA is in contact
with the translocase EF-2, which induces it. In the
other (A/P00), the translocase is absent. The existence
of these alternative A/P intermediate states has rele-
vance to our understanding of the mechanics and
kinetics of translocation.
INTRODUCTION

Protein synthesis at the ribosome involves the translation of

a messenger RNA (mRNA), which is threaded through the

space between the small and large ribosomal subunits (in

eukaryotes, 40S and 60S). The amino acids are delivered to

the ribosome by adaptor molecules called transfer RNAs

(tRNAs), which recognize triplet codons of nucleic acid bases

on mRNA with their anticodons. The tRNAs occupy a series

of specific positions in the intersubunit space, known as the

aminoacyl (A), peptidyl (P), and exit (E) sites. Translocation of

tRNAs between these sites while still attached to the mRNA

is the basis of ribosomal processivity along the mRNA and

the maintenance of a single reading frame (Moazed and Noller,

1989; Rodnina et al., 1997). After peptide bond formation, the

acceptor ends of the A and P site tRNAs move with respect

to the large ribosomal subunit, but the anticodon ends remain

in their original positions relative to the small ribosomal subunit,

to yield hybrid-state tRNA intermediates P/E and A/P (Moazed

and Noller, 1989). This process is facilitated by ratcheting of

the ribosome, whereby the small and large subunits rotate
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with respect to one another by �6� (Frank and Agrawal,

2000). Complete translocation of the mRNA-tRNA complex

into the E and P sites is catalyzed by a monomeric G protein,

elongation factor 2 (EF-2), with associated GTP hydrolysis (Nol-

ler et al., 2002; Wilden et al., 2006). The finite occupation by

translocating tRNAs of an A/P hybrid state has been demon-

strated by kinetic methods (Dorner et al., 2006) and represents

one of a series of hybrid positions that have been inferred

between both A and P and P and E sites. Although kinetic

and biophysical studies have been especially important in iden-

tifying hybrid states (Rodnina et al., 1997; Wilden et al., 2006;

Dorner et al., 2006; Blanchard et al., 2004; Pan et al., 2007),

cryo-electron microscopy (cryo-EM) has also allowed their

visualization, including a P/E hybrid state with the tRNA anti-

codon in the P site and acceptor arm in the E site (Taylor

et al., 2007) and an A/P hybrid state close to the A site with

a near-native tRNA conformation (Julián et al., 2008). Single-

molecule kinetic studies have revealed that a number of kinet-

ically distinct states are occupied by tRNAs during their

passage from A to P sites (Wen et al., 2008). Indeed, we

recently observed by cryo-EM a previously unanticipated A/P

hybrid state tRNA with significant anticodon stem loop distor-

tion (Namy et al., 2006). Our analysis was of an actively trans-

lating rabbit reticulocyte 80S ribosomal complex stalled by an

mRNA pseudoknot structure (Brierley et al., 2007) derived

from the programmed �1 ribosomal frameshifting signal of

the coronavirus infectious bronchitis virus (IBV) (Brierley et al.,

1989). In this complex, the hybrid state tRNA, which we termed

A/P’, is associated with EF-2 (Namy et al., 2006). The A/P’

tRNA adopts a bent conformation as if it had the properties

of a spring, and in this complex it was observed for the first

time in direct contact with the translocase (Namy et al.,

2006). On the basis of these observations we suggested that

EF-2 acts as a Brownian ratchet within a ‘‘spring and ratchet’’

system to generate stepwise directional movement of the

whole complex, facilitating translocation (Moran et al., 2008).

The bending of the A/P’ hybrid state observed by us (Namy

et al., 2006) is similar to, but greater in magnitude than, that

previously observed during tRNA accommodation into the

A site (Valle et al., 2002). EF-2 seems to create this transition

state prior to movement of tRNA into the P site proper (Namy

et al., 2006; Moran et al., 2008) and the pause-step-pause

movement of the ribosome-tRNA complex along the mRNA

that this model infers is in agreement with the kinetics of single

translocating ribosomes (Wen et al., 2008). The hybrid state
–264, February 10, 2010 ª2010 Elsevier Ltd All rights reserved 257
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Figure 1. Sample Design and Purification

(A) mRNAs for in vitro translation contained the alfalfa mosaic virus RNA 4 unstructured leader (Jobling and Gehrke, 1987) (bases in blue), a start codon (AUG;

purple), a pseudoknot (PK) or stem loop (SL), and a downstream region containing sequences complementary to DNA (underlined in green) or 20-O-allyl RNA

(underlined in black) oligonucleotides. Tandem translation termination codons were present near the end of the mRNA (UAA; bold and italicized). Bases in

red occupy the position of the natural IBV slippery sequence, and the encoded amino acids in this region are indicated above the primary sequence.

(B) The sequences of the minimal IBV pseudoknot (PK) and related stem loop (SL) present in the mRNAs are shown.

(C) Following in vitro translation and pelleting through sucrose, stalled ribosomes were purified on an avidin matrix using a pre-annealed biotinylated 20-O-allyl

RNA oligonucleotide (black). Complexes were released by RNase H-directed cleavage using a complementary DNA primer (green) and subjected to cryo-EM.
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giving rise to this interpretation is one that occurs in the

presence of the translocase; the other A/P state since

observed is an example of one that can form spontaneously

(Julián et al., 2008).

In this paper we describe new structures of rabbit reticulocyte

ribosomes stalled at the IBV pseudoknot (Brierley et al., 2007)

and at a related stem loop that displays much reduced frame-

shifting efficiency. The stem loop-stalled ribosomes (80SSL)

contain a single tRNA in a canonical P site, as previously

observed (Namy et al., 2006), while the pseudoknot-stalled ribo-

somes (80SPK) contain structurally distorted tRNAs in two

different A/P hybrid states. In the first (A/P0), the tRNA is in

contact with the translocase EF-2, as previously observed

(Namy et al., 2006), and appears to be in the process of translo-

cation (Moran et al., 2008). In the second (A/P00), the tRNA is

found in the absence of EF-2, but has failed to complete translo-

cation and instead has, presumably, slipped back toward the

A site. The existence of A/P0 and A/P00 hybrid states provides

more direct, detailed information on tRNA trajectories than previ-

ously observed and we hypothesize that the translocase EF-2

may be able to cycle on to and off from the ribosome during

a single round of translocation in a manner important for

resolving secondary structures such as stem loops and pseudo-

knots within mRNAs.
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RESULTS AND DISCUSSION

Overview of Reconstructed Complexes
Ribosome-mRNA complexes were assembled and purified as

described in Figure 1 and in the Experimental Procedures. In vi-

tro transcribed RNAs containing the IBV minimal pseudoknot or

a related stem loop structure were translated in rabbit reticulo-

cyte lysate (RRL) under conditions where the majority of ribo-

somes become stalled at these structures (Namy et al., 2006;

see Supplemental Information available online). At this point,

the complexes were stabilized by addition of cycloheximide,

purified by affinity chromatography, and subjected to cryo-EM.

A total of 38,720 images of the stem loop-stalled RRL ribosome

(80SSL) sample were analyzed and, selecting by tRNA occu-

pancy (see Experimental Procedures), 24,738 (64%) of them

were reconstructed to yield a reconstruction at 13.6 Å resolution

(see below). This process of focused classification (Allen et al.,

2005; Gilbert et al., 2007) made use of a spherical mask mini-

mizing the chance of mask-induced bias in the image selection

(see Supplemental Information). The data set of pseudoknot-

stalled RRL ribosomes (80SPK) consisted of 64,413 images and

was initially reconstructed allowing for two ribosomal states:

inactive and unbound by ligands or bound with an A/P0 hybrid

state tRNA and EF-2 and engaged with the pseudoknot
rights reserved



Figure 2. Initial Reconstruction and Assessment of

Heterogeneity

(A) Orthogonal views of the initial 80SPK structure deter-

mined using the data set described in this paper. Labeled

are the large subunit (LSU; cyan) containing the L1 stalk

and small subunit (SSU; yellow) containing the head and

body. The difference density between the 80SPK structure

and an 80SApo ribosome is shown in white.

(B) The previously determined 80SApo reconstruction

(Namy et al., 2006; gray surface) is shown superimposed

with two difference maps. In green is the difference map

for the previously determined 80SPK complex versus the

displayed empty form of the ribosome. The difference

density illustrates the presence of the pseudoknot (PK),

tRNA in a bent conformation (tRNA), and translocase

(EF-2). In blue is the difference map obtained by aligning

the new data set of 80SPK images described in this paper

with the displayed 80SApo map.

(C) Omit analysis of the tRNA and EF-2 density. The top

panel shows the difference density for the tRNA and EF-2

portions of the structure, as in (B) (but rotated 90� counter-

clockwise), with the previously published difference map

(Namy et al., 2006) colored green and that calculated

from the new 80SPK data set analyzed here in blue. The

result of the omit analysis is shown in the bottom panel.

The difference map for tRNA and EF-2 from the omit anal-

ysis is shown at two contour levels (blue and red) to de-

monstrate the relatively weak translocase density when

the tRNA maintains its essential form. The green density

is as above. The density for EF-2 is weaker and less well

formed than that of the tRNA, indicating in the context of

this omit analysis that they have different occupancies.
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(80SPK-tRNA-EF-2) (Namy et al., 2006; Moran et al., 2008). The re-

sulting maps were of limited resolution (�17 Å) for the data

quality, given the resolution achieved with the 80SSL complex

from 24,738 images (13.6 Å) and had a weaker representation

of EF-2 than for the tRNA (Figures 2A and 2B). This led us to

hypothesize that the tRNA may have a higher occupancy in

the sample than EF-2, as later demonstrated by omit analysis

(Supplemental Information; Figure 2C). We therefore set

about refining the 80SPK data set into three groups (see Experi-

mental Procedures), allowing for the ribosomes being either

inactive (80SApo), stalled with a tRNA engaged with EF-2

(80SPK-tRNA-EF-2), or stalled with a tRNA alone (80SPK-tRNA). The

refined 80SPK-tRNA-EF-2 reconstruction was calculated from

20,215/64,413 images (31%) to a resolution of 15.3 Å and the

refined 80SPK-tRNA reconstruction from 24,494/64,413 images

(38%) to a resolution of 14.9 Å. Thus the PK-stalled complexes

in the 80SPK preparation account for 69% of the sample, as

previously estimated in a two-way segmentation (Namy et al.,

2006), which supports the validity of both our current image clas-

sification and the previously published results. The details of the

80SSL, 80SPK-tRNA-EF-2, and 80SPK-tRNA complexes are dis-

cussed below. All resolutions in this paper have been estimated

using the FSC = 0.5 criterion (Figure S1A). Some factors to

consider in presenting cryo-EM reconstructions are the method

by which the structure factor amplitudes are corrected and the

contour level for map display. We corrected our data amplitudes

along lines proposed by Rosenthal and Henderson (2003) (see

Supplemental Information and Figure S1C). Our resolution esti-

mate is confirmed by the presence of distinguishable RNA

helices in our maps (Figure S1B). The conclusions of our work
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rely on assessment of the presence of EF-2 in our structures

and the conformations of the tRNAs between the A and P sites

of the intersubunit space. The omit analysis detailed above

objectively addresses the question of the presence of EF-2

and tRNA, and our subsequent use of a supervised classification

procedure shows there are two different kinds of hybrid state

tRNA. We set the contour levels of all our maps by reference to

the atomic model for a mammalian ribosome built on the basis

of a canine ribosome reconstruction at 8.7 Å resolution (Chan-

dramouli et al., 2008). This allowed us to encompass most of

an atomic model based on this higher resolution structure within

our maps. A few features remained outside the contoured

surface, which were all at the periphery of the structure. We

removed them from our atomic models when displaying them

in the main paper but have shown them in Figure S2. We cannot

be sure why these features are not clearly resolved in our maps

but suspect this is due to either conformational flexibility or their

being loosely associated with the ribosomes—both possibilities

highlighted by their localization to the periphery of the structure

(see Supplemental Information for more details).

Details of tRNAs Bound in the Complexes
Only a single tRNA is observed in the 80SPK and 80SSL

complexes. Figure 3 shows the 80SSL, 80SPK-tRNA-EF-2, and

80SPK-tRNA complexes in a standard view. In the 80SSL recon-

struction, the tRNA occupies the P site proper, into which it

has successfully translocated. As in our previous analysis of

this complex (Namy et al., 2006) we cannot see any density for

the stem loop itself, which we think is due to its conformational

flexibility. The affinity-based method of complex purification
–264, February 10, 2010 ª2010 Elsevier Ltd All rights reserved 259



Figure 3. Refined Reconstructions of Pseudoknot and Stem Loop-

Stalled Ribosomes

(A) Refined structure of the 80SSL reconstruction. The small subunit is colored

yellow and the large subunit blue, with the P site tRNA in green.

(B) As (A) for the 80SPK-tRNA-EF-2 complex, displaying the bent hybrid state

tRNA in green, EF-2 in red, and the pseudoknot in blue.

(C) As (A) for the 80SPK-tRNA complex, with the hybrid state tRNA again in green

and the pseudoknot in blue.
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(see Experimental Procedures) means that the stem loop-con-

taining mRNA must be present in the ribosomal complexes.

Further evidence that the ribosome particles used to compute

this reconstruction are successfully stalled on the mRNA comes

from the density present in the large subunit tunnel, which is

consistent with an extended eight residue peptide (Figure 4A;

Figures S3A–S3D) and matches that found in the PK-stalled

complexes (Figure 4A). This suggests that all three complexes

are successfully stalled and bound to the mRNA. Difference

maps that compare programmed and empty ribosomes do not

reveal any significant occupancy of the ribosomal A or E sites

in our complexes. The lack of an A site tRNA probably reflects

that these complexes are in, or approaching, a post-transloca-

tion state and, being stalled, have not refilled the A site. The
260 Structure 18, 257–264, February 10, 2010 ª2010 Elsevier Ltd All
absence of the E site tRNA may be explicable in terms of loss

during the sucrose gradient and column chromatography steps

of complex purification, as noted by others (Beckmann et al.,

2001). Other possibilities include our use of cycloheximide to

stabilize complexes or structural changes in the L1 stalk, either

of which could influence E site occupancy (Pestova and Hellen,

2003; Márquez et al., 2004).

The PK-stalled maps contain tRNAs occupying broadly similar

positions, between the A and P sites, and distorted in their anti-

codon arms (Figures 3B, 3C, and 4B; Figures S4A and S4B). The

tRNA unengaged with EF-2 is bent significantly further, as if it has

slipped or been pulled back toward the A site. We refer to the

previously observed EF-2-engaged tRNA as being in an A/P0

state (Pan et al., 2007; Moran et al., 2008) and to the unengaged

tRNA, by extension, as being in the A/P00 state. Averaging the

density seen for EF-2 and the tRNA in the 80SPK-tRNA-EF-2

complex with that seen in the 80SPK-tRNA complex gives density

very similar to that seen in our previous analysis of this structure

(Namy et al., 2006) (Figure S4C). This supports, as discussed

above, that we have disentangled two different tRNA conforma-

tions and positions in the data set that were previously superim-

posed (Namy et al., 2006).

Insights from Fitting Atomic Structures
to Reconstructed Densities
In order to interpret the conformations of the molecules bound

within the stalled ribosomes in molecular detail, we made use

of normal modes computable for atomic models (Tama et al.,

2003, 2004) to fit the tRNAs and EF-2 to their respective densities

(see Experimental Procedures). This allowed us to generate

plausible models for A/P0 and A/P00 tRNAs and for the engaged

EF-2 (Figures 4C and 4E), which firmly underscore the differ-

ences in tRNA conformation found between the various states

observed in stem loop- and pseudoknot-stalled ribosomes.

Engaged with EF-2, the A/P0 tRNA is compressed toward the in-

tersubunit face of the 60S large subunit and the anticodon arm is

bent, as seen previously (Namy et al., 2006) (Figure 4C, right

panel). In the absence of EF-2, the tRNA is not pushed up toward

the large subunit face or compressed, but has a dramatic bend

toward the A site (clearly shown in Figure 4C, left panel; see

also Figure S5A). Thus, tRNA compression toward the roof of

the P site and bending of the anticodon arm in one direction is

produced by EF-2, whereas anticodon bending in a different

direction is likely created by pseudoknot-derived mRNA tension.

Normal modes-assisted fitting of EF-2 showed domains I, II, and

G’ to have remained relatively rigid and to be similar in conforma-

tion to that found in Apo and sordarin-bound EF-2 (Jorgensen

et al., 2003), but that domains III–V are rotated �90� about

them with respect to EF-2-sordarin (Figures 4D and 4E; Figures

S5B–S5D). In the 80S ribosome bound with sordarin-fixed EF-2

(Spahn et al., 2004), the L1 stalk of the large subunit occludes the

E site, but in our complex containing EF-2 in an active conforma-

tion we note that it remains open (Figure 5A). Thus tRNA proces-

sion out of the intersubunit space at the conclusion of transloca-

tion will be unhindered, providing another possible explanation

for the lack of E site tRNAs in our stalled complexes as

mentioned above. A distinctive feature of the EF-2-containing

complex is the way in which the A site finger appears to be

deployed over the join between EF-2 domains I, II, and G’ and
rights reserved



Figure 4. Nascent Protein, tRNA Conforma-

tions, and EF-2 As Observed in Pseudoknot-

Stalled Complexes

(A) (Left) A view of the control reconstruction with

the large subunit colored cyan and the small

subunit colored yellow, with the tRNA density in

the 80SSL complex (gray) and additional density

arising from nascent protein (magenta). The

control reconstruction is cut away with a rendered

face to reveal the large subunit tunnel, bisected

longitudinally. (Middle) As in left panel for the

80SPK-tRNA-EF-2 map, showing the tRNA and EF-2

density in gray and the nascent protein in green.

(Right) As left and middle panels for the 80SPK-

tRNA map, showing tRNA in gray and the nascent

protein in blue.

(B) Density arising from tRNA and EF-2 in the

80SPK-tRNA-EF-2 complex (green), from tRNA in

the 80SPK-tRNA complex (blue), and from tRNA in

the 80SSL complex (magenta).

(C) tRNA atomic models fitted using normal modes

to the 80SPK-tRNA-EF-2 tRNA density (green), to the

80SPK-tRNA tRNA density (blue), and to the 80SSL

tRNA density (magenta), in orthogonal views. The

boundaries of the 40S and 60S subunits are indi-

cated schematically.

(D) A comparison of the density deriving from tRNA

and EF-2 bound in the 80SPK-tRNA-EF-2 structure

with a fit of EF-2 guided by normal modes (actual

fit shown in E). The cryo-EM density is colored

gray. The fitted crystal structure represented as

a set of lobes of filtered density is as labeled.

(E) A composite view of the density for tRNA and

EF-2 in the 80SPK-tRNA-EF-2 structure (gray density),

the fitted tRNAs with and without the presence of

EF-2 (green and blue models, respectively, as in

B), and the normal mode fitted EF-2 model (red). Also shown is the position of prokaryotic small subunit protein S13 (yellow; rpS18 in eukaryotes) and the

mRNA (purple) with respect to the P site in this frame of reference, as resolved in the 70S X-ray structure (Selmer et al., 2006).
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EF-2 domains III–IV (Figure 5B) in a manner consistent with its

role as an attenuator of uncontrolled, out-of-register ribosomal

movement (Korostelev et al., 2006; Komoda et al., 2006) since

it appears thereby to fasten EF-2 within its binding site. EF-2

appears to remain in the stalled complex through the mainte-

nance of native interactions with the elongating ribosome, which

as a whole has been stalled by engagement with the pseudo-

knot. However, these interactions may be weaker than those

holding the tRNAs in place, further within the intersubunit space,

as suggested by the EF-2 partial occupancy.

As shown in Figure 4E, both the EF-2-engaged A/P0 tRNA and

the A/P00 tRNA remain on the A site side of the gate between A

and P sites formed by rpS18 (called S13 in prokaryotes) and

a 45� mRNA kink (Selmer et al., 2006) as previously discussed

(Moran et al., 2008). EF-2 seems to hold the A/P0 tRNA tight up

against this gate and in this, to push the tRNA toward the inter-

subunit face of the 60S large subunit. The tautness of the

80SPK-tRNA-EF-2 complex compared to the 80SPK-tRNA one is

further indicated by the position of the pseudoknot, which juts

out orthogonally from the proposed small subunit helicase

center (Takyar et al., 2005; Namy et al., 2006) in the former

case, but is relaxed downwards in the latter (Figures 3B and

3C). Thus, the movement of the A/P00 tRNA is consistent with

a key role of the translocase to prevent slippage and to act by

biasing forward translocation into the P site (Moran et al., 2008).
Structure 18, 257
Biological Significance of Complexes
We have shown the translocase EF-2 is substoichiometric,

bringing about the adoption of a novel A/P00 hybrid state, which

joins the A/P0 state previously described (Namy et al., 2006)

and the more recent A/P state occurring spontaneously (Julián

et al., 2008) as A-to-P intermediates that have been seen

directly. There are a number of possible explanations for the

absence of EF-2 in ribosomal complexes containing the A/P00

hybrid state tRNA. These include that the hybrid state has arisen

spontaneously before EF-2 has bound, that EF-2 was present

but has been lost during complex purification, that tRNAs that

have completed translocation can reverse translocate into this

position, and that EF-2 can cycle off the ribosome during at-

tempted translocation and then rejoin it to complete the process.

While a spontaneously formed A/P00 tRNA is conceivable, it

seems unlikely for several reasons: there is a high occupancy

of it in the sample (38% in total, which corresponds to 55% of

the stalled ribosomes), it has not previously been observed

despite numerous studies of tRNA positions within the ribosome,

and the tRNA is highly distorted. The possibility that EF-2 has

fallen out of the complexes during their purification and thus

induced the A/P00 state can be evaluated by reference to the

completeness of the rest of the complexes. It is known that the

accessory ribosomal protein RACK1 is peripherally associated

with the small subunit head and that it is labile (Sengupta et al.,
–264, February 10, 2010 ª2010 Elsevier Ltd All rights reserved 261



Figure 5. Conformational Differences in the Ribosome in Stalled

Complexes

(A) A view of the 80SPK-tRNA reconstruction with the subunits colored as before.

The L1 stalk has been outlined in black and is fitted with atomic coordinates

(cyan). The positioning of the stalk is quite different from that observed in the

sordarin-stalled complex (atomic coordinates in blue) of Spahn et al. (2004).

(B) A composite view down the intersubunit space showing the ligands bound

in the 80SPK-tRNA-EF-2 map in gray, those bound in the 80SPK-tRNA map in blue,

and difference density arising from the A-site finger in magenta. This density

arises from the inserted A site finger.
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2004), yet in all three stalled complexes, it is fully present, both in

the reconstruction (Figure S3E) and as judged by western blot-

ting (Figure S6). Since the rest of each ribosome appears by

this test to be complete, it is likely that the EF-2 has not disasso-

ciated during purification. It seems unlikely that the A/P00 state

could have arisen through spontaneous reverse translocation

subsequent to successful placement of tRNA into the P site,
262 Structure 18, 257–264, February 10, 2010 ª2010 Elsevier Ltd All
because movement back over the A/P gate would have been un-

catalyzed or otherwise unstimulated (Shoji et al., 2006; Kone-

vega et al., 2007). We believe the most plausible hypothesis to

be that the A/P00 state has arisen as a result of EF-2 enacting

its reaction cycle without achieving completion of translocation.

According to this explanation, EF-2 would bind and undergo

GTP hydrolysis, induce a hybrid state such as A/P0, but leave

before the P site has been reached, leading to backward slip-

page of the tRNA toward the A site and into the A/P00 state. Since

the A/P00 tRNA-containing ribosomes identified in this study are

not ‘‘dead-end’’ products—in translation assays virtually all IBV

PK-stalled complexes chase to completion (Somogyi et al.,

1993; Kontos et al., 2001)—this suggests that EF-2 can cycle

repeatedly on to and off from the ribosome during single translo-

cation steps. The likelihood of such cycling would be increased

by the presence of mRNA secondary structures, especially

mRNA pseudoknots, given their capacity to pause ribosomes

(Somogyi et al., 1993) and their greater resistance to mechanical

unfolding (Green et al., 2008).

Given that the pseudoknot used in this study derives from

a viral ribosomal frameshifting signal, we have also considered

whether the A/P00 state could arise following a frameshift event,

which necessitates the physical separation of the tRNA anti-

codon from the mRNA. Consistent with this view, pseudoknot-

induced mRNA tension is likely to put a strain on the codon-anti-

codon complex of the A/P0 hybrid state tRNA, and uncoupling of

the tRNA from the mRNA would conceivably lead to loss of EF-2.

However, the sequence of the mRNA in the decoding site of the

stalled complexes studied here does not contain a slippery

sequence (Jacks et al., 1988) and is GC rich (Namy et al.,

2006; see Figure 1). Previous studies have shown that GC-rich

stretches do not permit efficient RNA secondary structure-

dependent frameshifting, and by analogy, the tRNAs decoding

these sequences are less prone to detach from the mRNA (Jacks

et al., 1988; Brierley et al., 1992). We thus consider the A/P00 state

to have arisen as a result of the failure of EF-2 to complete trans-

location rather than as a consequence of an attempt to frame-

shift.

The observation of two different hybrid state tRNAs (A/P0 and

A/P00) in our translocating complexes suggests that multiple,

kinetically distinct steps govern translocation, centered on

EF-2 binding, and detachment in two modes: prior to successful

translocation and after it has occurred. In a single-ribosome

kinetic study (Wen et al., 2008) it has recently been shown that

ribosomes translocate through mRNA hairpins by stepwise

movements separated by pauses. Measuring the times taken

for translocation to occur and the dwell time (the time between

translocation events, consisting of the pause time plus the trans-

location time), the authors were able to show that while the dwell

time displays a distribution that indicates two or more succes-

sive rate-limiting processes, the translocation time appears to

involve three similar or identical substeps (Wen et al., 2008).

The different positions of translocating tRNAs that we observe

would fit with these data.

Conclusion
By analyzing a pseudoknot-stalled population of ribosomes we

show that they consist of three different states—an inactive,

unoccupied state and two where tRNA is bound within the
rights reserved
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complex. This is contrasted with a translocated tRNA seen in

a stem loop-stalled ribosome, as well as a control reconstruction

of an empty ribosome. In pseudoknot-stalled ribosomes, tRNAs

are found in one of two different hybrid states between the A and

P sites. These data suggest the existence of two discrete A/P

hybrid tRNAs, one requiring the presence of EF-2 and the other

its absence. Future experimental work will be needed to investi-

gate the significance of our findings in greater detail.
EXPERIMENTAL PROCEDURES

Sample Preparation

Complexes were prepared and stored as previously described (Namy et al.,

2006). Briefly, an mRNA (�200 nucleotides) containing the IBV minimal RNA

pseudoknot or a related stem loop was preannealed to a biotinylated RNA

oligonucleotide prior to in vitro translation in a RRL conducted at 27�C for

15 min. After the addition of cycloheximide to fix the complexes, ribosomes

were pelleted through a sucrose cushion, resuspended, and applied to an

avidin affinity column. Following extensive washing the stalled complexes

were eluted by addition of RNase H and a DNA oligonucleotide complemen-

tary to a region of the mRNA immediately downstream of the pseudoknot

(Figure 1). The complexes were flash frozen in liquid nitrogen and stored at

�70�C. The sample generated by pseudoknot-mediated pausing is referred

to below as 80SPK and that generated by stem loop-mediated pausing

as 80SSL.
Cryo-EM Data Collection

For imaging 80SPK and 80SSL complexes, 3 ml of each sample were aliquoted

onto holey carbon grids (Agar Scientific; 0.015 A260 units per grid) following

negative glow discharging. The grids were blotted and flash frozen in liquid

ethane. Cryo-electron micrographs were taken at 39,0003 magnification

using an FEI F30 cryo-microscope, equipped with a Field Emission Gun and

operating at 300 kV, in low dose mode with defocuses ranging from �0.8 to

�3.6 mm. The micrographs were then scanned using a 7 mm raster on

a Zeiss/Scai Photoscan scanner.
Data Analysis for the PK and SL-Stalled Ribosomes

Particles were boxed and the CTF corrected using EMAN suite programs

(Ludtke et al., 1999). Reconstructions were performed with SPIDER (Frank

et al., 1996), using projection matching-based alignment and focused classifi-

cation (Allen et al., 2005; Gilbert et al., 2007) to separate the whole data sets

into Apo versus stalled states and depending on the stoichiometry of the

stalled complexes. A full description of the methods used is supplied in the

Supplemental Experimental Procedures. Structure factor amplitude B factor

correction was facilitated using WellMAP (J.F.F. and R.J.C.G., unpublished

data).
Atomic Structure Fitting

Atomic models constructed for the dog 80S ribosome (Chandramouli et al.,

2008) were used to fit the density arising from the two ribosomal subunits,

splitting the models up to allow refinement of the fit of individual subunit

domains (see Supplemental Information). Initial manual fits performed in O

(Jones et al., 1991) were refined using URO (Navaza et al., 2002). Because

the tRNAs and EF-2 had undergone significant conformational change, we

made use of normal modes-assisted fitting in the program NMFF (Tama

et al., 2003, 2004), the inferred elastic properties of the atomic models being

used to morph them into corresponding density. See Supplemental Informa-

tion for more details.
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