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A B S T R A C T

Recent developments in highly accelerated fMRI data acquisition have employed low-rank and/or sparsity constraints for image reconstruction, as an alternative to
conventional, time-independent parallel imaging. When under-sampling factors are high or the signals of interest are low-variance, however, functional data recovery
can be poor or incomplete. We introduce a method for improving reconstruction fidelity using external constraints, like an experimental design matrix, to partially
orient the estimated fMRI temporal subspace. Combining these external constraints with low-rank constraints introduces a new image reconstruction model that is
analogous to using a mixture of subspace-decomposition (PCA/ICA) and regression (GLM) models in fMRI analysis.

We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s
latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R¼ 16 in a radial-
Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with
the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by
leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of
subtle features.
Introduction

The need to reconstruct fMRI data from under-sampled image
acquisition arises in a number of different contexts, to improve temporal
or spatial characteristics of the image data, or to reduce artefacts.
Improving temporal sampling can increase temporal degrees of freedom
for statistical benefit, provide dimensionality necessary for temporal in-
dependent component analyses (ICA) (Smith et al., 2012), aid detection
and modelling of subtle features of the hemodynamic response (Buxton
et al., 2004), mapping regional differences in BOLD latency (Chang et al.,
2008), or increasing sensitivity to fast event related experimental designs
(Buckner, 1998). Alternatively, under-sampling can enable higher
achievable spatial resolutions, facilitating applications such as layer
specific fMRI (Goense et al., 2012). In these cases, accelerated imaging
also benefits from a reduced impact of artefacts such as physiological
noise, which are easier to remove when unaliased, or a reduced effect of
longer echo-train artefacts (e.g. distortion, blurring).

While simultaneous multi-slice imaging has emerged as a popular
successor to multi-slice EPI, in recent years, a number of different stra-
tegies have been proposed for accelerating fMRI data acquisition, not
solely dependent on coil-sensitivity encoding. Some examples that
leverage compressible representations of fMRI data in some way include
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compressed sensing (CS) using spatial wavelet or temporal spectral
sparsity (Jung and Ye, 2009; Jeromin et al., 2012; Holland et al., 2013;
Zong et al., 2014), partially separable function (PS) modelling (Liang,
2007; Lam et al., 2013; Nguyen and Glover, 2014), low-rank modelling
(LR) (Chiew et al., 2015; Chiew et al., 2016), and most recently low-rank
and sparse decompositions (Lþ S) (Singh et al., 2015; Petrov et al., 2017;
Aggarwal et al., 2017; Weizman et al., 2017). With the exception of the
use of spatial wavelet CS, all these methods move away from
time-independent reconstruction of 3D volumes, leveraging temporal
structure in the fMRI data, as they effectively seek to fit reconstruction
models with fewer free parameters to enable reconstruction in the
presence of under-sampling.

While CS relies on explicit knowledge of a sparsifying basis or
transform domain, and PS relies on a priori knowledge of the data’s
complete temporal subspace, the advantage of LR models is that they
require only that a low-rank representation exists, and no knowledge of
the specific characteristics of these spatial and temporal subspaces is
required ahead of time. In one sense, the L þ S approach improves the
robustness of low-rank subspace estimation (i.e. principal component
analysis, PCA) by additionally estimating sparse outliers (Candes et al.,
2011). The L þ S method has also been used in the opposite sense, by
using the L component to regularize sparse modelling of the data (Otazo
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Fig. 1. (a) Schematic of the model used to perform image reconstruction. Here,
the space-time dataset is partitioned into two parts: (orange) a regression model
that fits spatial components to one or more input temporal constraints, and
(green) a low-rank model that fits a fixed, and relatively small number of spatial
and temporal components to the remaining variance in the measured data. The
filled-in boxes represent information that is known a priori. (b) Examples of the
temporal constraints used here, including block, sinusoid and HRF-convolved
waveforms (solid), and their temporal derivatives (dashed).
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et al., 2015a), although some approaches have proposed interpretations
where both the low-rank and sparse components are of functional
importance (Weizman et al., 2017).

Most commonly, temporal frequency is used as the sparse domain
in CS or L þ S reconstructions, via the Fourier transform. However,
this requires strong assumptions about the smoothness or periodicity
of the signals of interest (Lustig et al., 2006). Event-related and
resting-state fMRI, for example, do not exhibit the same kinds of
temporal structure, and sparsity constraints on the temporal spectra
can bias the data considerably. Here, we propose a different approach
to incorporating a priori temporal information in an under-sampled
fMRI image reconstruction problem, which performs a constrained
LR reconstruction in which the temporal subspace of the data is
partially fixed by the given information. In a sense, this can be seen as
a variation of the L þ S approach, where the S-component is sparsified
by a transform defined by the specific temporal constraint (and not
some generic basis).

The proposed method has a meaningful interpretation in the
context of fMRI analysis models. Joint PCA-ICA reconstruction has
been remarkably successful in analysing fMRI data because these
signals lie in subspaces of relatively low dimensionality (Beckmann
and Smith, 2004). Moreover, even in task fMRI, a substantial fraction
of the variance is not known a priori, including the presence of phys-
iological noise, deviation of true activity from the expected task
time-course, and the presence of non-specific neuronal fluctuations.
Data-driven approaches can capture these signals more comprehen-
sively than pre-specified models. Nevertheless, a priori knowledge of
fMRI signals, such as the task or confound regressors used in general
linear modelling (GLM) (Friston et al., 1995), could provide greater
sensitivity in detecting subtle sources of signal variance that are not
captured by data-driven approaches like PCA. In this context, the
proposed approach can be thought of as a PCA/GLM hybrid model,
where LR modelling is used to capture the subspace of fMRI signals
(PCA), but with an additional constraint based on known information
about the signal’s time evolution (GLM). In other words, we fit what is
known about the data (GLM), and let the remaining signal variance be
modelled by a low-dimensional (PCA) to constrain the highly
under-determined image reconstruction problem.

In this paper we show, through retrospective under-sampling simu-
lations and experiments, the effectiveness of the proposed approach in
recovering spatio-temporal BOLD information at high under-sampling
factors, when the known or expected experimental BOLD signal modu-
lations are available a priori. As an extension of our previous work, we
refer to this method as “constrained k-t FASTER”. While this paper fo-
cuses on demonstrating improved extraction of subtle latencies in block-
design task-fMRI, this approach can be used to more generally leverage
any a priori knowledge of signal dynamics, such as those derived from
measures extrinsic to the MRI sampling procedure.

Methods

Reconstruction algorithms

In this paper, our reconstruction models the fMRI data as a space-time
matrix M ¼ UV*, where U is an n� r matrix of spatial components (r
column vectors of spatial maps with n voxels each), V is an t � r matrix of
temporal components (r column vectors of time-courses with t points),
and * denotes the conjugate transpose. In this decomposition, the com-
ponents in U are weighted by the signal energy, while the components in
V are normalized. The resulting product M is an n� t space-time matrix
(with images as columns, and time-courses as rows), corresponding to the
4D datasets common to fMRI.

To solve the under-sampled imaging problem, the LR reconstruction
is formulated as a non-convex, rank-constrained optimization problem
using a fixed, low rank input, which we call k-t FASTER (Chiew et al.,
98
2015). We use a non-convex approach that combines hard thresholding
(Blumensath, 2011) with matrix shrinkage (Goldfarb andMa, 2011), that
we have determined to work well for data with fMRI characteristics,
particularly with LR models with rank � 101, whereas conventional
low-rank models typically operate in a regime where rank � 100 (Otazo
et al., 2015b).

Our constrained k-t FASTER reconstruction asymptotically solves the
following problem:

min
Xr ;Uc

1
2
jjEðXr þ UcVc0Þ � d j j22 þ λr jjXr jj� (1)

where E is the measurement encoding operator, which encompasses both
k-space sampling (which can be non-uniform) and coil-sensitivity
encoding, Xr is a rank r matrix estimate, Uc is the set of spatial co-
efficients associated with the known temporal constraint in Vc (typically
demeaned), d is the sampled data, and k ⋅k* denotes the nuclear norm, or
sum of singular values. In the context of more familiar fMRI analysis
techniques, Xr and Uc correspond to the low-rank PCA model and GLM
spatial regression coefficients, respectively. In words, the problem can be
described as solving for Xr and Uc, such that they are consistent with the
measured data (first term above), and additionally that Xr has rank r with
a minimal nuclear norm (second term above). Here, the scalar λr is
defined implicitly by the choice of r, and is related to the soft shrinkage
applied to the matrix singular values every iteration (Algorithm 1). A
schematic of this reconstruction can be seen in Fig. 1a, and some ex-
amples of potential temporal constraints Vc are shown in Fig. 1b.

To solve this, we can employ the following constrained iterative hard
thresholding and matrix shrinkage (IHTMS) procedure, iterated until
convergence or for a maximum number of iterations (Algorithm 1):



Algorithm 1
Constrained Iterative Hard Thresholding with Matrix Shrinkage. The shrink step requires a singular value decomposition, and effectively finds a
rank-truncated representation of the input, similar to a PCA.

Initialize M0 (e.g., as zeros), step size t, rank r, and shrinkage factor τ.

Loop until converged:

Yðiþ1Þ ¼ MðiÞ þ tE*�d� EMðiÞ�

Uðiþ1Þ ¼ Yðiþ1ÞVc

�
V*

cVc

��1

Xðiþ1Þ
r ¼ shrinkr; τ

�
Yðiþ1Þ � Uðiþ1ÞV*

c

�

Mðiþ1Þ ¼ Xðiþ1Þ
r þ Uðiþ1Þ

c V*
c

where

shrinkr; τðXÞ : max
�
diag

�
sj � τsrþ1

�
1�j�r; 0

�

and sj are the singular values of X.
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Here, the encoding operator E and its adjoint E* perform non-uniform
FFT (and adjoint non-uniform FFT) using the NUFFT (Fessler and Sutton,
2003). Density compensation weights for the non-uniform k-space sam-
pling were generated using a fixed point algorithm (Pipe and Menon,
1999). The operator also performs voxel-wise multiplication of images
onto coil sensitivities, and sums the coil images weighted by their con-
jugate sensitivities as an adjoint operation (Roemer et al., 1990). The
shrinkage operation shrinks the first r singular values to generate a
nuclear-norm minimized rank r matrix Xr .

In essence, this approach iteratively estimates the data by first fitting
the “GLM” coefficients associated with the temporal constraint, and then
identifying a low-rank matrix to explain the remaining variance. The
process partitions the row-space (temporal subspace) into orthogonal
subspaces using the Gram-Schmidt procedure, such that the GLM tem-
poral subspace is normal to the PCA temporal subspace. Unless the
temporal constraints happen to be identically eigenvectors of the data,
however, the spatial dimensions (column spaces) will not in general be
orthogonal. When no constraint is applied, the reconstruction is identical
to the previously report k-t FASTER method using radial-Cartesian
sampling (Chiew et al., 2016).

Using techniques from accelerated gradient methods (Nesterov 1983,
Beck and Teboulle, 2009), we can also significantly speed up the
convergence of the algorithm by adding some momentum to the iterative
procedure (see Supplementary Data). All results from the constrained k-t
FASTER reconstruction were produced using this accelerated algorithm.
Reconstruction code, implemented in MATLAB can be found at http://
users.fmrib.ox.ac.uk/~mchiew/research/.

This procedure depends on forms of sampling incoherence in two
ways, one for the GLM fit, and one for the low-rank residual estimation.
In the latter case, incoherence requirements are the same as for any low-
rank matrix completion problem, namely that the singular vectors not be
too sparse in the sampling domain (Candes and Tao, 2010). In the former
case, however, we also have an interaction between the temporal aliasing
defined by the sampling point-spread function (PSF). As it is impossible
to distinguish between aliased signal energy and true signal, sampling
incoherence is crucial for minimizing unwanted contributions from
aliased signals.

To illustrate the generality of this approach, we also show that this
partially constrained subspace framework can be extended to standard
convex low-rank matrix recovery problems, which solve:
99
min
Xr ;Uc

1
2
jjEðXr þ UcVc0Þ � d j j22 þ λSVT jjXr jj� (2)
Using approaches such as iterative singular value soft thresholding
(SVT) (Cai et al., 2010; Candes et al., 2013), a formulation which can be
found in most L þ S reconstruction approaches (Otazo et al., 2015b).

The primary difference between Eqs. (2) and (1) is that a fixed λSVT is
chosen in the SVT algorithm (Appendix A) that thresholds singular values
based on their amplitude, leaving the actual output rank only implicitly
constrained. The problem of selecting an appropriate λSVT parameter is
similar to the dimensionality selection of a PCA or hard thresholding
problem, where the rank constraints need to be large enough to
encompass the range of functional variability, but in this case also small
enough to effectively constrain the reconstruction.

Finally, we also compare our constrained k-t FASTER reconstructions
to conventional CS and L þ S reconstructions using the temporal fre-
quency domain as the sparse regularizer:

min
X

1
2
jjEX � djj22 þ λCSjjFtXjj1 (3)

min
L;S

1
2
jjEðLþ SÞ � d j j22 þ λLjjLjj� þ λSjjFtSjj1 (4)

Here Ft denotes the Fourier transform along the temporal dimension, λCS,
λS are the parameters for the sparsity constraint, and λL weights the low-
rank constraint. The CS problem (Eq. (3)) is solved using the FISTA (Beck
and Teboulle, 2009) approach (Appendix B), and the L þ S problem is
solved using the approach described in (Otazo et al., 2015b).

Simulations

To assess the performance of the proposed constrained reconstruction
framework, we used a 2D simulation of a digital phantom with realistic
noise properties which we retrospectively under-sampled using a per-
turbed golden-angle radial sampling scheme (Winkelmann et al., 2007;
Chiew and Miller, 2016) at R¼ 8 (i.e., 8 projections per 64� 64 image
time-point). While in general, radial sampling is less efficient than
equivalent Cartesian sampling (Scheffler and Hennig, 1998), so that the
actual under-sampling factors are πR=2 (e.g. 12.57 at R¼ 8), all accel-
eration factors here are quoted relative to equivalent Cartesian sampling.

http://users.fmrib.ox.ac.uk/%7Emchiew/research/
http://users.fmrib.ox.ac.uk/%7Emchiew/research/


Fig. 2. The simulation setup: (a) Two ROIs, the letters “F” and “M” are overlaid
on a background brain image with realistic temporal fluctuations, along with
additive Gaussian white noise. (b) The signals of interest correspond to a 5-
epoch block design task, common to both ROIs (top row), but with a relative
latency of 1 s between ROIS (bottom row). The “F” ROI (positive lag) leading the
“M” ROI (negative lag), where the colour maps correspond to the amplitude of
the timecourse in each pixel. (c) An example time-course from the “F” ROI,
showing the CNR of an equivalent fully-sampled dataset.

Fig. 3. Temporal and spatial subspace fidelity measured by canonical correla-
tion, across 10 simulation repeats. The proposed method with task only, and
task and derivative constraints was compared to an unconstrained reconstruc-
tion, and a fully-sampled ground truth with the same additive noise. (a) Tem-
poral correlations and (b) spatial correlations of the estimated rank-16
subspaces. The low CNR of the ground truth data, truncated at rank 16, 32, 48
and 64 for illustration, is why perfect correlations are not achieved.
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The simulation (Fig. 2) consisted of two regions of interest (ROIs) that
contained the same 5-block off-on BOLD signal variation, generated from
a haemodynamic response (HRF)-convolved boxcar waveform. However,
a relative lag of 1 s between the ROIs was introduced as a subtle
manipulation, to introduce a low-variance functional component. This
latency manipulation was not used for any causal inference.

The simulated shot TR was 75ms, resulting in a reconstructed volume
TR of 600ms over a 5min simulated duration. Both additive complex
Gaussian white noise, and realistic physiological fluctuations extracted
from real data were included, and 4 virtual coils with a diagonal noise
covariance matrix were used. Under these conditions, fully-sampled data
with a sum-of-squares reconstruction would produce BOLD signals with a
low contrast-to-noise ratio (CNR) of approximately 1 (Fig. 2c). To assess
the variability in parameter estimates, each simulation was repeated 10
times with different sampling patterns and additive Gaussian white noise
instances.

Several different temporal constraints and their temporal derivatives,
accounting for differing degrees or accuracy of prior knowledge, were
used in the assessment of the proposed constrained reconstruction
(Fig. 1b). A “block” constraint represented the coarsest signal model, and
corresponded to the block design waveform without any HRF convolu-
tion. A smoother “sinusoidal” constraint was also generated from a pure
sinusoid at the task frequency (1/60Hz). Lastly, two different HRF
models based on the block timing were used to generate more realistic
signal models: “HRF1” used a Γð6;1Þ Gamma model and “HRF2” used a
double Gamma model Γð6; 1Þ � 0:6⋅Γð5;2Þ to include a post-stimulus
undershoot, with HRF2 used to generate the simulated data.

Reconstructions with the proposed approach used a total rank
constraint of 16, with 2 of those components corresponding to an input
temporal constraint. A step size of 0.5 and τ ¼ 0:1 were used for all cases.
For reconstructions using the SVT, CS and L þ S approaches, the pa-
rameters were tuned for the best case, by post-hoc selection of the
optimal values with knowledge of the ground truth. This resulted in
λSVT ¼ 1:1� 10�3, λCS ¼ 1:65� 10�5, λL ¼ 1:8� 10�3, and λS ¼ 8:86�
10�6 relative to the 2-norm of the data. All methods were implemented
with a constant step size of 0.5, and all algorithms were run for 25 iter-
ations, or until the difference between successive estimates was less than
10�4.

Experiments

Data were collected on three healthy volunteers, using a block-design
visually cued finger-tapping task, at 3 T (Prisma, Siemens Healthineers,
Erlangen Germany ) in accordance with local ethics. All data were
100
acquired using a hybrid radial-Cartesian “TURBINE” sampling strategy
(Chiew et al., 2016, Graedel et al. 2017) using a golden angle sampling
scheme with 5� random pertubations (Chiew and Miller, 2016). In all
cases, an additional parallel imaging acceleration factor of R¼ 2 was
applied along the Cartesian z-direction to ensure optimal TEs for BOLD
contrast, and reconstructed prior to and independently of the recon-
struction in the radial direction using GRAPPA (Griswold et al., 2002).

One subject was scanned using a 2mm isotropic functional imaging
protocol, performing finger tapping with and without a 1-s delay in the
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left hand relative to the right. The data were acquired at TE¼ 29ms,
TR¼ 50ms, with whole brain coverage, and reconstructed using 10
radial projections for a volume TR (and output temporal resolution) of
500ms. This corresponded to a radial acceleration factor of R¼ 10 (10
projections, 100� 100 matrix), reconstructed with 8 virtual coils (from
32 physical channels) after using an SVD-based coil compression. The
same data was also reconstructed at a spatial resolution of 4mm, for a
lower effective acceleration factor of R¼ 5 (10 projections, 50� 50
matrix).

To explore higher acceleration and spatial resolution, two subjects
were also scanned under different 1.5mm protocols using the same la-
tency task at TE¼ 30ms, with TR¼ 60 and 75ms respectively, differing
only in TR and axial volume coverage. Both were reconstructed at a
volume TR¼ 600ms with 8 virtual coils after compression, with the
former at R¼ 12.8 (10 projections, 128� 128 matrix) and the latter at
R¼ 16 (8 projections, 128� 128 matrix).

All data were reconstructed using an HRF1-style convolved Gamma
model constraint along with its temporal derivative. Rank constraints of
16 were used, with all reconstruction parameters identical to those used
in the simulations. All the experimental datasets were also reconstructed
using CS with temporal sparsity constraints, using λCS values that were
chosen post-hoc as the best values given the output metrics and qualita-
tive inspection. This resulted in λCS ¼ 1:80� 10�5; 7:92� 10�6 for the 2
mm/4mm data, and λCS ¼ 1:59� 10�5, 2:34� 10�5 for the 1.5mm data
relative to the data norm.
Statistical quantification of parametric maps

To ensure robust statistical parametric mapping, the quantification
procedure performed conventional parametric estimation using the
reconstructed data (e.g. t-statistics), and relied on Gaussian-Gamma
mixture modelling (Beckmann and Smith, 2004; Feinberg et al., 2010)
across the statistics from all voxels to derive corrected statistical distri-
butions that enable valid inference. We employ a 3-distribution model,
with a central Gaussian for the majority null-distributed voxels, and
Gamma distributions that fit the positive and negative activation tails.
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In all the data, the HRF1 model and its temporal derivative were used
as the regression designmatrix, and all data were magnitude transformed
and linearly detrended prior to statistical processing. As the latency effect
is only meaningful when a signal is present, z-statistic images for the lag
are masked by the main task effect (at jzj>3), which generates an
effective “and” parametric contrast.
Latency estimation

Using a first order linear approximation to small shifts in signals, we
can model small lags Δt:

sðt þ ΔtÞ � sðtÞ þ Δt⋅s0ðtÞ

where s'ðtÞ denotes the temporal derivative. Comparing this to the
regression model:

yðtÞ ¼ α⋅sðtÞ þ β⋅s'ðtÞ

it is apparent that the lag Δt can be estimated as the coefficient of the
derivative term, relative to the coefficient on the signal term (Δt ¼ β=α)
(Henson et al., 2002). To assess the relative latencies between left and
right sensorimotor cortices (L-SMC, R-SMC), ROIs based on the z-statis-
tics from the main task (defined by an average latency offset) were
generated for both L- and R-SMC, based on a jzj>3 criteria, limited to the
sensorimotor region, followed by a 1-voxel dilation. Given the relatively
small number of voxels in each ROI, and visible non-Gaussianity of the
distribution of the Δt metric, we performed planned non-parametric
Wilcoxon rank-sum tests to assess the significance of any difference be-
tween the Δt estimates from each voxel in the respective L and R-ROIs,
assessed at p< 0.05. Given the self-paced latency effect, assuming subject
compliance (confirmed after each experiment), we can know some la-
tency difference between L- and R-SMC exists, without knowing what
that latency actually is. Nevertheless, in cases where a significant dif-
ference is found, we additionally tested to see if the identified difference
was significantly different than 1 s. Finally, to generate a post-hoc esti-
mate for the difference in Δt (i.e. the relative lag) in the ROIs, we
Fig. 4. Spatial z-statistic maps of the task and latency
components in the simulated reconstructions with various
temporal constraints, compared to an unconstrained recon-
struction. These are zoomed and cropped over the ROIs for
clarity.(a) Using only the task waveform constraint shows
good recovery of the spatial ROIs associated with the main
task, but no discrimination in latency between the ROIs. (b)
Using both task and temporal derivative constraints, we
observe identical task component recovery, but also
improved sensitivity of the polarity differences in the ROI
latencies, particularly in the HRF1 and HRF2 constraints.



Fig. 5. Example time-courses from the reconstructed data from (a) a voxel in
the “F” ROI, and (b) a non-specific voxel in the centre of the brain. The ground
truth are shown in grey/black, with the full-rank signal in grey, and the rank-16
truncation in black. Unconstrained, block, sinusoid, HRF1 and HRF2 constraint
time-courses are shown in blue, orange, yellow, purple and green respectively.
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averaged the signals within the chosen ROIs and performed a final fit.

Results

Simulation results

First, we assessed how well the total reconstructed subspaces
captured the temporal and spatial characteristics of the simulation
components, which can be seen in Fig. 2b. This was measured by looking
at the angle between the vectorized representation of the temporal or
spatial signals and the reconstructed subspace, or equivalently, by
examining the signal-to-subspace canonical correlations. Fig. 3 shows the
results of all 10 simulation repeats, across reconstructions using only the
different task models given in Fig 1b as constraint, and using both task
and derivative models. To illustrate that the simulation was performed in
a relatively low CNR regime, near the detection limit, the canonical
correlations for the noisy, but fully-sampled equivalent are additionally
shown at different truncated dimensionalities. As expected, the more
informative constraints produce better correlations. Because the tempo-
ral constraints are included in the estimated temporal subspace by
design, we see temporal correlations very close to 1 for the HRF1 and
HRF2 models (Fig. 3a). More importantly, the spatial correlations also
show improvement with increasing fidelity of the temporal constraint
(Fig. 3b), illustrating the improvement in quality of reconstructed spatial
information, despite the fact that no spatial constraints were applied. The
HRF1 and HRF2 constraints bring us close to the spatial fidelity achieved
with fully sampled data, meaning that the limiting factor is noise, and the
effects of under-sampling are largely mitigated.

Looking specifically at the spatial characteristics of the simulated
reconstruction, we see the same pattern manifesting in the z-stat maps
generated by directly evaluating the standard error of the spatial
parameter estimates associated with the temporal constraint across the
10 simulation repeats (Fig. 4). We see in Fig. 4a the spatial maps
generated using the task constraint only, comparing the unconstrained
reconstruction with the various constraint models. While the task
contrast (both ROIs positive) is clearly delineated, no relative latency is
apparent in the estimates (ROIs are the same polarity). Fig. 4b shows the
results with the inclusion of the temporal derivative, which shows a
positive/negative polarity difference between ROIs (“F” vs “M”) with the
HRF1/HRF2 constraints, and to a lesser extent the sinusoidal constraint.
Notably, the unconstrained reconstruction, generated only with the low-
rank model, is not able to identify the subtle latency differences in the
data (i.e. both “F” and “M” are in the blue color map), and the re-
constructions using the block constraint show strong, undifferentiated
latency response related to the lack of haemodynamic delay in the block
design waveform. While simulations near the detection limit in this low-
CNR regime clearly show the benefit of the constrained approach over
the unconstrained low-rank reconstruction, an additional simulation at
high CNR (Supplementary Data) shows that the lack of latency effect in
the unconstrained reconstruction is not a fundamental limitation, but
sensitivity-dependent effect.

Signal temporal characteristics are shown for an example voxel in the
“F” ROI (Fig. 5a) compared again to the noisy fully-sampled ground
truth. The impact of the choice of constraint is visible, with the shape of
the reconstructed time-courses in each case bearing a resemblance to the
specific task model. Nevertheless, each time-series clearly captures some
of the variance contained in the signal that is not directly contained in the
corresponding temporal constraint. In a voxel from the centre of the
simulated brain (Fig. 5b), we expect no “activation”, and all of the
different reconstructions are virtually indistinguishable in that they show
virtually no model bias, and the low-rank model fits very little of the
random, voxel-specific noise.

To quantitatively assess the bias introduced by the proposed
approach, we evaluated the variance explained by the task constraint
time-courses in the ground truth and reconstructed data. A random
Gaussian temporal constraint was also compared to illustrate the case
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where the constraint is expected to have a low variance contribution and
no spatial coherence. In Fig. 6a, we see the total variance associated with
each time-course across 10 repeats, which lie slightly above the line of
identity, meaning that the proposed reconstructions do slightly bias the
data by over-representing its total variance contribution. In Fig. 6b, we
can see the spatial distribution of the regression coefficients associated
with the HRF1 task constraint, showing elevated background contribu-
tions, as well as some bias immediately adjacent to the ROIs. A spatial
bias arising from the random constraint is also clearly visible.

To test whether the elevated bias is due to correlations between the
constraint waveform and the sampling PSF, we compared three different
radial sampling schemes, with different aliased energy distributions: bit-
reversed ordering, which is derived from inverting the binary represen-
tations of an ordered set of projections (Chan et al., 2011), conventional
golden angle ordering (Winkelmann et al., 2007), and golden angle
ordering with a Gaussian perturbation with 5� standard deviation. In
Fig. 7a–c, we see the total amount of aliased energy contained in the x-f
PSF, summed across all space, showing only the positive half of frequency
space. With these samplings, we evaluated the individual impact of pure
complex sinusoidal constraint waveforms spanning the positive fre-
quency domain, on a constant test object (that should have no signal
energy at non-zero frequencies). The total amount of power of the esti-
mates (i.e. error) associated with each constraint frequency is plotted in



Fig. 6. Examination of the variance modelled by the regression/GLM constraints in comparison to the true amount of variance and its spatial distribution. (a) A scatter
plot showing the total variance modelled by the various constraints, along with the random constraint. A slight bias is observed, with the values lying above the
diagonal, which denotes equality with the ground truth. Markers are larger than the standard deviation of these estimates, across 10 runs. (b) A typical example of the
spatial distribution of variance across the reconstructed image (shown as the regression coefficients) for one HRF1 and random-constraint reconstruction compared to
the ground truth. In both estimated cases, elevated coefficients can be seen, with the total variance shown in the bottom left.

Fig. 7. A comparison of regression bias in relation to the sampling PSF, which characterizes residual aliasing. (a-c) Computed x-f PSFs for bit-reversed, golden angle,
and perturbed golden angle radial sampling respectively. Here, the PSFs are summed across space to represent the total amount of aliased energy as a function of
frequency. (d-f) Estimation error (bias) associated with a constant test object, given input temporal constraints spanning the sampling bandwidth. Peaks in the error
estimates clearly coincide with peak side-lobes in the PSFs.
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Fig. 7d–f. When the frequency of the constraint waveform coincides with
a peak side-lobe of the PSF, we find elevated error, which is consistent
with the interpretation of bias as a result of PSF effects. We note that the
impact of randomly perturbed golden angle sampling is that it has a
greatly homogenized aliasing spectral density, with significantly reduced
peak side-lobe power, minimizing the maximum possible error for any
constraint waveform.

Returning to the fidelity of latency estimation in the simulations, we
visually assess the lag or phase between ROIs by plotting the signals from
the two ROIs against one another to generate a phase space representa-
tion of the latencies (Menon et al., 1998). In these representations, sig-
nals that have no relative latency will lie along a line, whereas periodic
signals that are out of phase will trace out an ellipsoidal where the minor
axis scales with the relative latency. Fig. 8 illustrates latency plots
generated by averaging over the known ROIs, with the noiseless ground
truth signal in Fig. 8a for comparison. Figs. 8d and 8f show the impact of
including the temporal derivative constraint, with a wider ellipsoidal
shape capturing latency differences, compared to the unconstrained
(Fig. 8b) and task-only constraint reconstructions (Fig 8c and 8e).

The proposed constrained k-t FASTER approach using the IHTMS
algorithm was compared with an equivalent SVT reconstruction algo-
rithm, both using the HRF1 constraint, alongside a temporal frequency
sparsity CS and Lþ S reconstructions in Fig. 9. We show that with careful
Fig. 8. Phase-space scatter plots of data averaged within the “F” and “M” ROIs
respectively. (a) Noiseless ground truth signal, which is also displayed under-
neath (b-f) for visual comparison. (b) Unconstrained reconstruction, (c,d) HRF1
constrained reconstruction, with and without the temporal derivative, (e,f)
HRF2 constrained reconstruction, with and without temporal derivative. In (d)
and (f), the effect of the derivative constraint in characterizing the latency dif-
ferences between the ROIs is evident.
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choice of λSVT , the IHTMS and SVT results are virtually indistinguishable,
across spatial and temporal metrics. The CS and L þ S produced similar
results, with more heterogeneous z-statistics estimates and biased time-
courses. Resulting normalized root mean square errors for the various
methods are 3.61% (IHTMS), 3.36% (SVT), 3.62% (CS) and 3.58%
(L þ S) respectively. For simplicity, we evaluated the CS method only in
the Experimental data as representative of sparsity-driven
reconstructions.

Experimental results

Results from the functional task experiment demonstrate the ability
for the constrained k-t FASTER approach to capture subtle latency dif-
ferences at considerable acceleration factors. In Fig. 10, results for the
2mm data are shown reconstructed at the nominal 2mm resolution
(R¼ 10), and at a reduced resolution of 4mm (R¼ 5), where the latter
provides an estimate closer to the ground truth by reducing the under-
sampling burden. In all cases, there is a robust response of the main
task effect in both L- and R-SMC. As expected in the latency experiment,
we also see negative (blue) latency coefficients in the L-SMC and positive
(red) in the R-SMC for both methods (Fig. 10d, 10h), which is particu-
larly clear in the 4mm data (Fig 10c, 10g). In the control experiment,
while the task responses were equally strong, no positive/negative la-
tency difference is evident in the z-statistic maps. The CS approach shows
similar z-statistic maps.

The upper half of Table 1 summarizes the statistical significance of
the latency estimations across these datasets which largely mirror the
qualitative results in Fig. 10. Here, given that the latency estimates are
generated by averaging the signal over the ROIs defined by main task
activation, we would expect similar values between the 4mm and 2mm
reconstructions. In the latency experimental data, we see significant la-
tency estimates ranging from 1.41 s to 2.19 s for the constrained k-t
FASTER and CS approaches. In comparison, the unconstrained recon-
struction was unable to reject the null hypothesis (that there is no latency
in response between left and right motor cortices) in either case. We also
found that only the 4mm reconstruction showed a latency significantly
different from 1 s, although given that this occurred in both the con-
strained k-t FASTER and CS reconstructions, it could be the result of a
true latency greater than 1 s. The 2mm latency data were close to sig-
nificance in both cases as well, with p-values of 0.11 and 0.06 respec-
tively, and this could reflect the fact that 2mm latencies were under-
estimated relative to the 4mm reconstructions. In the control data, we
expect a null result, as no experimental manipulation has occurred, but
we see that in this case, the CS reconstruction falsely rejected the null
hypothesis, likely due to signal bias from the sparse representations.

Figs. 11 and 12 show the latency phase-space plots using the same
ROIs for the 2mm constrained reconstruction, with Fig. 11 highlighting
the visible differences between the latency and control experiments, in
both 4mm and 2mm reconstructions in the proposed approach. In
Fig. 12, the difference between the proposed constrained, unconstrained,
and CS reconstructions in the 2mm latency experiment are shown, with
ROI averaged time-courses in Fig 12d–f.

Table 1 also summarizes the results from both subjects in the 1.5mm
experiments, along with latency estimates from control ROIs defined by a
10 voxel shift in the anterior direction. Here, the results mirror the 2mm
data, where the proposed method the was able to reject the null in both
subjects, whereas the CS reconstruction failed to achieve significance in
subject 2. Both methods did not reject the null in the control ROIs, and
the unconstrained reconstructions similarly failed to reject the null, as
expected.

Discussion

We have demonstrated the feasibility of using temporal constraints
derived from experimental design information to facilitate image
reconstruction of highly under-sampled fMRI data. In simulations and



Fig. 9. A comparison of the constrained k-t FASTER method (a) with an alternative implementation via the SVT approach (b), as well as a CS reconstruction (c) and
L þ S reconstruction (d) using temporal frequency sparsity. The first two columns show z-statistic images for the task and latency components, followed by repre-
sentative time-courses and latency phase plots. Reconstructions in (a) and (b) are virtually identical, illustrating that given some equivalent λSVT , the IHTMS and SVT
methods perform similarly. In (c) and (d), however, the latency component contains considerable heterogeneity, particularly in the lack of positive latency in the upper
portion of the "F" ROI (arrows). The IHTMS and SVT constrained reconstructions show more specific variance being captured (cf. the ground truth voxel in Fig. 5a),
whereas the CS and L þ S time-courses appear more biased towards the sparse representation. Better latency differentiation in the constrained low-rank approaches
compared to the CS and L þ S approaches, which is also evident in the phase-space scatterplots.

M. Chiew et al. NeuroImage 174 (2018) 97–110
experiments, we show that the proposed method enables recovery of
subtle and low-CNR spatio-temporal features like relative latencies in the
BOLD response between comparable cortical regions, even when no
spatial information is used (or needed) to constrain the reconstruction. In
our previous work using only the low-rank model for reconstruction
(Chiew et al., 2015; Chiew et al., 2016), we have shown that recovery
fidelity of functional components is related to the strength (relative
variance) of the components. As represented here by the “unconstrained”
reconstruction, relatively weak effects are not well captured, whereas
extending the low-rank approach with incorporation of the temporal
constraint greatly improves recovery fidelity, although this requires prior
knowledge of the expected signals. Here, we were able to generate
whole-brain functional images at isotropic resolutions up to 1.5mm,
while retaining volume TRs �600ms, with TEs affording optimal BOLD
contrast. These data, reconstructed at acceleration factors from R¼ 10 to
16, retained sensitivity to subtle features of the BOLD response in the
latency task tested here. This approach could be a useful alternative for
ultra-high resolution fMRI, such as for layer-specific imaging (Koopmans
et al., 2011), as we have shown that only small amounts of effective
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spatial resolution loss can be expected using low-rank constraints, even at
high under-sampling factors (Chiew et al., 2016).

Crucially, this GLM þ PCA-inspired reconstruction produces sensible
data reconstructions at under-sampling factors that result in very ill
conditioned image reconstruction problems, even with the use of coil
sensitivity information. We demonstrated this using 3D radial-Cartesian
sampling, but the constrained k-t FASTER approach is compatible with
any suitably incoherent k-t sampling pattern, such as CAIPI-sampled 3D-
EPI (Poser et al., 2013) and SMS-EPI by introducing time-varying sam-
pling patterns (Chiew et al., 2017a). The sampling incoherence is an
important factor, however, as it controls the level of bias (i.e. false pos-
itive results) introduced by the constraint. While the bias is small for the
sampling strategy used here, we additionally corrected for it by per-
forming mixture modelling on the statistical parametric maps to correct
the null of the z-statistic distributions to correspond to zero mean and
unit variance Gaussians, which fit this data well. Mixture modelling is
also useful for correcting for bias that results in constrained re-
constructions due to implicit noise filtering and/or reduced temporal
degrees of freedom.



Fig. 10. Reconstructed z-statistic images for the 2mm experiments, showing the latency finger tapping task in the upper quadrants (a-h), and the control (finger
tapping with no latency) task in the lower quadrants (i-p). The left quadrants (a-d, i-l) show the constrained reconstruction (using the HRF1 constraint and temporal
derivative), and the right quadrants (e-h, m-p) show the CS reconstruction (λCS ¼ 1:58� 10�5). Within each quadrant, the top row (a,b,e,f,i,j,m,n) shows the task z-
statistic and the bottom row shows the latency (c,d,g,h,k,l,o,p), masked by the task. The left-most columns of each quadrant (a,c,e,g,i,k,m,o) show a 4mm recon-
struction of the same data, with the nominal resolution 2mm reconstruction on the right (b,d,f,h,j,l,n,p). Task images are all thresholded at (3< jzj< 10), and latency
images are shown on a (jzj< 3) scale, masked by the task response. All z-statistics are overlaid on example reconstructed images.
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Here, CS leveraging sparsity in the temporal frequency domain per-
formed nearly as well as the proposed method, illustrating the power of
sparse regularization. However, the CS method demonstrated both false
positives and false negatives (Table 1): not identifying one out of four
true latencies, and falsely finding latency in one of the four control ex-
periments. By comparison, the constrained k-t FASTER reconstruction
had no false positives or negatives out of the eight cases. Furthermore, it
performed less robustly than the proposed methods in the low CNR
simulations in latency identification. While we chose to focus on relative
BOLD latency for our block-design experiments, one significant advan-
tage of the proposed approach is that applications are not restricted to
block design experiments. For example, the proposed approach could be
applied to fast event-related fMRI experiments, where optimal design
efficiency requires jittered or randomized trial timings (Dale, 1999),
although the constraint model would be more complex to account for
inter-event variability. Whereas enforcing sparsity in the temporal fre-
quency domain tends to favor periodic experimental designs, leveraging
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sparsity is not mutually exclusive with the proposed temporal constraint,
and future work may combine low-rank, sparse and explicit temporal
constraints for further benefit.

The proposed method bears similarity to methods described in the
context of functional imaging analysis, such as semi-blind or regularized
ICA methods using temporal constraints (Calhoun et al., 2005), spatial
constraints (Valente et al., 2009; Lin et al., 2010), or both (Rasheed et al.,
2009; Wang et al., 2014). In these methods, prior information is injected
to the ICA process to improve the identification of functional compo-
nents. Similarly, our proposed approach aims to use temporal informa-
tion equivalent to a GLM design matrix to improve the estimation of
spatio-temporal subspaces that characterize our signals of interest.
However, the main difference is that in our case, this information is used
to regularize the image reconstruction problem, rather than as an anal-
ysis tool after the functional images are formed.

This distinction is of great importance in the presence of under-
sampled data acquisition. In fully-sampled acquisitions, there is a



Table 1
Estimated latencies and p-values for these comparisons, with significant estimates (thresholded at p< 0.05) indicated in bold, with an asterisk. The p1 values refer to the
"any latency difference" test, and the p2 values refer to the test of whether latency means were 1 s apart.

Task Dataset Constrained k-t FASTER CS Unconstrained

Latency 4.0mm (Subject 1) 2.19 s
p1 ¼ 0.0083*
p2 ¼ 0.041*

1.76 s
p1 ¼ 0.0019*
p2 ¼ 0.011*

0.26 s
p1¼ 0.17 (ns)
p2¼ –

2.0mm (Subject 1) 1.41 s
p1 ¼ 0.025*
p2¼ 0.11 (ns)

1.51 s
p1 ¼ 0.0027*
p2¼ 0.058 (ns)

0.63 s
p1¼ 0.096 (ns)
p2¼ –

1.5mm (Subject 2) 1.07 s
p1 ¼ 0.038*
p2¼ 0.080 (ns)

0.72 s
p1¼ 0.42 (ns)
p2¼ –

0.46 s
p1¼ 0.13 (ns)
p2¼ –

1.5mm (Subject 3) 1.70 s
p1 ¼ 0.021*
p2¼ 0.11 (ns)

1.58 s
p1 ¼ 0.018*
p2¼ 0.077 (ns)

�0.05 s
p1¼ 0.52
p2¼ –

No Latency 4.0mm (Subject 1) �0.51 s
p1¼ 0.62 (ns)

�0.98 s
p1¼ 0.23 (ns)

�0.35 s
p1¼ 1.00 (ns)

2.0 mm (Subject 1) �0.58 s
p1¼ 0.44 (ns)

¡0.94s
p1 ¼ 0.0057*

�0.35 s
p1¼ 0.25 (ns)

1.5 mm (Subject 2)
(control ROI)

73.56 s
p1¼ 0.79 (ns)

�5.89 s
p1¼ 0.48 (ns)

�0.25
p1¼ 0.20 (ns)

1.5 mm (Subject 3)
(control ROI)

�7.38 s
p1¼ 0.095 (ns)

13.38 s
p1¼ 0.12 (ns)

1.60 s
p1¼ 0.59 (ns)

Fig. 11. Phase space scatter plots for the 2mm experiments, with the GLM
model fit over the averaged ROI response overlaid. (a,c) the latency experiment
data, reconstructed at 4mm and 2mm respectively, and (b,d) the control data
reconstructed at 4mm and 2mm. The qualitative difference in the latency data
compared to the control data highlight the sensitivity and specificity of the
proposed method.

Fig. 12. Phase space scatter plots for the 2mm latency experiment, with the
HRF1 model fit overlaid. (a) The constrained reconstruction is compared to the
(b) unconstrained reconstruction, and (c) the CS reconstruction. Also shown are
averaged voxel time-courses over the left ROI for the (d) constrained, (e) un-
constrained, and (f) CS data.
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unique mapping between the k-space data and the image that is maxi-
mally consistent with those measurements, so it is conceptually identical
whether the GLM model is fit to the k-space data, or the generated im-
ages. However, by using this information as part of the image formation
process, and to constrain the output images in conjunction with a low-
dimensional model to describe the non-explicitly modelled variance,
we are able to identify features of the data that would be otherwise un-
detectable using either part of the decomposition model alone. This
pairing facilitates reconstructions with imperfect knowledge (e.g. by
using canonical HRFs), in which the low-rank/PCA part of the
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reconstruction can describe the unmodelled, but important signal vari-
ance. As shown in the simulation results, reconstructions using crude
pure sinusoidal constraints or constraints derived from different HRF
models were still able to capture the signals of interest, despite not
providing perfect information. Furthermore, completely uninformative
(e.g. random) constraints only affect the reconstructed data through bias
from the sampling PSF and wasted degrees of freedom.

We have only a limited number of total degrees of freedom available
due to the under-sampling, so we cannot simply fit a complete temporal
basis using this procedure. While there are benefits to both GLM-like
models, which make use of what we know, and PCA-like models,
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which adapt to the variance contained in the data, the advantage of the
proposed constrained k-t FASTER approach is in leveraging the strength
of both in a way that makes an efficient use of the available sampling
degrees of freedom. Additionally, whereas in a GLM, unmodelled signals
(e.g. physiological noise) only impacts statistics, in the reconstruction
problem unmodelled or uncharacterized variance can lead to mis-
attributed signal (i.e. image artefact) when filtered through the sampling
point-spread function. Allowing the low-rank component to capture
signal variation in addition to the GLM-like temporal constraint is
important in ensuring the robustness of the final estimates.

Data pre-processing pipelines that typically follow image formation
remove confounds and generally correct the representation of the data. In
our proposed method, we rely largely on the data obeying low-rank as-
sumptions, as the GLM constraints are enforced while images are being
formed, without any pre-processing. However, as image reconstruction
techniques are becoming increasingly sophisticated, we will be able to
perform many, if not all of traditional pre-processing by incorporating
these corrections into the measurement model. For example, motion
correction can be enabled by estimating and correcting raw k-space
(Graedel et al., 2017), physiological noise and nuisance removal can be
performed using the approach described below, distortion and
off-resonance correction can be formulated as with image reconstruction
as a general linear inverse problem (Wilm et al., 2011), and spatial
smoothing can be performed more optimally by manipulating k-space
sampling trajectories (Kasper et al., 2014).

This approach also presents a more general framework for incorpo-
rating any known signals into the reconstructed data subspaces, not just
those derived from a task design matrix. For example, this could poten-
tially be used for multi-modality integration, where neuronal fluctuations
measured with simultaneously acquired electroencephalography (EEG)
could be transformed and used to constrain the fMRI temporal subspace,
on the assumption that shared variance exists between the modalities.
This type of external information could allow the constrained k-t FASTER
method to be applied not just in task-fMRI, where the neuronal manip-
ulation is known a priori, but also to resting state conditions where EEG
signals are instead used to predict resting state signal variance (Chiew
et al., 2017b). Other possible sources of temporal information include
externally acquired physiological confound traces (e.g. respiratory,
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cardiac), which could be used to regress out physiological nuisance ef-
fects when explicitly modelled in the reconstruction. Furthermore, this is
also not restricted to temporal constraints, and a similar procedure can be
used to integrate spatial prior information, such as a priori functional
parcels (Wong, 2014).

Although it may appear that the design matrix is used twice, to
reconstruct the data and then subsequently to generate spatial z-statistic
maps, in fact, the information in the design matrix is being used in the
same way, multiple times for practical convenience. In a very real sense,
incorporating the GLM constraint in the reconstruction model directly
estimates the GLM regression coefficients as a part of the (complex)
image formation process. However, after magnitude transform of the
image data, and detrending or filtering, the coefficients need to be re-
estimated in a final fit, analogously to what would be done in a con-
ventional analysis. Furthermore, this approach does not require that a
GLM analysis be performed at all, where the reconstructed data could just
as easily be analyzed by model-free methods.

Conclusion

We have presented a new method for constrained image reconstruc-
tion of highly under-sampled fMRI data, by leveraging information from
GLM experimental design matrices as part of the image reconstruction
process, in conjunction with low-rank modelling. This approach is
compatible with many of the other methods used for efficient sampling of
fMRI data, including compressed sensing, and parallel imaging in 3D and
SMS-EPI, and could be used in future to facilitate even larger gains in
sampling efficiency. The framework presented also permits other
extrinsic sources of information to be leveraged for highly under-sampled
image reconstruction.
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Appendix

Appendix A. SVT algorithm

Initialize M0 (e.g., as zeros), step size t, rank r, singular value threshold. λ
Loop until converged:

Y ðiþ1Þ ¼ MðiÞ þ tE*�d � EMðiÞ�

Uðiþ1Þ ¼ Y ðiþ1ÞVc

�
V*
c Vc

��1

Xðiþ1Þ ¼ shrinkλt
�
Y ðiþ1Þ � Uðiþ1ÞV*

c

�

Mðiþ1Þ ¼ Xðiþ1Þ þ Uðiþ1Þ
c V*

c

where

shrinkλtðXÞ : max
�
diag

�
sj � λt

�
; 0
�

and sj are the singular values of. X
The SVT-based algorithm differs from Algorithm 1 only in the way the shrinkage of singular values is applied. Here, the shrinkage is dictated by the

parameter λ and the step size t.
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Appendix B. FISTA algorithm

Initialize X0, Y0 (e.g., as zeros), step size t, k0 ¼ 1
Loop until converged:

XðiÞ ¼ F�1
t

�
shrinkλt

�
Ft

�
Y ðiÞ þ tE*�d � EY ðiÞ����

kiþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2i

q

2

Y ðiþ1Þ ¼ XðiÞ þ kiþ1 � 1
ki

�
XðiÞ � Xði�1Þ�

The FISTA algorithm applied to the space-time dataset, using the sparsifying transform Ft , which applies the Fourier transform along the temporal
dimension.

Appendix C. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2018.02.062.
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