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Background. Intestinal type of gastric cancer (IGC) is the largest subtype of gastric cancer (GC) by Lauren classification. The
purpose of this present study was to construct a prognostic signature for IGC patients, based on the high-grade dysplasia
(HGD) and IGC tissues, to improve and enhance the prognostic accuracy. Methods. The microarray datasets and associated
clinical characteristics of HGD and IGC were obtained from the Gene Expression Omnibus (GEO) database. Based on the
differential expression analysis between HGD and IGC, the prognostic-related differential expression genes (DEGs) were
identified in a training set by univariate COX regression analysis. The least absolute shrinkage and selection operator (LASSO)
regression was used to construct an optimal prognostic signature. The enrichment analysis was performed by using Gene Set
Enrichment Analysis (GSEA). The performance of the nomogram was assessed by the calibration curve and concordance index
(C-index). The results were validated by using a testing set. Results. We identified 35 prognostic-related DGEs in the training
set. The nine-gene signature was established by LASSO analysis. The nine-gene signature was an independent risk factor in both
the training and testing sets. The areas under the curve (AUC) values of receiver operating characteristic (ROC) analysis were
0.733 and 0.700 for the training and testing sets, respectively. In GSEA analysis, the gene expression in high-risk group was
enriched in hedgehog signaling, epithelial mesenchymal transition, and angiogenesis. The nomogram for IGC showed good
performance with C-index of 0.81 (95% CI: 0.76-0.86) and 0.70 (95% CI: 0.63-0.77) in the training and testing sets, respectively.
Conclusion. We identified and verified a nine-gene signature for the prognostic prediction of IGC patients, which might identify
subgroups of IGC patients and select more suitable therapeutic options.

1. Introduction

Gastric cancer (GC) is the fifth most common cancer and the
third leading cause of cancer-related deaths worldwide, with
27,510 incidences and 11,410 mortalities since 2019 [1]. It is
desirable to explore accurate prognostic models which could
identify the subset of patients with a high risk for death and
prompt to give those timely treatments. A number of previ-
ous studies have established the different types of prognostic
signatures for GC. Several studies have demonstrated that
associated gene signatures for GC patients to predict the
prognosis have been identified, including six-gene signature,

five-gene signature, 24-long noncoding RNA (lncRNA) sig-
nature, and 14-lncRNA signature [2–5].

Based on Lauren classification, GC can be divided into
intestinal-type, diffuse-type, and mixed-type [6]. The tumor-
igenesis of IGC primarily results from environmental factors,
such as Helicobacter pylori (H. pylori) infection, and is
mostly associated with geriatric patients [7, 8]. Diffuse-type
of GC (DGC) was more commonly observed in younger indi-
viduals with worse prognosis [9]. The carcinogenesis of IGC
is a complicated multistep process, including chronic atro-
phic gastritis (CAG), intestinal metaplasia (IM), low-grade
dysplasia (LGD), high-grade dysplasia (HGD), and
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eventually carcinoma [10]. The carcinogenic pathways of
DGC are mostly attributed to genomic aberrations and are
less associated with environmental factors and chronic
inflammatory cascade [11, 12]. Furthermore, Jinawath et al.
indicated that IGC and DGC had different mechanisms
underlying gastric carcinogenesis by screening the gene
expression profile [13]. Therefore, there is a great need to
construct a novel prognostic signature for IGC patients.

HGD is an obvious premalignant lesion, requiring
aggressive treatments such as endoscopic interventions
[14]. A meta-analysis illustrated that the progression rate of
the patients from HGD to GC was 16 times higher than those
from LGD to GC [15]. In our present study, we conducted
gene differential expression analysis of multiple gene expres-
sion profiles between HGD and IGC to determine the poten-
tial mechanisms in this progression. Subsequently, we
identified prognostic-related differential expression genes
(DEGs) between HGD and IGC. The prognostic model was
constructed based on prognostic-related DEGs and was vali-
dated for IGC patients in both the training and testing sets.
Finally, we integrated the prognostic signature and clinical
factors to establish a clinical nomogram and assessed the
accuracy in predicting the survival rates of IGC patients.

2. Materials and Methods

2.1. Microarray Datasets. All microarray data were down-
loaded from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). We identified and
downloaded the microarray data (GSE55696, GSE87666,
GSE130823), which enrolled HGD and IGC samples [4, 16,
17]. Moreover, the six independent microarray data of IGC
who underwent gastrectomy were included in the current
study, including GSE26901, GSE26899, GSE66229,
GSE26253, GSE29272, and GSE13861 [18, 19]. The detailed
information of each dataset was listed in Table 1. The clinical
information of IGC patients was collected from correspond-
ing literature. We randomly and equally divided the IGC
patients into training and testing sets for the validation.

2.2. Data Processing. The workflow of the current study is
shown in Figure 1. The raw CEL format files or gene expres-
sion matrices were normalized by using normalize Between
Arrays function of limma package in R (https://
bioconductor.org/biocLite.R). To reduce noise and batch
effects in the microarray gene expression data, batch normal-
ization was performed by using sva and limma package in R.
Differential expression genes (DEGs) between HGD and IGC
were selected by using |log2 fold change (FC)|>0.58 and false
discovery rate (FDR) <0.05 in R.

2.3. Enrichment Analysis of DEGs between HGD and IGC.
Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis were performed using
stringi and ggplot2 packages in R. GO term contains three
domains: biological process (BP), cellular component (CC),
and molecular function (MF). FDR <0.05 was considered
statically significant. The top 10 terms of each domain for

GO analysis and the top 30 terms for KEGG analysis were
presented.

2.4. Protein-Protein Interaction (PPI) Network Analysis of
DEGs. The detailed description of PPI network construction
has been introduced in our previously published article [20].
The PPI network construction was analyzed using the
STRING database (http://string-db.org/) [21]. The PPI pairs
with an interaction score >0.7 were considered significant.
The PPI network was constructed by using Cytoscape 3.6.1.
Moreover, subclusters in the PPI network were identified by
using the Molecular Complex Detection (MCODE) plug-in
of Cytoscape [22]. The selection criteria for the subclusters
were as follows: MCODE score ≥ 6, degree cutoff = 2, node
score cutoff = 0:2, and k − score = 2. The hub genes in the
PPI network were selected by calculating the degree with
the cytoHubba plug-in of Cytoscape [23].

2.5. Identification of Prognostic-Related Genes. To evaluate
the prognostic values of the DEGs between HGD and IGC,
a univariate Cox regression analysis was performed in the
training set by using the survival package in R. Subsequently,
the least absolute shrinkage and selection operator (LASSO)
regression was used to build an optimal prognostic signature
for IGC patients by glmnet package in R. The prognostic risk
score for overall survival (OS) was calculated based on the
gene expression weighted by the regression coefficient in
the multivariate Cox regression analysis. Receiver operating
characteristic (ROC) curves were used to evaluate the accu-
racy of the prognostic value in IGC by using survivalROC
package in R.

2.6. Gene Set Enrichment Analysis. The enrichment analysis
between high-risk and low-risk cohorts of IGC patients was
performed by using a Gene Set Enrichment Analysis (GSEA,
http://www.broadinstitute.org/gsea/index.jsp) v3.0 software
[24, 25]. GSEA was selected annotated gene sets h.all.v7.2.-
symbols.gmt. Enrichment scores (ES) and normalized
enrichment scores (NES) were calculated using permutation
testing (1000 permutations). NES with P values < 0.05 and
FDR <25% were considered significantly enriched.

Table 1: Details of microarray datasets in Gene Expression
Omnibus database.

Dataset Platform Sample size Gender

GSE55696 GPL6480 39 (HGD: 20, IGC: 19) F: 11, M: 28

GSE87666 GPL17077 15 (HGD: 9, IGC: 6) F: 4, M: 11

GSE130823 GPL17077 30 (HGD: 14, IGC: 16) F: 11, M: 19

GSE26901 GPL6947 82 IGC F: 28, M: 54

GSE26899 GPL6947 59 IGC F: 11, M: 48

GSE66229 GPL570 146 IGC F: 36, M: 110

GSE26253 GPL8432 139 IGC F: 29, M: 110

GSE29272 GPL96 58 IGC F: 16, M: 42

GSE13861 GPL6884 19 IGC F: 6, M: 13

HGD: high-grade dysplasia; IGC: intestinal type of gastric cancer; F: female;
M: male.
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2.7. Construction and Assessment Nomogram for IGC
Patients. The variates of IGC were used to construct a pre-
dicting nomogram for IGC patients by using the training
set. The nomogram was constructed by using survival and
rms packages in R. Harrell’s concordance index (C-index)
was used to estimate the prognostic efficacy of the predictive
models.

3. Results

3.1. Identification of DEGs between HGD and IGC. We inte-
grated multiple microarray datasets, containing 43 HGD
and 41 IGC tissues. After differential expression analysis,
637 DEGs were identified between HGD and IGC, including
602 upregulated genes and 35 downregulated genes.

3.2. Functional and Pathway Enrichment Analysis. To better
understand the potential functions of DEGs between HGD
and IGC, GO and KEGG analyses were performed. The
results in the BP category were mainly enriched in
immune-associated terms, such as T cell activation, regula-
tion of lymphocyte activation, and leukocyte cell-cell adhe-
sion (Figure 2(a)). The significantly enriched CC term
included the external side of the plasma membrane, receptor
complex, and endocytic vesicle (Figure 2(a)). Furthermore,
cytokine receptor binding, cytokine activity, and cytokine
binding were primarily enriched in the MF category
(Figure 2(a)). The KEGG enrichment analysis results
revealed that the primary pathways were enriched in
cytokine-cytokine receptor interaction, chemokine signaling
pathway, and cell adhesion molecules (Figure 2(b)).

3.3. Construction of PPI Network and Subclusters. PPI net-
work was visualized by using Cytoscape (Figure 2(c)).
According to the MCODE plug-in, three modules were iden-

tified in the PPI network (Figures 2(d)–2(f)). The KEGG
enrichment analysis showed that genes of the module in
Figure 2(d) were mainly enriched in the chemokine signaling
pathway, cytokine-cytokine receptor interaction, and Toll-
like receptor signaling pathways. Cell adhesion molecules,
human T-cell leukemia virus type 1 (HTLV-I) infection,
and T cell receptor signaling pathway were significantly
enriched in the module, presented in Figure 2(e). In the mod-
ule (Figure 2(f)), the analysis also revealed significant enrich-
ment of malaria, transcriptional misregulation in cancer, and
hematopoietic cell lineage pathways. After calculating the
degree of each gene in the PPI network by cytoHubba, the
top 10 hub genes of the PPI network were PTPRC, IL6,
LCK, ITGAM, TNF, CCR7, GNG2, CCR5, CXCR4, and
CD3G.

3.4. Characteristics of IGC Patients. A total of 503 IGC
patients were enrolled in the current study, including 126
(25.05%) females and 377 (74.95%) males. The detailed
information of IGC patients is presented in Table 2. The
IGC patients with stage I, II, III, and IV accounted for
17.30%, 29.03%, 37.17%, and 16.50%, respectively. The sur-
vival data of 7 IGC patients could not be acquired. After
removing 7 patients without prognostic information, the
training set and the testing set contained 248 IGC patients,
equally. The clinical characteristics were not significantly dif-
ferent between the training and testing sets (Table 3).

3.5. Assessment of the Prognostic Values of DEGs and
Construction of a Prognostic Signature for IGC Patients. To
screen the genes which were related to prognosis, a total of
35 DGEs were identified as prognostic-related genes by using
univariate Cox regression analysis. The forest map presented
that the hazard ratio and P value of each prognostic-related
gene (Figure 3(a)). Subsequently, a total of 9 genes were

Integrated analysis of multiple
microarray (GSE55696, GSE87666,

GSE130823)

Differential expression analysis
between HDG and IGC

Testing
cohort

GO
analysis

KEGG
analysis

PPI
network

Integrated analysis of multiple
microarray of IGC tissues (GSE26901,

GSE26899, GSE66229, GSE26253,
GSE29272, GSE13861)

Training
cohort

Univariate Cox
regression analysis

LASSO regression
analysis

Kaplan-Meier
analysis GSEAROC

curve
Multivariate Cox

regression analysis

Multivariate Cox
regression analysis

Nomogram

Prognostic
model

Figure 1: An overview of the experimental design and main procedures.

3Disease Markers



T cell activation
Regulation of lymphocyte activation

Leukocyte cell-cell adhesion
Regulation of T cell activation

Positive regulation of cell activation
Regulation of leukocyte cell-cell adhesion
Positive regulation of leukocyte activation

Positive regulation of cell-cell adhesion
Positive regulation of leukocyte cell-cell adhesion

Positive regulation of T cell activation
External side of plasma membrane

Receptor complex
Endocytic vesicle

Endocytic vesicle membrane
Plasma membrane receptor complex

Immunological synapse
Clathrin-coated endocytic vesicle membrane

MHC class II protein complex
T cell receptor complex
MHC protein complex

Cytokine receptor binding
Cytokine activity
Cytokine binding

Cytokine receptor activity
Signaling adaptor activity
SH3/SH2 adaptor activity

G-protein coupled chemoattractant receptor activity
Chemokine receptor activity

Chemokine binding
MHC class II receptor activity

0.05
Gene ratio

0.10 0.15

M
F

CC
BP

q value

2e-06

4e-06

6e-06

Count
25

50
75

100

(a)

Figure 2: Continued.

4 Disease Markers



Cytokine-cytokine receptor interaction
Chemokine signaling pathway

Cell adhesion molecules
Hematopoietic cell lineage

Th17 cell differentiation
Tuberculosis

Viral protein interaction with cytokine and cytokine receptor
Natural killer cell mediated cytotoxicity

Th1 and Th2 cell differentiation
Phagosome

Osteoclast differentiation
Rheumatoid arthritis

Staphylococcus aureus infection
T cell receptor signaling pathway

Toxoplasmosis
Intestinal immune network for IgA production

Leishmaniasis
Inflammatory bowel disease

NF-kappa B signaling pathway
Antigen processing and presentation

Chagas disease
Graft-versus-host disease

Allograft rejection
Autoimmune thyroid disease

B cell receptor signaling pathway
Viral myocarditis

Type I diabetes mellitus
Malaria

Primary immunodeficiency
Asthma

0.04
Gene ratio

0.08 0.12 0.16

9e-09

6e-09

3e-09

q value

50

40
30

20
Count

(b)

(c) (d)

Figure 2: Continued.

5Disease Markers



screened by LASSO analysis, including cytochrome P450
family 1 subfamily B member 1 (CYP1B1), EPH receptor
B6 (EPHB6), granzyme B (GZMB), IKAROS family zinc fin-
ger 3 (IKZF3), macrophage receptor with collagenous struc-
ture (MARCO), protein phosphatase 2 regulatory subunit
Bbeta (PPP2R2B), glutaminyl-peptide cyclotransferase
(QPCT), TCR gamma alternate reading frame protein
(TARP), and TNF receptor superfamily member 9
(TNFRSF9), presented in Figures 3(b) and 3(c). The risk
model was constructed by a multivariate Cox regression
analysis, presented in Figure 3(d). Risk score = ð0:158 ×
expression level of CYP1B1Þ + ð0:337 × expression level of
EPHB6Þ + ð−0:225 × expression level of GZMBÞ + ð−0:452
× expression level of IKZF3Þ + ð0:445 × expression level of
MARCOÞ + ð0:765 × expression level of PPP2R2BÞ + ð0:254
× expression level of QPCTÞ + ð−0:728 × expression level of
TARPÞ + ð−0:576 × expression level of TNFRSF9Þ. After
dividing the patients into high-risk and low-risk groups
based on median risk score, the Kaplan-Meier survival anal-
ysis for the training set showed that the IGC patients with
high-risk scores had significantly reduced the OS rate com-
pared to those with low-risk scores (P = 4:85 × 10−7,
Figure 4(a)). To validate the accuracy of the risk model,
ROC analysis for risk score, sex, age and stage indicated that
the areas under the ROC curves (AUC) were 0.733, 0.583,
0.642, and 0.707 for the training set, respectively
(Figure 4(b)). In addition, the distribution of risk scores, sur-
vival status, and expression values of 9 DEGs was presented

(e)

LAIR1

HVCN1

CD53
CD36

CD300A
CLEC12A

CD1C

MMP9

CD40

ITGAL
LILRB2

ATP8B4

CYBB

ITGAM

TLR7

CTSK

IL6

SELL

PRF1

IL2RB

CD27

CD40LG GZMB

IL2RA

CD69

(f)

Figure 2: The Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, protein-protein interaction (PPI)
network of DEGs between HGD and IGC. (a) Top 10 GO terms in biological process (BP), cellular component (CC), and molecular function
(MF) domains. (b) Top 30 pathways of KEGG enrichment analysis. (c) PPI network of DEGs between HGD and IGC was constructed by
using Cytoscape. (d–f) The modules were identified by using the MCODE algorithm.

Table 2: Clinical characteristics of intestinal type of gastric cancer
from multiple GEO datasets.

Characteristics Number of IGC Percentages (%)

Gender

Female 126 25.05%

Male 377 74.95%

Age

Mean (SD) 59.80 (10.31)

≥65 174 34.59%

<65 329 65.41%

Stage

I 87 17.30%

II 146 29.02%

III 187 37.18%

IV 83 16.50%

Adjuvant therapy

Yes 225 44.73%

No 74 14.71%

Unknown 204 40.56%

Status

Death 186 36.98%

Alive 310 61.63%

Unknown 7 1.39%
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in Figures 4(c)–4(e). The results illustrated that the IGC
patients with high-risk scores had a lower survival rate than
those with low-risk scores. Of note, multivariate COX regres-
sion analyses demonstrated that the low risk score
(HR = 0:41, 95% CI: 0.26-0.63, P < 0:001), age (HR = 1:03,
95% CI: 1.00-1.05, P = 0:033), stage III (HR = 7:92, 95% CI:
3.45-18.14, P < 0:001), stage IV (HR = 11:15, 95% CI: 4.82-
25.80, P < 0:001), and adjuvant chemotherapy (HR = 0:27,
95% CI: 0.15-0.48, P < 0:001) were independent prognostic
factors, as shown in Figure 4(f).

3.6. Validation of Prognostic Model for IGC Patients. To val-
idate the prognostic value of the risk scoring model, the sur-
vival rate of IGC patients in the testing set was consistent
with those in the training set by using Kaplan-Meier survival
analysis (P = 1:45 × 10−3, Figure 5(a)). ROC curve analysis
showed that the AUC of risk score, sex, age, and stage in
the testing set were 0.700, 0.573, 0.601, and 0.567, respec-
tively (Figure 5(b)). In the testing set, we found out that the
patients in the low-risk group had a significantly better OS

than those in the high-risk group, which was in consistent
with the training set (Figures 5(c)–5(e)).

3.7. Exploration of Enriched Pathways between High-Risk and
Low-Risk Cohorts. In order to further elucidate the potential
mechanisms, GSEA with hallmark gene sets was conducted
between high-risk and low-risk cohorts (Table 4). The gene
expression in the high-risk group was enriched in myogen-
esis, hedgehog signaling, epithelial-mesenchymal transition
(EMT), ultraviolet (UV) response down (DN), angiogenesis,
and apical junction (Figure 6). Furthermore, the low-risk
group was enriched in oxidative phosphorylation, interferon
gamma response, and interferon alpha response (Figure 6).

3.8. Construction of Nomogram for IGC Patients. A nomo-
gram for OS was constructed by age, sex, adjuvant chemo-
therapy, risk score, and stage (Figure 7(a)). The C-index
calculated in the training set for OS prediction was 0.81
(95% CI: 0.76-0.86), indicating the suitability of a new pre-
dictive model for IGC patients. In the testing set, the C-
index of the nomogram for predicting OS was 0.70 (95%
CI: 0.63-0.77). The predictions on the three- and five-year
survival probability for IGC patients in the training and test-
ing sets are shown in calibration plots, respectively
(Figures 7(b)–7(e)).

4. Discussion

It has been reported that IGC constitutes the largest propor-
tion of GC by Lauren classification [26]. The tumorigenesis
of IGC is a complex and complicated process, and HGD is
a key precancerous lesion with a specific pathologic charac-
teristic. Therefore, the selection of HDG and IGC to do fur-
ther analysis was more reasonable. In the present study, we
identified 637 DEGs after a comparison of 43 HGD tissues
and 41 IGC tissues. The pathways and GO term enrichment
analyses may suggest the potential mechanisms during the
tumorigenesis from HGD to IGC. We found out that
immune-related and inflammation-related pathways, like
the T cell activation pathway, were significantly enriched.
More evidence showed that chronic inflammation may
induce progression from CAG to IM that may increase the
likelihood of GC [27]. Moreover, the maintenance of IM with
chronic inflammation and progression of spasmolytic poly-
peptide expressing mucosa (SPEM) to IM by promoting pro-
inflammatory signals can predispose an individual to induce
dysplasia [28]. Blocking T cell activation during the H. pylori
infectious process may inhibit and reverse established pre-
neoplastic lesions [29]. Coincidentally with our study, T cell
activation may play an important role in gastric tumor
carcinogenesis.

The KEGG analysis showed that some potential signifi-
cant signal pathways were screened in the progression from
HGD to IGC. We found out that Th1 and Th2 cell differen-
tiation pathway was significantly enriched in the progression
from HGD to IGC. Similarly, Ren et al. found that the signif-
icant differences between gastritis with and without cancer
and dysplasia indicated a shift from a Th1 to a Th2 helper cell
pattern of cytokine secretion [30]. In addition, we also

Table 3: Comparison of clinical characteristics between the training
and testing sets.

Characteristics
Training set Testing set

P
value

Number (%) or
mean ± SD

Number (%) or
mean ± SD

Sex 0.349

Male 191 (77.0%) 182 (73.4%)

Female 57 (23.0%) 66 (26.6%)

Age (year) 60:16 ± 10:39 59:45 ± 10:25 0.442

Stage 0.056

I 49 (19.8%) 38 (15.3%)

II 80 (32.3%) 66 (26.6%)

III 76 (30.6%) 105 (42.3%)

IV 43 (17.3%) 39 (15.7%)

Adjuvant
chemotherapy

0.288

Yes 118 (47.6%) 107 (43.1%)

No 40 (16.1%) 34 (13.7%)

Unknown 90 (36.3%) 107 (43.1%)

Death 0.578

Yes 152 (61.3%) 158 (63.7%)

No 96 (38.7%) 90 (36.3%)

Recurrence 0.063

Yes 95 (38.3%) 81 (32.7%)

No 135 (54.4%) 134 (54.0%)

Unknown 18 (7.3%) 33 (13.3%)

GEO database 0.241

GSE26901 46 (18.5%) 36 (14.5%)

GSE26899 28 (11.3%) 31 (12.5%)

GSE66229 72 (29.0%) 74 (29.8%)

GSE26253 75 (30.2%) 64 (25.8%)

GSE29272 18 (7.3%) 33 (13.3%)

GSE13861 9 (3.6%) 10 (4%)
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detected the enrichment of the Th17 cell differentiation path-
way. The number of Th17 cells in peptic ulcer patients with
H. pylori infection was significantly higher than those in
the patients with gastritis [31]. The results indicated that
the predominant Th17 cell responses may have been
involved in the gastric tumorigenesis with H. pylori infection.

Through Cox and LASSO regression analysis, we con-
structed a predictive risk model for IGC patients based on
nine prognostic-related DEGs. After dividing the IGC
patients into high-risk and low-risk groups, Kaplan-Meier
analysis and ROC curves indicated that the model of training
and validation cohorts both had a good performance. To the
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Figure 3: Screening the prognostic-related DEGs and construction of a prognostic signature for IGC patients. (a) Forest map revealed that 35
prognostic-related genes were identified by using univariate Cox regression analysis. (b, c) Based on LASSO analysis, a total of 9 genes were
screened. (d) Forest plot of multivariate Cox regression analysis for 9 prognostic-related genes.
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Figure 4: Risk score analysis of nine-gene signature for IGC patients in the training cohort. (a) Kaplan-Meier analysis showed the IGC
patients in high-risk groups had a shorter OS than those in low-risk groups (P = 4:85 × 10−7). (b) ROC analysis showed that the AUC of
risk score, sex, age, and stage were 0.733, 0.583, 0.642, and 0.707, respectively. (c) The distribution of risk score for each individual. (d)
Survival status for each IGC patients. (e) Heatmap for the nine prognostic-related genes between high-risk and low-risk groups. (f)
Multivariate Cox analysis found that the nine-gene signature was an independent prognostic indicator for IGC patients.
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Figure 5: Validation of the nine-gene signature for IGC patients in the testing cohort. (a) Kaplan-Meier analysis showed that IGC patients
with high-risk scores had a shorter OS than those with low-risk scores (P = 1:445 × 10−3). (b) ROC analysis showed that the AUC of risk score,
sex, age, and stage in the testing group were 0.7, 0.573, 0.601, and 0.567, respectively. (c–e) An overview of the survival status, the distributions
of the risk score for each patient, and heatmaps for nine-gene signature in the testing group. (f) Multivariate Cox analysis for IGC patients in
the testing cohort also identified that the nine-gene signature was an independent risk factor.
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best of our knowledge, this is the first time to construct a
nomogram for predicting the OS of IGC patients who under-
went gastrectomy. Moreover, the calibration curves and C-
indexes showed good concordance. Zhang et al. reported that
the five-gene signature for GC patients achieved a higher C-
index in OS than the six-gene and 24-lncRNA signatures
[4]. Most importantly, our nine-gene signature for IGC
patients showed a higher C-index than the five-gene signa-
ture for GC.

To further explore the potential molecular mechanisms
between high-risk and low-risk groups based on the risk
score, GSEA in the Hallmark pathway database was per-
formed, whereby the results illustrated that the high-risk
cohort was significantly enriched in hedgehog signaling,
EMT, angiogenesis, and apical junction pathways. The
hedgehog signaling pathway plays a critical role in gastric
development, homeostasis, and tumorigenesis [27, 32]. Acti-
vation of the EMT pathway could induce gastric epithelial

Table 4: Results of Gene Set Enrichment Analysis (GSEA) between high-risk and low-risk cohorts.

Name ES NES P value FDR

MYOGENESIS 0.652 1.931 0 0.019

HEDGEHOG SIGNALING 0.631 1.798 0.002 0.041

EPITHELIAL MESENCHYMAL TRANSITION 0.687 1.746 0.004 0.046

UV RESPONSE DN 0.499 1.725 0.004 0.041

ANGIOGENESIS 0.660 1.633 0.031 0.073

APICAL JUNCTION 0.393 1.489 0.028 0.160

OXIDATIVE PHOSPHORYLATION -0.461 -1.855 0.022 0.083

INTERFERON GAMMA RESPONSE -0.575 -1.673 0.037 0.225

INTERFERON ALPHA RESPONSE -0.628 -1.643 0.046 0.189

ES: enrichment scores; NES: normalized enrichment scores; FDR: false discovery rate.

0.6

0.3

0.0

En
ric

hm
en

t s
co

re

–0.3

High expression low expression

–0.6

Hallmark_UV_Response_DN
Hallmark_Oxidative_phosphorylation
Hallmark_Myogenesis
Hallmark_Interferon_gamma_response
Hallmark_Interferon_alpha_response
Hallmark_Hedgrhog_signaling
Hallmark_Epithelial_mesenchymal_transition
Hallmark_Apical_junction
Hallmark_Angiogenesis

Figure 6: The Hallmark enrichment analysis between high-risk and low-risk groups by Gene Set Enrichment Analysis (GSEA).
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Figure 7: Continued.
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cells to turn into mesenchymal cells, causing tumor metasta-
sis by attenuating a cell-cell adhesion and alteration of cell
polarity [33]. Angiogenesis is a hallmark of solid tumor
development and also an important prerequisite for tumor
growth and metastasis [34]. Overall, the IGC patients with
high-risk score were characterized by a high invasion and fast
growth. Therefore, antiangiogenic therapies, such as Bevaci-
zumab and Ramucirumab, may be more suitable for high-
risk IGC patients based on our risk score.

The strength of our study is that, to our knowledge, it
represents a novel gene signature evaluating the prognostic
value for IGC patients. However, there are still several limita-
tions in the present study. First, we only incorporated the
microarray datasets which included the clinical characteris-
tics and survival data for IGC patients. Second, the data
regarding H. pylori infection status is unknown.

5. Conclusion

In the present study, we identified and verified a novel nine-
gene signature for the prognostic prediction of IGC patients,
which might identify subgroups of IGC patients with differ-
ent risk scores. The nomogram could accurately predict the
prognosis for IGC patients. The nine-gene signature may
help to select more suitable therapeutic options for different
subgroups of IGC patients.
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