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Sorting out interphase microtubules
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We want to see how, in some cases at least, the forms of
living things, and of the parts of living things, can be
explained by physical considerations.y

D’Arcy Thompson (1917)

Proper organization of microtubule polymers is crucial to
the form and function of all eukaryotic cells. Whether growing,
dividing or polarizing, different cell types—be they neurons,
plant cells or fungal cells—organize specialized microtubule
patterns appropriate for their needs. Is it possible to identify
the set of factors sufficient to organize microtubules in a
specific cell, and to understand how the cell regulates those
factors spatially and temporally such that they collectively
sustain that particular cellular pattern of microtubules? In a
recent issue of Cell, Marcel Janson and collaborators (Janson
et al, 2007) use an elegant combination of quantitative
microscopy, in vitro assays and computer simulations to try
to elucidate the minimal set of components required to stably
organize microtubule patterns in a unicellular eukaryote, the
fission yeast Schizosaccharomyces pombe.

Microtubule organization in a given cell is partly dependent
on the intrinsic turnover of each of its polymers. But it is the
collective interaction of microtubules with microtubule-inter-
acting proteins—nucleators determining polymer number and
localization; stabilizing or destabilizing proteins regulating

average polymer length; static or dynamical crosslinkers
mediating polymer connectivity—that mostly determines the
global spatial pattern and ‘systemic’ cellular function of
microtubules. Individually, every component of this ‘system’
appears to behave independently; collectively, they generate
an overall stable, organized and functional microtubule
pattern.

In the fission yeast, the proper growth and form of each
cell relies on the presence in its cytoplasm of ‘bipolar’
bundles of antiparallel microtubules, organized with their
more dynamic ‘plus’ ends towards the cell tips and their
‘minus’ ends overlapping at the cell centre (Drummond and
Cross, 2000; Tran et al, 2001). It is generally thought that the
organization of these bipolar microtubule arrays relies on
two evolutionarily conserved microtubule interactors: the
Prc1-related protein Ase1, which statically crosslinks or
‘bundles’ microtubules (Loiodice et al, 2005; Yamashita
et al, 2005); and the Kar3/Ncd-related, minus-end-directed
kinesin motor Klp2, which mediates the transport (‘sliding’)
of short microtubules towards the cell centre along longer
microtubules (Carazo-Salas et al, 2005). Recently, it has
been suggested that these two interactors might suffice for
bipolar microtubule arrays to ‘self-organize’ without pre-
existing organizational templates (Carazo-Salas and Nurse,
2006; Daga et al, 2006).
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Antagonism between Klp2 and Ase1 leads to stable overlap between antiparallel microtubules
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Figure 1 Model for the formation of stable bipolar microtubule arrays in fission yeast. (A) The minus-end-directed kinesin Klp2 (green) mediates antiparallel
microtubule sliding by ‘pulling’ short microtubules at their plus end. (B) The bundling protein Ase1 (brown) preferentially crosslinks antiparallel microtubules (red). (C) A
short, newly nucleated microtubule is ‘pulled’ by Klp2 to the bundle midzone. Increasing levels of Ase1 bind to the microtubule as it grows, gradually breaking its motion.
The antagonism between Klp2 and Ase1 leads to the formation of a stable overlap between antiparallel microtubules in the cell (blue).
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Janson et al (2007) set out to further develop this hypothesis.
Using a sophisticated range of experimental methods, they first
characterized the interaction of Klp2 and Ase1 with micro-
tubules. By quantitative in vivo microscopy and statistical
methods, they observed that Klp2 associated to the ‘plus’ ends
of short, sliding microtubules and was absent from microtubule
‘minus’ ends. This suggested that Klp2 ‘pulls’ microtubules only
at their ‘plus’ ends. They then analysed the interaction of
bacterially expressed Ase1 protein with pure microtubules
in vitro. They found that Ase1 forms oligomers that bind stably
along the length of microtubules only when bound to multiple
polymers, and that Ase1 preferentially bundles microtubules in
a ‘biased’ fashion with respect to microtubule polarity, leading
to an antiparallel microtubular array.

With that information, they used computer simulations to
test whether the collective interaction of microtubules with
dynamic or static crosslinkers with properties similar to Klp2
and Ase1 could give rise to the organization of stable, bipolar
microtubule arrays. In the simulations, neither ‘biased
bundlers’ alone, nor mixtures of ‘motors’ and ‘unbiased
bundlers’, could efficiently organize focused bipolar micro-
tubule arrays. However, when ‘motors’ and biased ‘bundlers’
were combined, bipolar microtubule arrays were formed with
a higher degree of polarization, in agreement with what has
been observed in vivo. These findings suggest that a fine-tuned
antagonism between motor and bundling activities may be the
‘design principle’ underlying the organization of microtubule
arrays in fission yeast cells (Figure 1, simulations can also
be downloaded from http://www.embl.de/ExternalInfo/
nedelec/reprints and run live on Mac OS X and Windows
platforms).

The simulations make a number of assumptions about the
biophysical properties of Klp2 and Ase1, which need to be
tested experimentally to validate the model fully. It will also be
interesting to further explore how this type of two-component
system may have changed throughout evolution to generate
different microtubule patterns in different cells. But altogether,

this exciting piece of work underscores that a ‘systems’
approach combining experimental and theoretical methodol-
ogies will be the right way forward to understand the ‘design
principles’ underlying the spatial organization and function
of microtubular arrays in more complex eukaryotic cells
(Karsenti et al, 2006), an endeavour that brings us closer to
D’Arcy Thompson’s objective of explaining the forms of living
things in terms of physical considerations.
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