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Abstract: Dementia is a neurodegenerative condition that is considered a major factor contributing
to cognitive decline that reduces independent function. Pathophysiological pathways are not well
defined for neurodegenerative diseases such as dementia; however, published evidence has shown
the role of numerous inflammatory processes in the brain contributing toward their pathology.
Microglia of the central nervous system (CNS) are the principal components of the brain’s immune
defence system and can detect harmful or external pathogens. When stimulated, the cells trigger
neuroinflammatory responses by releasing proinflammatory chemokines, cytokines, reactive oxygen
species, and nitrogen species in order to preserve the cell’s microenvironment. These proinflammatory
markers include cytokines such as IL-1, IL-6, and TNFα chemokines such as CCR3 and CCL2 and
CCR5. Microglial cells may produce a prolonged inflammatory response that, in some circumstances,
is indicated in the promotion of neurodegenerative diseases. The present review is focused on the
involvement of microglial cell activation throughout neurodegenerative conditions and the link
between neuroinflammatory processes and dementia.

Keywords: dementia; Alzheimer’s disease; neuroinflammation; phagocytosis; microglial cell
activation; cytokines; chemokines

1. Introduction

There are more than 703 million people aged above 65 years, worldwide, a number
that is predicted to reach 1.5 billion by 2050 [1,2]. Globally, the dramatic increase in life
expectancy is followed by a rise in age-related illness. Older people are expected to spend
more of their later lives in poor health with a decreased quality of life [3]. Dementia
is a leading factor responsible for dependency and mental disability among more than
50 million elderly people world-wide [4].

Dementia has the highest economic cost of adult neurological disorders and is the
second most common factor responsible for mortality due to neurological disease after
cerebrovascular disease. The average costs of the management and treatment of dementia
are estimated to be betweenUSD600 billion and USD 1 trillion. Therefore, finding the right
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way to avoid the expansion of the disease is crucial [5]. Dementia is a syndrome that causes
persistent decrease in cognitive and behavioral function of the brain that hampers the
ability to perform day-to-day activities [6,7]. Dementia is associated with a large group
of neurological pathologies such as frontotemporal dementia (FTD), Parkinson’s disease
(PD), Alzheimer’s disease (AD) and Lewy body dementia (LBD) [7,8]. The earliest form of
neurological disorders, whose manifestations are predominantly cognitive, is termed as
primary dementia (Table 1) [6]. Another early sign of dementia, known as mild cognitive
impairment (MCI), is a state between aging and dementia, with reduced cognitive ability
and retained self-supporting function. Dementia that progresses from normal cognition to
severe dementia in less than two years is characterized as “rapidly progressive dementias”
(RPDs) [9,10]. Dementia is always latent and hard to detect in the initial phase, making it a
double challenge for primary care professionals. Initial detection is important as this enables
the patients and their families to participate in a supportive programmes, strategize their
future and reduce the major psychological suffering experienced by patients. Information
on psycho-social and the availability of medical assistance would increase the morale of
patients [5,11–13]. The early identification and interference of dementia may postpone
admission to the nursing home, and thus reduce the huge socio-economic expenses [14].

Table 1. Primary dementias as a clinical entity [8].

Risk Indicators Cumulative Lesion Neurodegeneration Decline in Cognition

Non-modifiable Extracellular amyloid proteins Loss of synaptic

Age
Genetics

Tau (AD and FTD)
intracellular protein

Neuroinflammation death
in neurons A decline in one or more

memory visuospatial
functions Language executive

social cognition functions
Complex attention

Modifiable

Vascular risk, factor head injury,
low education, poor hearing,
depreciation, social isolation

Synuclein (LPD, PDD, MSA)
PrPSC (prion disease)

TDP-43(FTD) FUS(FTD)
Glial reaction

Within the last quarter of the 20th century, dementia appears to be one of the most
under-diagnosed conditions in primary assessment. Dementia is primarily diagnosed on
the basis of symptoms, as well as the caregiver’s concerns or obvious memory impair-
ment [15,16]. There has been substantial educational work on primary care dementia,
supported by charitable organizations, and focused initiatives. The Audit Commission has
emphasized the strategic needs and thoughtful methods for identifying and controlling
dementia [17]. The National Service Framework for Older People has agreed to promote the
progress of common practices in dementia care through designed protocols for screening
and management of dementia [18–21].

Until now, no specific treatment is available for dementia or AD [16], but various
therapeutic approaches such as amyloid-driven immunotherapy, inhibition of amyloid
synthesis, and extracellular tau immunotherapy focus on alleviating symptoms [22–24].
Anti-amyloid beta monoclonal antibody was assumed as a promising agent for the man-
agement and treatment of AD, but when investigated for clinical efficacy, the monoclonal
antibody solanezumab did not substantially impact cognitive decline [25].

Pharmacological approaches for the symptomatic management of dementia or AD are
based on the modulation of various neurotransmitters such as acetylcholine, serotonin, and
norepinephrine [26–28]. Non-pharmacological interventions designed to curb excessive
disability consist of cognitive therapy, lifestyle changes, and patient education [18,29,30].

Neuroinflammation generally plays a role in reduced cognitive function, and this
can turn pathological, such as in dementia associated with old age, and AD [8,31]. While
there is no clear cause of AD, it has been found that chronic inflammation can lead to the
production of Aβ plaques, which lead to further aggregation and inflammation, impacting
neuron synapses. Aβ is a major trigger of neurodegeneration in AD, as it initiates a
proinflammatory response [32]. This dysregulated inflammatory response impacts long-
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term brain function and furthers neurodegeneration. Examples of proinflammatory factors
released in this immune response include cytokines (IL-1β, IL-6, IL-18, TNF-α,), chemokines
(CCL2, CCL3, CXCL8), transcription factors (NF-κB), and peptides (bradykinin) [33–36].
However, it is the lack of the resolution of this response that leads to a pathology. Older
brains maintain a level of chronic inflammation that risk losing the ability to clear the
infection, as there is desensitization [32,37]. The blood–brain barrier also gets leaky as the
brain ages, where unresolved inflammatory cells can cross. Microglia in an aged brain
also tend to release more inflammatory cytokines, mainly IL-1β, IL-6 and TNF-α [38,39].
Chronic activation of microglia and inflammatory responses leads to the increased presence
of tau by activating kinases that phosphorylate the protein, with TNF-α leading to increased
aggregation in neurons when tested in vitro [40] This review aims to investigate the role
of neuroinflammation in the development of dementia including the involved markers,
modulators and risk factors.

2. Diagnosis of Cognitive Decline

Age-related cognitive changes are not to be generalized, as they are quite variable.
The differentiation of dementia from normal age-related cognitive decline is difficult.
The manifestation of dementia can vary from mild loss of cognition to complete loss of
memory [41]. The greatest risk factor for cognitive decline is age, which in itself increases
physiological inflammation. Inflammation has been linked to an increased risk for cognitive
decline, contributing to the risk of dementia [42]. However, there is a line between normal
and abnormal cognitive decline, which can be difficult to distinguish, but it is important to
do so, as it has implications on the acquisition of pathologies [8].

Cognitive aging depends on multiple factors, with a model suggesting that it is mainly
due to the decline of the immune system (immunosenescence), vascular aging (vascular
inflammation), and brain aging (neuroinflammation). These factors result from life-long
insults to the brain, including exposure to antigens, and all involve inflammation of some
sort [43].

2.1. Cognitive Decline

Cognitive decline appropriate for increased age has varied manifestations. While a
patient or their partner may report deterioration in cognitive ability and performance at
work along with anxiety, the patient needs to be referred only after a primary care doctor
raises concerns regarding background awareness or cognitive screening [28,44].

Neuronal death is a result of neurodegenerative disease. Etymologically, the term is
derived from the prefix “neuro-,” which refers to nerve cells (i.e., neurons) and, “degenera-
tion”, which refers to a phase of deteriorating structure or function in tissues or organs [45].
Neurodegenerative implies that neurons eventually stop working or start functioning
poorly and inevitably die. This synaptic disconnection can lead to several malfunctions.
Neurodegeneration refers to a neuron’s gradual atrophy and dysfunction, which is found
in AD [28,46]. Neurodegeneration has become a widely used term with a generally known
meaning, and in a strict sense of the term, refers to any neurological disorder primarily
affecting neurons. In general, neurodegenerative diseases constitute a broad community
of neurological diseases with heterogeneous clinical and pathological manifestations that
affect specific subsets of neurons in various functional anatomical structures. They emerge
relentlessly for unclear causes and developments. Increased age is the most consistent risk
factor for developing a neurodegenerative disease, especially AD or PD [47,48].

Over the past century the growth rate of the population aged 65 and over in developed
countries has significantly surpassed that of the population as a whole. It can also be
expected that the proportion of elderly people will double in few years. This may be
reflected in the proportion of those afflicted with neurodegenerative diseases, and thus
would be a source of great concern on various levels such as mental, physical, and financial
pressures on patients, as well as on policymakers [45]. The problem is exacerbated by the
fact that some approved medications for several neurodegenerative diseases can alleviate
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symptoms to a certain extent but are associated with debilitating side effects in chronic
users, with no appearance of halting degenerative advancement.

2.2. Aetiology of Neurodegenerative Disorders

The limitations of our understanding of the causes and mechanisms by which neurons
die in neurodegenerative diseases have impeded the development of successful preven-
tive or protective therapies [47]. Selected genetic and molecular developments related to
the biology of neurodegeneration, such as apoptosis, oxidative stress, and mitochondrial
dysfunction, have been analyzed in this perspective sequence [49]. The causes of neurode-
generative diseases are largely unknown, with a few exceptions. Even if they have been
established, the mechanisms by which the disease is triggered remain speculative at best.
One of the most heated debates on the etiology of neurodegenerative disorders is on the
relative roles of genetic and environmental causative factors in disease initiation [50]. There
is substantial family incidence of certain neurodegenerative diseases, indicating a genetic
basis. The disease acts as an autosomal dominant trait among these affected families.
Others are essentially sporadic in addition to these “pure” hereditary neurodegenerative
disorders. However, they show a small group of patients in whom the disorder is inherited.
Instead, it seems that harmful environmental factors may be primary suspects in triggering
neurodegenerative processes [51].

2.3. Cognitive Downturn

Impairment of cognitive functions is the primary characteristic of dementia, which
often manifests as memory deficits and a decline in cognitive skills [51]. Neuropsycho-
logical tests are the gold standard for cognitive testing, where an individual’s cognitive
performance is expressed as the standard deviation (SD) from the mean performance of a
cohort of cognitively stable individuals [6].

2.4. Chronic Decrease in Functionality

The regular activities of any individual are divided into two sets of activities—basic
activities of daily living (BADL) and instrumental activities of daily living (IADL) [52].
BADL relate to fundamental tasks of self-care like feeding, bathing, using the toilet, and
wearing clothes. At the same time, IADL comprises more complicated tasks, such as
managing medicines, finances, transportation, meal preparation, and shopping. A chronic
decrease in functionality refers to the inability of a person to execute IADL, with later stages
of dementia affecting BADL [7,52].

2.5. Mild Cognitive Impairment

MCI is a transitional condition between normal cognition and dementia, essentially
with retained mental ability. In older age, cognitive capacity is generally assumed to
decline. The age-related decreases in mental abilities are highly variable between different
individuals and an average decrease can be seen across the population. Dementia is a
condition with an underlying physical disorder, consisting of brain tissue loss, which can
be seen by a brain scan or autopsy after death [53]. Dementia is incremental, with damage
and symptoms getting worse over time. Therefore, it is not a natural product of aging but a
consequence of an illness [54,55].

Damage to the brain is likely to begin decades before physical signs begin to appear.
This very long latent period has made it very difficult to find a cure for dementia, as
brain deterioration advances too far before the signs are evident [33,50]. MCI was initially
thought of as a working phase of dementia, however, some studies have suggested that
MCI mostly develops into full-blown dementia while a subset of the population returns
to normal cognition after a while [3,56,57]. MCI is increasingly identified as a prelude to
dementia but not as an early phase of dementia. Several phenotypes of MCI, such as those
affecting episodic memory, seem to pose a greater chance of developing AD [18,58,59].
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3. Types of Dementias
3.1. Primary Dementias

Primary dementia initially manifests as a mild cognitive decline and sometimes
presents with neurodegenerative proteinopathies. In addition, some protein mismatching
may result in neurodegeneration, neuroinflammation, and degeneration of glial cells. Pri-
mary dementia comprises of AD, diseases of the prions, and frontotemporal dementia [60].
Lewy body dementia (LBD) and Parkinson’s disease dementia (PDD) are proteinopathies
that are characterized by extrapyramidal motor symptoms and are included in primary
dementia because these are of the main reasons that cause dementia. Vascular dementia
is not caused by protein abnormalities but presents as the second major trigger of de-
mentia among older adults [18,60,61]. Primary dementia can be classified by its clinical
characteristics, neuropathological phenotype, and neuropsychology. Different proteins
aggregate to characterize various protein pathologies. For example, AD is caused by a
dual proteinopathy linked to amyloid β and hyperphosphorylated tau proteins. Tau is also
involved in a variety of other pathologies such as progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD) and Pick’s disease, [62,63].

3.2. Rapidly Progressive Dementia

Rapidly progressive dementias (RPDs) are neurological disorders that develop sub-
acutely from normal cognition to dementia in one to two years. These can also present with
characteristics other than cognitive impairment, such as extrapyramidal symptoms, be-
havioral problems, electroencephalogram changes, and myoclonus. The term was initially
used for types of prion illness and their differential detection. Diagnostically, RPDs can
be classified into three categories: prion diseases, atypical presence of other primary de-
mentias, and autoimmune encephalitis [10]. The relative occurrence of each type depends
upon the setting. While prion diseases are more prevalent in tertiary reference centers, en-
cephalopathies are more likely to be investigated as RPD in a community setting. Primary
dementias that progress to RPDs are mainly reported in the younger patients and can lead
to changes in white matter. The presence of amyloid pathology in positron emission tomog-
raphy (PET) or cerebrospinal fluid (CSF) imaging may aid in the diagnosis, particularly
among younger people. A comprehensive history, proof of neuroleptic responsiveness
and, in some cases, examination of dopamine transporters can help identify the Lewy
body disease. Fewer common causes of RPDs are secondary encephalopathies; diffuse
neoplasms, herpes encephalitis, syphilis, Whipple’s disease, and infections such as the
human immunodeficiency virus. Furthermore, temporal lobe epilepsy and non-convulsive
seizures that are difficult to detect, particularly with epileptic status, may also resemble
RPDs [10,64].

4. Risk Factors for Dementia

Non-adjustable risk factors responsible for dementia include age, genetic polymor-
phism, gender, family history, and race [65–68]. Aging is related to several brain changes
that include hippocampus atrophy, an imbalance between amyloid-β synthesis and break-
down and the initiation of inflammation [69]. While the low levels of estrogen and other
hormones after menopause are suggested to be the cause behind the increased prevalence
of dementia in women compared to men [70]. Mutations in the genes of amyloid precursor
protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) are associated with early AD.
In contrast, polymorphism in the apolipoprotein E gene (APOE) is related to the late form
of the disease [67,71,72].

Various published evidence demonstrates a link between the progress of cognitive
injury and dementia with learning achievement and risk factors associated with lifestyle
such as physical inactivity, an unhealthy diet, tobacco use, and detrimental alcohol use.
Researchers have identified several risk factors that affect the likelihood of developing
one or more kinds of dementia. Some of these factors are modifiable, while others are
not. [73,74]. According to Kirsty B. et al., (2019), obesity is linked to higher long-term
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dementia incidence in those aged 65–74 years old [75]. Furthermore, a prospective analysis
in 2019 showed that worse cognitive consequences were related to longer duration of
diabetes duration and poor glycemic control over a 5-year follow-up period [76]. Another
study illustrated that there was an increased risk of AD in widowed individuals compared
to married ones [77].

Additionally, studies have reported aging as an important risk factor as various pro-
gressive neurological disorders such as AD, PD, neuroinflammation, etc., are positively
correlated with aging [78]. The genetic factor is another important risk factor associ-
ated with dementia [79]. In the case of dementia associated with fatal familial insomnia,
Creutzfeldt–Jakob disease and Gerstmann–Sträussler–Scheinker syndrome, patients with
prion protein gene mutation are at higher risk [79]. Genetic mutation-related dementia has
also been reported in FTDP-17 and Huntington’s disease [79].

Moreover, smoking and alcohol consumption have also been related to dementia and
cognitive dysfunction [78]. Clinical studies have also shown that consumption of alcohol is
associated with increased prevalence of dementia and other vascular diseases [80].

The association of metabolic syndrome and dementia, atherosclerosis and diabetes
have extensively been studied [81]. Diabetes is directly associated with AD, stroke and
cognitive dysfunction [81]. Atherosclerosis, which is characterized by increased deposition
of LDL, has directly been reported with dementia [81]. In atherosclerosis, deposition of
LDL interferes with the blood supply in the brain and manifest into dementia [73,74].

Modifiable risk factors include cognitive inactivity and social isolation. The risk factors
incorporated in these guidelines have been selected based on recently published studies
and guidelines, including the National Health and Care Excellence Institute (NICE, 2015);
the World Alzheimer Report 2014 [27,82–84]. The cognitive impairment prevalence was
higher in those who lived in rural areas compared to those who lived in urban areas. In
addition, low income, less social participation, depression and disability appeared to be
independent risk factors for the disease [85].

5. Neuroinflammation in Dementia

Inflammation is the body’s typical reaction to damage and stress; this includes redness
and swelling associated with injury or infection. However, inflammation in the brain,
known as neuroinflammation, has been identified and related to many conditions, in-
cluding depression and multiple sclerosis [42,86,87]. The risk of AD has also recently
been linked to neuroinflammation as well. Recently published reports have shown the
involvement of proinflammatory markers in the brain as a more significant major risk
factor for dementia than previously assumed [42]. The formation of reactive oxygen species
(ROS), chemokines, cytokines and various second messengers mediate this inflammation.
Resident peripherally derived immune cells, CNS glial cells such as microglia, astrocytes,
and endothelial cells contain these mediators. These neuroinflammatory responses have
immune, physiological, biochemical, and psychological effects. In addition, the course
of primary stimulus significantly determines the extent of neuroinflammation. Inflam-
mation can, for example, lead to immune cell recruitment, fluid retention, tissue injury,
and eventually cell death [19,47,50]. Numerous studies have shown a connection between
inflammation (an immunogenic response to pathogens, oxidative stress or irritants, injury)
with cognitive decline, and a subsequent chance of dementia [20,88,89]. Inflammation is
normally a defensive mechanism that helps in the curative process.

Nevertheless, sustained inflammation may damage the tissue. Modified inflammatory
reactions to the immune system are adaptive and essential for properly stabilizing and
recovering cells and tissues from insults like trauma, irritants, and pathogens [8,66,90].
According to various studies, a list of important risk factors for neuroinflammation such
as aging, genetic factors, toxic metabolites, autoimmunity, microbial infections, traumatic
brain injury, and air pollution was observed [88,90,91]. Normal aging is linked to increased
and sustained inflammation throughout the body. Neurodegeneration, atherosclerotic
processes, disabled neurogenesis, and persistent diseases are associated with ongoing
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increased levels of inflammation [90–93]. Although age-related inflammation may be a
common result of immune senescence, it may also increase the susceptibility and threat of
successive pathogenesis [93].

Neurological inflammation is a sensitive reaction of the CNS to noxious stimuli such
as toxins, trauma, injury, ischemia, neoplasms, infections, etc., that impede homeostasis
and lead to progressive neuronal death and loss of cognitive and motor functions in the
CNS. The clinical evidence suggests that inflammation is a pivotal pathogenetic factor
involved in neurodegenerative disorders and the interaction between the immune system
and the nervous system [49]. The wide variety of cellular mechanisms, probably the same
in aging and chronic disorders such as obesity, diabetes, dementia, etc., are considered to be
the most pivotal in the generation of neuroinflammation [94–96]. Various research results
on the inflammation seen in various parts of the brain of dementia patients are listed in
Table 2.

Table 2. Studies using in vivo neuroinflammation imaging for human dementia patients.

S.NO
Neuroanatomical Areas with Substantially

Greater Inflammation Compared to Controls in
the Dementia Group

Other Findings References

1

Inferior and middle temporal gyri, fusiform gyri,
putamen, left amygdala, left posterior cingulate, left
parahippocampal gyrus, inferior parietal lobes, and

right pallidum in AD relative to controls. Inferior
temporal gyri, fusiform gyri, and left

parahippocampal in MCI compared with controls

Enhanced neuroinflammation in the left
inferior temporal

lobe differentiated AD relative to locomotion
Regions with elevated inflammation

exhibited the highest atrophy rate in AD for
12–24 months.

[97]

2 Lateral frontal cortices, prefrontal cortices, right
mesial temporal cortex, left orbitofrontal cortex

Specific regional inflammation was linked
with particular cognitive impairments.
The task of image recognition and right

superior frontal
cortex, the role of orientation and left frontal

lateral, left parietal cortex, and right
superior frontal.

[98]

3 Temporal, frontal, parietal, cingulate cortices, and
occipital cortices

Inflammation of cingulate gyrus posterior,
parietal frontal cortices are associated with

MMSE scores.
[99]

4
Striatum and cerebellum, anterior cingulate, dorsal

parietal, lateral, temporal occipital cortices and
medial prefrontal cortices.

No MMSE and inflammation association in
any amount of interest. [100]

5

Basal ganglia, substantia nigra, frontal lateral
cortices. The lateral parietal, lateral temporal,

cingulate, anterior and posterior cortices, medial
occipital and lateral cortices in the occipital,

temporal DLB poles, and precuneus compared to
the controls

None reported [101]

6

Sensorimotor cortices, prefrontal cortices, superior
parietal, parietal cortices, middle, temporal, occipital

cortices and posterior cingulate cortices in AD
relative to controls. Inferior parietal lobules, middle
and inferior temporal cortices, and precuneus had

the greatest variations, but no difference was seen in
thalamus, striatum, or cerebellum, white matter.

Age-related inflammation in the parietal
cortex and striatum. Appearance in MCI

and AD.
[102]

Mild cognitive impairment (MCI); Alzheimer’s disease (AD); mini-mental state examination (MMSE) and demen-
tia with Lewy bodies (DLB).

Preclinical models and human research suggest that microglia, a part of the innate
brain immune system, is triggered by dementia and various other neurodegenerative disor-
ders. In addition, interventional genetic studies have shown a correlation between cognitive
disease and gene-related mutations or polymorphisms in the immunogenic response. The
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most prevalent genetic risk factor, apolipoprotein E (ApoE), is a polymorphic lipoprotein
that regulates the transportation as well as distribution of lipids such as cholesterol and oth-
ers via ApoE receptors. There are three isoforms of human ApoE in which polymorphisms
are present in the receptor-binding domain, ApoE4 (R158, R112), E3 (R158, C112), and E2
(C158, C112), with the highest risk of AD conferred by ApoE4. Microglia and astrocyt-
mediated inflammatory processes in the brain are dysregulated in an isoform-specific way,
with ApoE4 exhibiting the neuroinflammatory effect [103]. It has been reported that the
ApoE4 intensifies the neuroinflammatory innate immune response mediated by Aβ. Aβ
mediates in response to systemic studies in mice and humans, which eventually manifests
into neuronal dysfunction as shown in Figure 1 [32].
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neurotoxic stimulus also induces neuroinflammation via modulation of MAPKs, Akt/PI3K, mTOR,
ER stress and mitochondrial dysfunction. Additionally, these neurological disorders cause a dysfunc-
tional release of neurotransmitters that further interferes with the function of CREB, BDNF, LTP, etc.,
and causes dementia.

Considering the mechanism of dementia in AD and neuroinflammation, the tau
protein undergoes hyperphosphorylation, epigenetic modification and truncation that
cumulatively leads to the formation of NFT and the release of exosomes that further
regulate the expression of chemokines such as CXCL3 and activation of NLRP3. Activated
NLRP3 further manifests in the production of IL-1β that binds with the IL-1β receptor and
imitates the cascade of neuroinflammation and dementia, as shown in Figure 1.

Additionally, Aβ, α-synuclein and neurotoxic stimulus are also involved in the mecha-
nism of dementia via altering the release of various neurotransmitters, as shown in Figure 1.
Therefore, on the one hand, the mediators of inflammation such as Il-1β, TNF-α, MAPKs
cause alterations in the levels of neurochemicals such as CREB and BDNF while on the
other hand, the discrete release of neurotransmitters causes alteration in long term potenti-
ation (LTP) leading to neuroinflammation and dementia. Brain-derived neurotrophic factor
(BDNF) is a neurotrophinthat is often associated with neurodegenerative disorders when
low in level [104]. BDNF is typically associated with neuronal survival, synaptic formation,
plasticity, and the alteration of inhibitory and excitatory mechanisms.

The presence of neurotoxic stimulus and coexisting neurological disorders causes an
alteration in the level of BDNF and manifests into dementia and cognitive dysfunction.

Mutations in microglia-related genes such as SOD1 (superoxide dismutase 1), C9Orf72
(ORF 72 on chromosome 9), TBK1 (TANK-binding kinase 1), OPTN (optineurin), SQSTM1
(Sequesterome-1), and VCP (Valosin-containing protein), which activate microgliaincrease
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the production of neurotoxic factor production, leading to neuroinflammation. Mutations
in genes such as C9Orf72, PFN1 (Profilin), TREM2 and GRN (granulin) have been shown to
lead to phagocytosis and associated degradation pathways that are regulated by microglial
cells [105]. Further damage to motor neurons in ALS is caused by changes in these processes,
leading to neurodegeneration, encouraging the progression of the disease [106].

The inflammatory markers associated with neuronal damage include cytokines, trans-
forming growth factor-beta (TGF-β), and interleukin-1β, causing direct synaptic microglial
injury [65,107,108]. These worsen the neuronal network communication, synaptic impulse,
thus accelerating synaptic failure and neurodegeneration. These findings offer the potential
for immunotherapy action to stop or slow the development of dementia [56,109,110].

Different therapeutic strategies of AD target the neuroinflammation, including the
inhibition of the gene expression of the cytokines and blocking their receptors, counteracting
IL1-β and TNF-α effects by using antibodies that also bind their receptors and lowering
the anti-inflammatory molecules Aβ and tau pathologies by limiting glial cell release of
pro-inflammatory cytokines such as minocycline [111]. Urolithin A and actinonin can
reduce tau and Aβ by increasing phagocytosis by enhancing the process of mitophagy
which is the process related to getting rid of the damaged mitochondria [112]. On the
other hand, neuroprotection could be achieved through polyphenolic compounds such as
vitamin E that lower the production of Tumor necrosis factor-α and nitric oxide [113].

Furthermore, clinical trials that aim to study the efficacy of different drugs in the
treatment of AD, specifically through working on the neuroinflammation process are in
different phases. Indomethacin, a non-steroidal anti-inflammatory drug, is in the third
phase of the clinical trial [114]. The drug activates peroxisome proliferator-activated
receptor-gamma (PPAR-γgamma), a prototypical ligand-activated nuclear receptor. This
activation reduces the activity of β-site amyloid precursor protein cleaving enzyme 1,
which results in less Aβ production [115]. Another drug that is in the second phase of the
clinical trials is Simufilam. It can decrease the inflammation and tau phosphorylation in
animal models [116], while candesartan decreases the microglia hyperactivation in AD
mice hippocampal region [117]. Minocycline has neuroprotective effects by reducing the
levels of the inflammatory markers such as IL6, as well as the microglial activation [118].
On the other hand, Pioglitazone affects the process of phagocytosis which aids in getting
rid of the deposited Aβ. It also decreases the interleukin-1β inflammatory cytokines
production [119].

6. Mediators and Neuroinflammatory Modulators

Neuroinflammation is largely considered a pathological hallmark of neurodegener-
ative diseases. Neuroinflammation encompasses the multiple physiological responses
elicited by microglial and astrocytic cells of the innate immune system and a plethora of
proinflammatory factors that affect the environment of the CNS. It is largely triggered by
potential toxins and infections that damage the cells and change neuronal activity. The pri-
mary responsibility of the CNS toward insult or injury involves the activation of microglia.
However, chronic inflammation of neurons and sustained microglial activation results in sig-
nificant proinflammatory cytokines and cell-damaging factors such as C-reactive proteins,
chemokines, cytokines, etc., thus increasing local inflammation [35]. Other inflammatory
modulators involved in neuroinflammation include caspases, prostanoids, neuroprotectin
D, nitric oxide, reactive oxygen species, etc. [91,120,121]. Microglia are the phagocytes of
the CNS and are present in the brain tissue. When microglial cells are activated in response
to pathogenic stimulus, cascades for the production of various proinflammatory cytokines
and neuroinflammatory events begin, and eventually lead to neuroinflammation [122].
Once microglial cells are activated, the accumulation of reactive astrocytes begins at the site
of injury, similar to senile plaques in AD, but do not leave their site of origin and do not
lead to scar formation [123]. Cytokines are the main contributors of neuroinflammation,
including pro- and anti-inflammatory processes, chemotaxis, and neuronal injury [124].
Studies have also shown that microglial migration is regulated by chemokines at the sites
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of neuroinflammation, thus accentuating localized inflammation [125]. Studies have sug-
gested that chronic inflammation within the central nervous system plays an important
role in disease pathogenesis. The presence of microglial cells, and macrophages in CNS, are
regulated in their normal physiological state and relate to injury and repair. Microglia can
multiply whenever the brain is exposed to a noxious neurotoxic stimulus, a process known
as priming. Priming allows microglia to be responsive to various secondary inflammatory
stimuli, which can cause an excessive inflammatory response, especially if chronic, which
can lead to neural damage. Neuronal aging is followed by an imbalance between anti-
inflammatory and proinflammatory networks, increased development of reactive oxygen
species, and increased phagocytic ability to drive microglial priming.

Systemic inflammatory diseases are also a major contributor to priming, and the
hypothesis that neuroinflammation leads to cognitive impairment and dementia in T2D
is primarily based on this idea. Studies suggest that chronic neuroinflammation has a
more pivotal role than traditionally thought within AD pathogenesis. This recognition
has reinforced the assumption that neuroinflammation influences, or even initiates AD
pathogenesis, such that mutations increase the risk of AD in the gene responsible for the
regulation of microglial activity. Cytokines substantially contribute to any aspect of neu-
roinflammation in AD. Increases in plasma and CNS levels of some cytokines substantially
contribute to any aspect of neuroinflammation in AD [126]. Some cytokines that have
increased plasma and CNS concentrations and the proinflammatory CNS microenviron-
ment correlate with the likelihood of transformation to clinical AD from mild cognitive
impairment. These results could explain why the absence of pathological changes, in AD
or AD-related biomarkers, is associated with clinical AD if an embellished inflammatory
response has been produced. In AD, microglia can bind via cell-surface receptors to soluble
amyloid-β (Aβ) oligomers and Aβ fibrils [127]. The inhibition of receptors responsible for
microglia swallowing or phagocytosis of Aβ fibrils appears to be a significant contributor
to the pathology of AD, as it contributes to incomplete and inadequate removal of Aβ
fibrils [128]. Local inflammatory factors are further triggered by continuous accumulation
of Aβ caused by incompetent microglial-mediated clearance and chronic non-resolving
inflammation is created as shown in Figure 2 [129].

Chemokines, also known as chemotactic cytokines, can control the migration of mi-
croglial to neuroinflammatory areas and spread into local inflammation in AD [129]. Proin-
flammatory cytokines such as TNF-alpha and IL-1β are often stimulated by chemokine
release [130]. Upregulation of CCR3 and CCL2 chemokines and CCR5 receptor chemokines
in reactive microglia have been recorded in patients with AD [131,132]. Other coexisting
neurological disorders such as Alzheimer’s disease, Parkinson’s disease and exposure
to neurotoxic stimulus cause damage to the BBB that along with tau and NFT aggrega-
tion, α synuclein and Aβ deposition and the presence of damage-associated molecular
pattern (DAMP) and pathogen-associated molecular pattern molecules (PAMPs) result in
NLRP3, TLR-4 and microglial activation, macrophage infiltration and nuclear translocation
of NF-kB [133]. Activation of these signalling molecules induces oxidative and nitra-
tive stress via increased lipid peroxidation, malonaldehyde (MDA), iNOS, peroxynitrite
(ONOO) and causes neuroinflammation via increased levels of cyclooxygenase-2 (COX-2),
leukotrienes (LTs), TNF-α, matrix metalloproteases (MMPs) as shown in Figure 2 [134].
Transient neuroinflammation involving resident glial activation and the production of
several neuroinflammatory cytokines, including IL-1β, TNF alpha, and IL-6, may also
occur. This neuroinflammatory cytokine induction may be induced as part of a coordinated
interpretation of peripheral infection or insult in the CNS [135]. In AD, inflammatory
cytokines such as TNF, IL-1, IL-12, and IL-23 might sustain microglial impairment. Proin-
flammatory factors such as IL-1, IL-6, and TNF-α have been linked to neurodegeneration
in cerebral regions such as the hippocampus in vascular dementia. In Lewy body de-
mentia, elevated expression of IL-1α and TNF-α has been found [136]. TNF-α and other
cytokines were found to be higher in patients with frontotemporal dementia compared to
controls [137,138].
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Figure 2. Showing mediators and neuroinflammatory modulators and dementia. Coexisting neu-
rological disorders such as Alzheimer’s disease, Parkinson’s disease and exposure to neurotoxic
stimulus cause damage to BBB via alteration in endothelial cells and tight junctions. Damaged BBB
causes NLRP3, TLR-4 and microglial activation, macrophage infiltration and nuclear translocation of
NF-kB that cumulatively causes oxidative stress and neuroinflammation that leads to dementia.

7. Future Directions

The brain represents stasis from a cellular viewpoint, whereas the immune system
depicts a dynamic motion. As the importance of neurodegenerative disease increases, these
two perspectives merge. Nonetheless, recognizing and managing their interactions hold the
key to a majority of late-set CNS diseases being avoided or delayed [139,140]. Microglia are
activated in disease conditions, releasing proinflammatory cytokines which cause neuroin-
flammation and neuronal injury. Phagocytosis and autophagy are interrupted, contributing
to the aggregation of proteins and mitochondrial disorders, leading to the enhanced genera-
tion of ROS that causes further inflammation [109,141,142]. While emerging proof indicates
that inflammation performs a contributory role in the pathogenesis of AD, inflammatory
markers have not yet been well identified as a valuable instrument for diagnosing AD. The
discovery of inflammatory biomarkers to identify prodromal AD stages will be a significant
part of future research [143–145].

Observational research encourages the use of non-steroidal anti-inflammatory drugs
(NSAIDs) to protect from AD, while randomized controlled trials (RCTs) do not. To clearly
understand NSAID use and AD risk, well-designed studies and creative approaches are
needed. It is also critical to determine the best dose and duration of use for maximum
gain and protection [146,147]. In chronic neurodegenerative disease, the ligand-receptor
interactions in the CNS microenvironment, which maintains microglia under tight control
in the healthy brain, are disrupted. However, the “when” and the “how” remain to be
worked out. The concept of “activated microglia” is useful shorthand; however, it has
hampered progress in understanding the richness of the microglia phenotype and the
remarkable plasticity of these cells. The effect of chronic comorbidities and the resulting
systemic inflammation and aging must be considered a major risk factor. The brain’s
innate immune cells respond quickly to systemic events, and these responses are amplified
in aging and in unhealthy brains. The limited tools that allow us to evaluate various
states of in vivo microglia activation make it difficult to understand the involvement of
neuroinflammation in the human CNS. This is a field with significant unmet needs; better
PET ligands or other imaging modalities are critical. Recognizing the fact that manipulating
the neuroinflammation is dependent on the immune system leads to the pathogenesis of
chronic neurodegenerative disease and would provide several possible routes to delay the
onset or progression [106,137].
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8. Need for Guidelines

The involvement of various risk factors, from pathogenic to genetic, suggests that the
occurrence and prevalence of dementia can be prevented through a public health approach,
which can include an introduction of key measures that postpone or reduce cognitive deficit
or dementia. The Global Action Plan on Dementia Response in Public Health 2017–2025
was adopted by the 70th World Health Assembly [18]. The action plan aspires to witness a
society where dementia is avoided and patients who have dementia and their caregivers
can live a good and healthy life. Besides getting support and care, they need to realize their
capacity with equality and dignity. The plan of action covers seven areas of strategic interest
and one of them is the reduction of dementia risk. The strategic management focuses on
the WHO Secretariat developing, distributing, and spreading a base of facts to support
policy measures to minimize modifiable dementia risk factors. That also includes having
a database of evidence retrieved on the incidence of risk factors and the effects of their
reduction and encouraging the formulation and carrying out of multi-sectoral interventions
based on proof to reduce dementia risks. These guidelines are the first measures to help
countries develop ways to delay or prevent the development of dementia [5,107,148].

9. Conclusions

Dementia is a global public health issue that is growing rapidly. It is clinically charac-
terized by gradual cognitive decline with memory impairment, and can affect the level of
cognition, interfering with social functioning in daily living activities, one of the biggest
challenges of the 21st century. Dementia is responsible for huge economic losses for states,
societies, individuals, and families. There are numerous primary care problems; dementia
does not just progress along with age, but significantly influences caregivers’ mental health,
healthcare providers, and the community at large.

In this review, the association of inflammation with dementia is discussed (Figure 3).
In AD, deposition of the amyloid β-protein alone can cause an inflammatory response
that leads to memory impairment and disease progression. Despite the chance that the
deposition of the amyloid β-protein will precede “cognitive deficits” or “clinical man-
ifestation” by decades, it can be speculated that endogenous or exogenous factors can
alter the natural immunogenic response mounted by exposure of microglia to amyloid
β-protein. Therefore, ecologically adjustable risk factors of AD, including obesity, traumatic
brain damage, and systemic inflammation, can cause dementia through the continued
neuroinflammatory drive.
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