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Modular synthesis of α-fluorinated arylmethanes
via desulfonylative cross-coupling
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Yuuki Maekawa2, Daisuke Yokogawa3 & Cathleen M. Crudden 1,2

α-Fluoromethylarenes are common substructures in pharmaceuticals and agrochemicals,

with the introduction of fluorine often resulting in improved biological activity and stability.

Despite recent progress, synthetic routes to α-fluorinated diarylmethanes are still rare.

Herein we describe the Pd-catalyzed Suzuki-Miyaura cross-coupling of α-fluorinated benzylic

triflones with arylboronic acids affording structurally diverse α-fluorinated diarylmethanes.

The ease of synthesis of fluorinated triflones as the key starting materials enables powerful

late-stage transformations of known biologically active compounds into fluorinated analogs.
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The strategic substitution of fluorine for hydrogen is an
important strategy to improve the stability of materials and
pharmaceuticals against metabolic or oxidative degrada-

tion (Fig. 1a)1–6. Transition metal-catalyzed cross-coupling
reactions of arene derivatives with fluorinated alkyl electrophiles
or nucleophiles are among the most valuable methods to form
aryl–fluoroalkyl bonds under mild conditions without the use of
toxic or hazardous reagents7–11. However, despite these recent
advances, α-fluorinated diarylmethanes are still prepared by
classical methods including deoxyfluorination of diarylmethanols
or diarylketone derivatives12–16. Important advances from the
Zhang17,18 and Szymczak19 groups have begun to address these
issues, but still require difluoromethylarenes as starting materials,
which can be of limited availability (Fig. 1b, c). In an alternative
approach, Chen has described the photolytic fluorination of
benzylic C–H bonds, which enables the selective synthesis of
mono- and difluorinated products20; however, this reaction was
demonstrated only for simple diphenylmethanes. Considering the
potential importance of fluorinated molecules in drug dis-
covery21–23, the modular and selective synthesis of α-fluorinated
diarylmethanes from readily available reagents remains a real
challenge. Routes that enable late-stage transformation of existing
biomolecules are even more impactful24–28.

Sulfone derivatives are emerging as important electrophiles in
transition-metal-catalyzed transformations29. Unlike other
electrophiles, which serve only as a leaving group, the sulfonyl
group also activates adjacent protons, enabling facile α-
functionalizations such as fluorination, in advance of any
cross-coupling reactions. This enables the modular and
straightforward synthesis of complex structures from simple,
readily prepared starting materials. Utilizing this unique reac-
tivity of sulfones, our group has developed Pd- and Ni-catalyzed
reactions of benzylic sulfone derivatives that afford compounds
which are difficult to prepare by other methods30–33. The Baran
group has also employed this functional group to enable the Ni-
catalyzed radical cross-coupling of alkyl or fluoroalkylsulfones
with arylzinc reagents (Fig. 1d)34.

We describe herein the Pd-catalyzed desulfonylative cross-
coupling of α-fluorinated benzyltriflones with arylboronic acids,
which enables the generation of a range of structurally diverse
mono- and difluorinated diarylmethanes not described using the
Baran approach (Fig. 1e). Notably, fluorinated benzyltriflone
substrates were readily prepared by α-fluorination using an
inexpensive fluorinating agent and mild base. This strategy takes
advantage of the properties of the sulfone as an activator for
fluorination and a leaving group for cross-coupling reactions.

Results
Optimization of desulfonylative coupling. Di- and mono-
fluorinated starting materials 1 and 2 were readily prepared by
the use of N-fluorobenzenesulfonimide (NFSI) as an inexpensive
fluorinating agent. Difluorination was readily accomplished with
excess NFSI and K3PO4, giving α-difluorobenzyltriflone 1 in high
yield. Monofluoro derivatives 2 were prepared by deprotonation
of benzyltriflones with one equivalent of NaHMDS followed by
the addition of NFSI. These procedures enabled the facile
synthesis of 1 and 2 bearing a variety of functional groups
(see Supplementary Information).

We began our investigation of the desulfonylative cross-
coupling reaction using t-butyl-α-difluorobenzyltriflone 1a as the
electrophile and phenylboronic acid 3a as the nucleophile. The
choice of substituent on the sulfonyl group was found to be

crucial (Fig. 2). Replacing the trifluoromethyl substituent
phenyl (5), 3,5-bis(trifluoromethyl)phenyl (6), 2-pyridyl (7), 2-
benzothiazoyl (8), or 1-phenyl-1H-tetrazol-5-yl (9) shut down the
cross-coupling reaction. This suggests that the strongly electron-
withdrawing triflyl group is critical for the C–SO2 bond activation
process.

Optimized conditions were found to be the following: the use
of DavePhos as ligand, Pd(OAc)2 as catalyst, K3PO4 as base in
THF at 60 °C, which afforded 4aa in 90% isolated yield (Table 1,
entry 1). Representative alkylphosphines were inactive (Table 1,
entries 2–3), while other Buchwald ligands displayed lower
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Fig. 1 Synthesis of α-fluoromethylarenes. a Selected examples of pharmaceuticals and biologically active molecules bearing an α-fluoromethylaryl unit.
b Transition-metal-catalyzed cross-coupling reactions using fluoroalkylating agents. c Recent advances in the synthesis of α-fluorinated diarylmethanes
through catalytic transformations. d Baran’s pioneering work on Ni-catalyzed radical cross-coupling of fluoroalkylsulfones with arylzinc reagents. e This
work: Pd-catalyzed desulfonylative Suzuki−Miyaura cross-coupling of α-fluorinated benzyltriflones as versatile electrophiles
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reactivities (Table 1, entries 4–7). The use of Na2CO3 instead of
K3PO4 decreased the yield of product (Table 1, entry 8). The
synthetically useful boronic acid pinacol ester was also applicable
in this reaction (Table 1, entry 9).

These conditions were less effective for electron-deficient
substrates such as ester-substituted difluorobenzyltriflone 1b
(Table 1, entry 10). However, di(1-adamantyl)-n-butylphosphine
(P(Ad)2Bu)17 was employed in DME at 90 °C, and gave the cross-
coupling product in good yield (Table 1, entry 11). The related α-
monofluorobenzyltriflone 2a did give α-fluorodiarylmethane
10aa under standard conditions, but the yield was relatively low
(Table 1, entry 12). Anticipating that the presence of the acidic
benzylic proton in 2a might be incompatible with strong base, we

employed Na2CO3 as a milder base, which gave the desired 10aa
in 82% yield (Table 1, entry 13). In no case was benzotrifluoride,
which can be potentially generated by the arylation of SO2–CF3
bond, observed.

Substrate scope of desulfonylative Suzuki−Miyaura cross-
coupling. With the optimized conditions for the cross-coupling
in hand, we then investigated the substrate scope (Fig. 3).

First, we examined the reaction of 1a with a range of
arylboronic acids. Arylboronic acids (3) bearing electron-
donating and electron-withdrawing groups were well tolerated,
and useful functional groups such as acetyl, cyano, formyl, ester,
nitro, and vinyl groups were compatible, affording the corre-
sponding products 4 in good yields. The sterically hindered
o-tolylboronic acid (3j) displayed decreased reactivity, while π-
extended 1-naphthylboronic acid (3k) showed good reactivity.
Although heteroarylboronic acids (3l−3n) were less reactive
under standard conditions35,36, increasing the catalyst loading
and reaction temperature improved product yields. Some π-
extended arenes (1b, 1c) and heteroarenes, such as indole (1d)
and azole (1e), could be introduced in good yields. Gram-scale
synthesis was successfully achieved in the preparation of 4bh.

Electron-deficient benzylic sulfones were smoothly reacted
under the modified conditions (P(Ad)2Bu instead of DavePhos)
as shown in Table 1. Under these conditions, sulfone substrates
bearing ester (1f), cyano (1g), nitro (1h), benzoyl (1i), and
benzyloxy (1j) groups underwent cross-coupling, affording the

Table 1 Optimization of Pd-catalyzed desulfonylative Suzuki−Miyaura cross-coupling of 1 and 2

Sulfone Entry Variation from the standard conditions Product Yield (%)a

1a 1 None 4aa 93 (90)b

2 PCy3∙HBF4, instead of DavePhos 0
3 P(Ad)2Bu∙HI, instead of DavePhos 0
4 CyJohnPhos, instead of DavePhos 30
5 XPhos, instead of DavePhos 39
6 SPhos, instead of DavePhos 59
7 PhDavePhos, instead of DavePhos 7
8 Na2CO3, instead of K3PO4 19
9 PhB(pin), instead of PhB(OH)2 74

1b 10 None 4ba 20
11c P(Ad)2Bu∙HI, instead of DavePhos 80 (77)b

2a 12 None 10aa 12d

13 Na2CO3, instead of K3PO4 90d (90)b

Conditions: 1 or 2 (0.1 mmol), 3a (2.0 equiv), Pd(OAc)2 (5 mol %), ligand (15 mol %), K3PO4 (3.0 equiv), THF (0.25M)
aYields were determined by GC using dodecane as an internal standard
bIsolated yield (0.2 mmol scale)
cReaction conducted in DME at 90 °C
dYields were determined by 19F NMR spectroscopy using 4-fluorotoluene as an internal standard
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Fig. 2 Substituent effect of sulfonyl group on desulfonylative cross-coupling
reaction. Reactions were carried out on a 0.1 mmol scale. Yields were
determined by GC using dodecane as an internal standard
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desired products. As an illustration of the ease with which
heteroaromatics can be incorporated, α,α-difluorodi(heteroaryl)
methane 4kn could be prepared in high yield. The present Pd-
catalyzed cross-coupling is limited to benzylic substrates. Thus α,-
difluoroalkyltriflones such as 1,1-difluoro-3-phenylpropyl triflone
are not viable substrates (see Supplementary Fig. 3).

Arylation of α-monofluorinated benzylic sulfones 2 also
proceeded under the standard conditions, affording the corre-
sponding monofluorinated diarylmethanes 10 in high yields. As
in the difluorinated series, a variety of functional groups on
sulfone and arylboronic acid substrates were compatible with this
protocol (Fig. 3).

Desulfonylation of α-fluorobenzyl triflones 1 and 2. In addition
to their use as partners in cross-coupling chemistry, 1 and 2 are
also precursors to the pharmaceutically relevant difluoromethyl-
and fluoromethylarenes (11, 12) (Fig. 4). Using typical proce-
dures with Mg37 or SmI238 as reducing agents, desulfonylation
proceeded smoothly to give the corresponding CF2H or CFH2-
containing species in good yields. This desulfonylation approach

is complimentary to other cross-coupling reactions using mono-
and difluoromethylating agents for the selective synthesis of
mono- and difluoromethylarenes39.

Mechanistic investigations. Experimental and theoretical studies
were carried out to gain mechanistic insights into the desulfo-
nylative cross-coupling reaction. Reaction mechanisms involving
radical intermediates appear likely in cross-coupling reactions
using fluoroalkyl halides17; thus, we conducted preliminary
experiments to determine whether similar radical species are
generated in this case. When the reactions of 1a with 3a were
conducted under standard conditions in the presence of typical
radical inhibitors, such as TEMPO and BHT, or 1,4-dini-
trobenzene as an electron-transfer inhibitor40, yields of 4aa were
not significantly affected (Fig. 5a). This suggests that the present
cross-coupling reaction does not likely involve the generation of
free difluorobenzyl radical species in the catalytic cycle, and likely
occurs via the similar catalytic cycle as the Suzuki−Miyaura
cross-coupling reaction (see Supplementary Fig. 4).

5 mol % Pd(OAc)2
15 mol % L1 or L2

3 equiv K3PO4 or Na2CO3
THF or DME

60 or 90 °C, 16 h

Fig. 3 Substrate scope of desulfonylative Suzuki−Miyaura cross-coupling of 1 and 2. Reactions were carried out on 0.15-0.3 mmol scale; isolated yields.
a10 mol % (Pd(OAc)2 and 30 mol % DavePhos were used. Reaction conducted in DME at 90 °C. b4.5 mmol scale. cK3PO4 was used instead of Na2CO3
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Next, we explored the mechanism and the dramatic substituent
effects of sulfonyl groups on the reactivity of cross-coupling by
theoretical calculations. Gibbs free energies were obtained from
single point calculations on optimized geometries with thermal
correction and solvation effects considered. The energy profile is
summarized in Fig. 5b for α,α-difluorobenzyltriflone 14CF3, α,α-
difluorobenzyl phenyl sulfone 14Ph, and 3,5-bis(trifluoromethy)
phenyl difluorobenzyl sulfone 14ArCF3. The C–SO2 activation
step should occur through the formation of a η2-arene complex
15 between Pd(DavePhos) 13 and sulfones (14CF3, 14Ph, or
14ArCF3), and then the three-membered transition state (TS15-16)
to afford the Pd(II) complex.

16. The Gibbs activation energies of ΔGo‡CF3 ΔGo‡Ph, and
ΔGo‡ArCF3 were calculated to be 18.2, 27.7, and 24.2 kcal/mol,
respectively. In addition, the Gibbs reaction energy for the cross-
coupling of 16CF3 (−28.8 kcal/mol) was more exergonic than that
of 16Ph (−14.5 kcal/mol) or 16ArCF3 (−19.3 kcal/mol), indicating
that C–SO2 activation of 14CF3 is thermodynamically favorable,
consistent with our experimental results for these sulfones.

Synthetic applications. A significant advantage of this method is
that the triflyl group can be easily installed through the late-stage
transformation of any benzylic methyl group or indeed any
benzylic C–H group (Fig. 6a). For example, the methyl group on
6-methylflavone could be converted into the triflylmethyl group
in two simple steps: benzylic bromination followed by SN2
reaction with Langlois reagent (NaSO2CF3)41. Subsequently, α-
fluorination selectively provides the fluorinated sulfone deriva-
tives 17 and 18 (Supplementary Methods). The resulting triflones
were reacted with phenylboronic acid 3a under standard reaction
conditions to afford the cross-coupling products (19, 20). The
structure of 19 was unambiguously confirmed by X-ray crystal-
lographic analysis. This sequential process enables the formal
transformation of methyl group to arylfluoromethyl groups on
arenes, highlighting potential application to late-stage transfor-
mation of biomolecules.

The CF2 unit has recently attracted much attention as it
functions as a bioisostere of carbonyl and ether functional

groups to improve biological activity42. Thus, we demonstrated
the practicality of the present cross-coupling reaction by
synthesizing CF2 analogs of biologically active molecules.
Medarde reported that diarylketone 21 showed inhibitory activity
against tubulin polymerization and has potent cytotoxicity
against cancer cell lines43. Analog 22, in which the carbonyl unit
is substituted with a CF2 unit, was synthesized in excellent yield

by the cross-coupling of α,α-difluoro-2-naphthylmethyl triflone
1c with 3,4,5-trimethoxylphenylboronic acid 3u (Fig. 6b).

ABT-518 has been developed as an inhibitor of matrix
metalloproteinases, which are key species implicated in tumor
growth and metastasis44,45. We have successfully prepared the
analog of ABT-518 (26) in which the diarylether unit is replaced
by a diarylCF2 unit (Fig. 6c). The key intermediate α,α-
difluorodiarylmethane 23 was synthesized from the cross-
coupling of α,α-difluoro-4-methanesulfonylbenzyl triflone 1l
and 4-(trifluoromethyl)methoxylphenylboronic acid 3v. Accord-
ing to the previous procedure, vinyl sulfone 25 could be isolated.
Finally, the conjugated addition of hydroxylamine to 25 followed
by N-formylation using formic acid-acetic anhydride mixture
gave 26 in seven steps from 1l. These results illustrate that our
robust method will expand the utility of CF2 units as bioisosteres,
which are difficult to introduce by existing methods, leading to
accelerated generation of previously unknown pharmaceuticals.

In conclusion, we have established a versatile synthetic route
for the synthesis of structurally diverse α-fluorinated and α,α-
difluorinated molecules through the Pd-catalyzed Suzuki
−Miyaura cross-coupling reaction of α-fluorinated benzyltri-
flones with arylboronic acids. In addition to cross-coupling,
desulfonylation can be carried out to provide medicinally
important fluoromethyl- and difluoromethylarenes in good
yields. The ability to convert aromatic methyl groups to reactive
sulfones is particularly exciting for late-stage functionalization
approaches to the synthesis of fluorinated analogs of biomole-
cules. These reactions not only provide facile access to α-
fluorinated arylmethanes from stable and readily available
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reagents, but also open up avenues for the development of
unexplored fluorinated molecules. Importantly, this work high-
lights the unique property of sulfones as templates to construct
valuable molecules by sequential functionalization.

Methods
Cross-coupling of triflones 1 with arylboronic acids 3. A 10-mL sealable glass
vessel containing a magnetic stirring bar was flame-dried under vacuum and filled
with argon after cooling to room temperature. The tube was charged with Pd
(OAc)2 (2.2 mg, 0.01 mmol), DavePhos (11.8 mg, 0.03 mmol). The mixture was
evacuated under vacuum and refilled with Ar. This cycle was repeated two addi-
tional times. Under an argon atmosphere, THF (0.4 mL) was added and the
reaction was stirred at room temperature for 30 min. α,α-difluorobenzyltriflone 1
(0.2 mmol), arylboronic acid 3 (0.4 mmol), K3PO4 (127 mg, 0.6 mmol), and THF
(0.4 mL) were added, and the reaction was sealed and stirred at 60 °C for 16 h. The
reaction was then allowed to cool to room temperature, quenched with 3–4 drops
of sat. NH4Cl aq and the mixture was passed through a pad of silica gel with
copious washings with EtOAc (~10 mL). The filtrate was concentrated under
reduced pressure. The crude product was purified by preparative thin-layer chro-
matography (PTLC) or preparative recycling HPLC (GPC) to afford diaryl-α,α-
difluoromethane 4.

Cross-coupling of triflones 2 with arylboronic acids 3. An oven-dried 1-dram
vial equipped with a magnetic stirring bar was charged with Pd(OAc)2 (3.3 mg,
0.015 mmol) and DavePhos (17.7 mg, 0.045 mmol). The vial was capped with a
Teflon cap and dry THF (1.5 mL) was added, under argon. This mixture was stirred
for 30 min. Another vial containing a stirring bar was charged with α-fluorobenzyl
triflone 2 (0.3 mmol), base (0.9 mmol) and arylboronic acid 3 (0.6 mmol). The vial
was sealed under argon atmosphere, and the solution containing the catalyst was
added to it. The resulting mixture was heated at 60 °C for 18–24 h, under stirring.
After cooling to room temperature, the mixture was filtered through a plug of silica
and washed with DCM/EtOAc (4:1). The crude product was purified by column
chromatography or PTLC to afford diarylfluoromethane 10.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and Supplementary Information file, or from the corresponding
authors (M.N. and C.M.C.) upon reasonable request. The X-ray crystallographic
coordinates for structure of compound 19 reported in this study have been deposited at
the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers

1890466. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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