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Systems biology driving drug development: from design to the
clinical testing of the anti-ErbB3 antibody seribantumab
(MM-121)
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Jeff Kearns1, Aaron Fulgham1, Olga Burenkova1, Viara Grantcharova1, Defne Yarar1, Violette Paragas1, Jonathan Fitzgerald1,
Marisa Wainszelbaum1, Kip West4, Sara Mathews1, Rachel Nering1, Bambang Adiwijaya1, Gabriela Garcia1, Bill Kubasek1, Victor Moyo5,
Akos Czibere1, Ulrik B Nielsen6 and Gavin MacBeath1

The ErbB family of receptor tyrosine kinases comprises four members: epidermal growth factor receptor (EGFR/ErbB1), human EGFR
2 (HER2/ErbB2), ErbB3/HER3, and ErbB4/HER4. The first two members of this family, EGFR and HER2, have been implicated in
tumorigenesis and cancer progression for several decades, and numerous drugs have now been approved that target these two
proteins. Less attention, however, has been paid to the role of this family in mediating cancer cell survival and drug tolerance. To
better understand the complex signal transduction network triggered by the ErbB receptor family, we built a computational model
that quantitatively captures the dynamics of ErbB signaling. Sensitivity analysis identified ErbB3 as the most critical activator of
phosphoinositide 3-kinase (PI3K) and Akt signaling, a key pro-survival pathway in cancer cells. Based on this insight, we designed a
fully human monoclonal antibody, seribantumab (MM-121), that binds to ErbB3 and blocks signaling induced by the extracellular
growth factors heregulin (HRG) and betacellulin (BTC). In this article, we present some of the key preclinical simulations and
experimental data that formed the scientific foundation for three Phase 2 clinical trials in metastatic cancer. These trials were
designed to determine if patients with advanced malignancies would derive benefit from the addition of seribantumab to
standard-of-care drugs in platinum-resistant/refractory ovarian cancer, hormone receptor-positive HER2-negative breast cancer,
and EGFR wild-type non-small cell lung cancer (NSCLC). From preclinical studies we learned that basal levels of ErbB3
phosphorylation correlate with response to seribantumab monotherapy in mouse xenograft models. As ErbB3 is rapidly
dephosphorylated and hence difficult to measure clinically, we used the computational model to identify a set of five surrogate
biomarkers that most directly affect the levels of p-ErbB3: HRG, BTC, EGFR, HER2, and ErbB3. Preclinically, the combined information
from these five markers was sufficient to accurately predict which xenograft models would respond to seribantumab, and the
single-most accurate predictor was HRG. When tested clinically in ovarian, breast and lung cancer, HRG mRNA expression was
found to be both potentially prognostic of insensitivity to standard therapy and potentially predictive of benefit from the addition
of seribantumab to standard of care therapy in all three indications. In addition, it was found that seribantumab was most active in
cancers with low levels of HER2, consistent with preclinical predictions. Overall, our clinical studies and studies of others suggest
that HRG expression defines a drug-tolerant cancer cell phenotype that persists in most solid tumor indications and may contribute
to rapid clinical progression. To our knowledge, this is the first example of a drug designed and clinically tested using the principles
of Systems Biology.
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INTRODUCTION
The development of a new drug from original idea to
commercial1,2 product is a complex process that can take up to
15 years and cost in excess of $1 billion.3 Traditionally, drug
discovery has been a linear endeavor, progressing from target
identification and validation to therapeutic lead identification,
often driven by high-throughput screening. The final clinical lead
molecule usually emerges after many rounds of trial and error and
after numerous elimination steps, rather than as the result of
specific design criteria and the subsequent engineering of a
therapeutic agent that meets these pre-set specifications.

Initially, intentional drug discovery in cancer was focused
almost exclusively on targeting DNA synthesis and cell division,
resulting in antimetabolites (e.g., 5-fluorouracil), DNA alkylating
agents (e.g., cyclophosphamide), and microtubule stabilizers
(e.g., taxanes). These drugs showed efficacy, but at the price of
high toxicity due to lack of selectivity.4 The identification of
cancer-causing genes in the early 1980s started a new era of
cancer drug discovery: the development of targeted therapies in
the form of monoclonal antibodies and small molecule inhibitors.
Two prominent and much-cited examples are trastuzumab
(Herceptin) and imatinib (Gleevec). Trastuzumab was the first
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targeted therapy for use in women with metastatic breast cancer
who have tumors that overexpress HER2,5 whereas imatinib was
approved for the treatment of chronic myelogenous leukemia and
is the first selective inhibitor of the Abl kinase.6 These notable
successes validated the use of a tumor’s genetic makeup to guide

the development and clinical use of targeted therapies and
provided impetus for the cancer genomics revolution. Large-scale
sequencing efforts enabled the identification of numerous
genomic alterations and highlighted many new potential targets
for cancer therapy and their associated predictive biomarkers.7
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Unfortunately, not all new discoveries were met with the same
success. We soon learned that there is not always a clear one-
to-one association between genetic alterations and effective new
cancer treatments. Researchers often struggle to understand the
functional importance of mutations, a challenge that is further
compounded by their heterogeneous distribution in tumors.
Consequently, the number of patients with tumors that are
dependent on a single oncogenic driver is low. In fact, driver
mutations often do not translate across different indications. For
example, melanomas with BRAF mutations respond well to B-Raf
inhibitors, but the same is not true in colorectal cancer.8,9

Perhaps the greatest challenge underlying the effective
treatment of cancer is that tumors continuously adapt to their
environment, evolving ways to circumvent the agents intended to
kill them. In order to treat and eventually cure cancer, we need to
gain a systems-level understanding of tumors, including how they
interact with their microenvironment, how they respond to the
immune system, how they evade therapeutic intervention, and
how they evolve over time. Only computational methods will
allow us to master this complexity and design appropriate
strategies to defeat the ‘Emperor of all Maladies’.10 To date,
Systems Biology has focused mainly on understanding how tumor
cells process external signals, with the goals of understanding key
pathways that are frequently dysregulated in cancer11,12 and of
designing novel therapies to block these pathways.13–15 Only
recently has Systems Biology been used to understand better the
spatial and temporal heterogeneity in patient tumors in order to
rationally design combination therapies.16,17 Clearly, we have a
long way to go, but even now we can start to apply these
methods to the discovery and development of novel therapeutics.
Here, we summarize a decade-long effort to apply the principles

of Systems Biology to the discovery and development of a new
investigational agent, seribantumab (MM-121; Merrimack). We will
illustrate how systems-level investigations coupled with computa-
tional modeling were used to guide decision making, from target
identification to therapeutic design (Figure 1), dose selection and
single agent activity (Figure 2), to the identification of rational
combinations (Figures 3, 4, 5) and finally to the preclinical
identification of biomarkers (Figure 6) and clinical testing
(Figure 7). The road began with a screen to identify the molecular
pathways most critically involved in ligand-mediated cancer cell
survival. These efforts highlighted the ErbB network, which was
then modeled and dissected to identify the target—ErbB3—that is
most critically involved in mediating pro-survival signaling.
Computational models were used to assess how best to target
ErbB3 and to define design criteria for the ensuing antibody,
seribantumab. Modeling was further used to support dose
selection and to identify candidate biomarkers for ErbB3 activa-
tion, and clinical trials designed to test and refine these biomarker
hypotheses. The clinical development of seribantumab is not yet
complete. To date, this agent has been tested in three randomized
Phase 2 trials of metastatic cancer: in combination with paclitaxel
versus paclitaxel alone in platinum-resistant/refractory ovarian

cancer (NCT01447706); in combination with exemestane versus
exemestane plus placebo in ER/PR+ HER2− breast cancer
(NCT01151046); and in combination with erlotinib versus erlotinib
alone in EGFR wild-type NSCLC (NCT00994123). Although
seribantumab did not demonstrate significant clinical benefit in
unselected patient populations, predefined biomarker analyses
highlighted a subset of patients in all three settings that derived
benefit from the addition of seribantumab to standard therapy.
Consistent with both modeling and preclinical experiments,
clinical benefit was observed in patients who’s tumors identified
with a substantial subset of HRG expressing cancer cells
detectable in their primary tumors or metastatic lesions, once
again demonstrating the challenges associated with tumor cell
heterogeneity. Seribantumab is currently being investigated in
combination with chemotherapy versus chemotherapy alone in a
Phase 2 study in NSCLC in a prospectively selected HRG-positive
patient population (NCT02387216) following immunotherapy.
Broader analysis of cancer patient outcomes across multiple
indications suggests that the presence of HRG in tumors is
emblematic of a patient population, that is characterized by
inferior clinical outcomes with a demonstrated lack of efficacy to
standard therapies. In this article, we highlight some of the clinical
characteristics of patients displaying HRG-ErbB3 pathway activa-
tion, which we believe identifies a novel clinical phenotype
characterized by the persistence of highly drug-tolerant HRG-
positive cancer cells within a heterogeneous tumor that directly
impacts clinical outcomes following anticancer therapy. Given our
preclinical and clinical data to date, anti-ErbB3 therapies like
seribantumab may have the potential to significantly enhance
clinical activity of standard of care therapies by combating
persistent drug-tolerant cancer cells via the inhibition of the
HRG-ErbB3 pathway.

RESULTS
Target identification and molecule design criteria
Although many cancer patients respond well to therapy, others do
not respond at all and, even among those that initially respond,
resistance inevitably arises. It had previously been shown that
constitutive or inducible Akt phosphorylation promotes resistance
to chemotherapy, targeted therapy (trastuzumab), and anti-
hormonal therapy (tamoxifen).18 We reasoned that cancer cells
could potentially evade all classes of therapy by eliciting or using
signals in their extracellular environment to activate pro-survival
signaling through Akt. Based on this hypothesis, we conducted a
‘Critical Network Identification’ screen to assess which of the
myriad cytokines and growth factors known to activate Akt are the
most potent across the NCI-60 panel of cell lines. The NCI-60 panel
is a well-characterized collection of cell lines representing nine
different tumor types.19 Focusing on the 54 cell lines in this panel
that were derived from solid tumors, we exposed each cell line to
saturating concentrations of 60 different growth factors or
cytokines and, following 30 min of stimulation, measured the

Figure 1. Computational model of ErbB signaling. (a) Heat map of ligand screen following subtraction of each cell lines median HSA control-
based Akt signal and normalizing the signals within a cell line to the maximum ligand activation for that cell line. (b) Schematic depiction of
the ErbB signaling network showing the receptors EGFR–ErbB4, BTC binding to EGFR and HRG binding to the ErbB3 receptor, receptor
dimerization, dimer internalization and recycling, and interactions leading to activation of the PI3K-Akt cascade. The computational model is
an interpretation of this schematic, using mass action kinetics. Because of the low expression observed in vitro, ErbB4 was omitted from the
computational model. (c) The computational model was calibrated to a high-density experimental signaling data set. Phosphorylated-EGFR,
HER2 and HER3− as well as p-Akt were measured in serum-starved ADRr ovarian cancer cells stimulated with HRG or BTC. The model was built
in MATLAB SimBiology v2.1. A genetic algorithm was used to fit key parameters. Both experimental and simulated data are normalized to the
largest signal for each target under either stimulus. (d) Sensitivity analysis of the ErbB model. The normalized time-integrated sensitivity of Akt
phosphorylation to each non-zero species was determined by varying the amount of each non-zero species and simulating the time course of
p-Akt in response to 1 nmol/l HRG or BTC, with the calibrated computational model. The normalized sensitivity integrated over the 2 h time
course is shown, with species ranked according to their sensitivity during HRG stimulation. Figures 1b and c from Schoeberl et al.1 Reprinted
with permission from AAAS.
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level of phosphorylated Akt at serine 167 (p-Akt (S473)) by ELISA
(Figure 1a, Supplementary Table S1). Even though all 60 ligands
had previously been reported to induce Akt phosphorylation, only
five families of growth factors exhibited widespread activity across
the cell line panel: the EGF ligand family; the heregulin (HRG)
family; insulin-like growth factors 1 and 2 (IGF-1/2); hepatocyte
growth factor (HGF); and the platelet-derived growth factors
(PDGF family). Similar results were later observed by Niepel and
colleagues in a broad panel of breast cancer cell lines.12

Given that both the EGF and HRG families of ligands induced
Akt phosphorylation in most cell lines, we focused our computa-
tional modeling efforts on the ErbB signaling network. We started
by defining the topology of the ErbB network based on our
understanding of which ligands bind which receptors, how
receptors homo- and heterodimerize, how receptors traffic, and
which intracellular signaling pathways are activated. This informa-
tion, as represented in cartoon form in Figure 1b, was captured in
computational models comprising ordinary differential equations.
There are four distinct ErbB receptors and 13 soluble and

Figure 2. Single agent activity, pharmacokinetic and pharmacodynamic properties of seribantumab. (a) Seribantumab inhibits both basal and
HRG-induced phosphorylation of ErbB3 and Akt in A549 cell lines. Serum-starved A549 cells were pre-treated with seribantumab (250 nmol/l)
for 1 h or 24 h, followed by treatment with 10 nmol/l HRG for 10 min. (b) Tumor response in A549 xenografts following administration
(μg/dose, q3d, intraperitoneal (i.p.)) of various seribantumab doses (n= 5/group). Tumor growth was measured twice per week by calipers and
plotted as mean± s.e.m. (c) Pharmacokinetic profile of seribantumab in serum obtained from A549 tumor bearing mice. Serum samples were
collected at 1, 4, 8, 24, 48, 72, 96, and 168 h following single dose of seribantumab (n= 3 mice/time point). A one-compartment
pharmacokinetic model with first order absorption (lines) and non-linear clearance was used to fit the data set (dots) and estimate the
pharmacokinetic parameters. (d) Relationship between tumor growth inhibition and serum trough levels following treatment with various
doses of seribantumab (colored symbols represent experimental data and black symbols represent data at lower doses predicted using the PK
model simulations). (e) Pharmacodynamic effects of seribantumab in A549 xenografts. Graph presents mean± s.d. of t-ErbB3 (left) and
p-ErbB3 (right) levels as measured in A549 tumors following treatment with seribantumab (600 μg/dose, q3d, i.p). Tumors were harvested at
24, 48 and 72 h following either single dose or two doses of seribantumab (n= 3 mice/time point). *Po0.05 versus control treated
(by Wilcoxon rank-sum test).
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membrane-bound ligands that activate multiple downstream
signaling pathways, including the mitogenic Ras-MAPK cascade
and the pro-survival PI3K/Akt pathway.20 To better understand
information flow through this network and to address specific
scientific questions, we built two different models. The more
extensive model captures Akt and Erk signaling induced by EGF
and HRG,21 whereas the second, smaller model focuses specifically
on activation of Akt by HRG and BTC.1 Both models capture
homo− and heterodimerization among the ErbB receptors and
were built to understand HRG, EGF, and BTC-induced signaling.
BTC activates all four ErbB receptors, whereas EGF is more
selective for EGFR and HRG is selective for ErbB3.1 Both models
were constrained using all available kinetic parameters and then

further trained using experimental data based on quantitative
measurements of time-dependent signaling in vitro. Figure 1c
shows a trained computational model, where kinetic parameters
have been optimized to best match simulation results with
experimental data.1 In this example, the simulated dose-time
matrix for the ADRr ovarian cell line stimulated with either HRG or
BTC (solid lines) closely matches the experimental data (circles).
Capturing the complexity of ErbB signaling in a computational
model enables new hypotheses to be formulated and tested
quickly. For example, dynamic simulations, coupled with experi-
mental data, revealed that when BTC binds to EGFR, it induces
phosphorylation of ErbB3 to the same extent as HRG, but in a
more transient manner. This observation prompted us to include

Figure 3. (a) Schematic illustration highlighting HRG-driven ErbB3 signaling as a mechanism mediating lack of responsiveness to endocrine
therapy. (b) Seribantumab inhibits HRG-induced phosphorylation of ErbB3, Akt and ER in MCF-7Ca cells. Serum-starved MCF-7Ca cells were
pre-treated with seribantumab (1 μmol/l) for 1 h, followed by treatment with 10 nmol/l HRG for 10 min. Cell lysates were analyzed by
immunoblotting with antibodies for p-ErbB3 (Y1289), p-Akt (S473) and p-ER (S305 and S167). Anti-β-actin antibody was used as a loading
control. (c) Seribantumab and letrozole co-treatment delays the onset of tumor tolerance to letrozole and restores sensitivity to letrozole in
MCF-7Ca xenografts. MCF-7Ca xenograft tumors were generated in female, ovariectomized nude mice, which were randomized to receive
vehicle (‘Control’; 0.3% HPC in 0.9% NaCl, twice weekly (Q2W), IP; 15 mice/group), seribantumab (750 μg/mouse, Q2W, IP; 15 mice/group),
letrozole (10 μg/mouse/day× 5 days/week (QD× 5), subcutaneous injection (SQ); 60 mice/group), or letrozole in combination with
seribantumab, dosed as indicated for the monotherapies (15 mice/group). Changes in mean tumor volume (± s.e.m.) were determined weekly
by caliper measurement. Following the loss of sensitivity to letrozole (week 14), mice in the letrozole-only group were re-randomized into
15 mice/group to receive: letrozole alone; seribantumab alone; or a combination of letrozole and seribantumab.
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Figure 4. (a) The ovarian cancer cell line ADRr was treated with paclitaxel at increasing doses either alone (gray line), in the presence of
5 nmol/l HRG (red line) or in the presence of 5 nmol/l HRG and 1 μmol/l seribantumab (blue line). The graph illustrates the relative cell viability
(normalized to media control) in a 96 h spheroid formation assay with CellTiter Glo as readout of viability. The arrows highlight the effect of
HRG or HRG in combination with seribantumab on the response to paclitaxel. (b) A panel of ovarian cancer cell lines was screened using the
same assay as in (a). The Area Under the Curve (AUC) fold-change relative to media control of all ovarian cancer cell lines screened, was
plotted for paclitaxel in the absence or presence of HRG. Diamond shapes indicate cell lines that are non-responsive to HRG and the larger
circles represent the HRG-responding cell lines. The gray region in the plot represents the area where HRG desensitizes cells to paclitaxel.
(c) The AUCs of all HRG-responding cell lines screened was calculated for paclitaxel in the presence of HRG, with or without 1 μmol/l
seribantumab. The yellow and gray represent the areas in which seribantumab sensitized versus desensitized cells to the drug, respectively.
(d) Seribantumab inhibits both basal and HRG-induced p-ErbB3 and p-Akt in A2780cis. Serum-starved A2780 and A2780cis were pre-treated
with seribantumab (1 μmol/l) for 24 h, followed by treatment with 10 nmol/l HRG for 10 min. A2780cis cells displays upregulation of basal
p-ErbB3 and p-Akt compared with parental A2780 cell line. In vivo activity of seribantumab in A2780 (e) and A2780cis (f) ovarian cancer
xenografts. Tumors were established subcutaneously (s.c.) in nu/nu mice. Following randomization, animals were treated with vehicle control
(PBS), seribantumab (600 μg/dose, q3d, intraperitoneal (i.p.)), paclitaxel (40 mg/kg, q7d, i.p.) or combination of both drugs (n= 8/group). Tumor
volumes were calculated following caliper measurement and plotted as mean± s.e.m.
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in our model that EGFR, when bound to BTC, must heterodimerize
with ErbB3.
Once the computational models had been trained and

validated, we conducted an in silico sensitivity analysis to
determine which proteins, when perturbed, have the most impact
on Akt phosphorylation. In principle, a good drug target would be
highly sensitive to perturbation, enabling a small effect on the
target to translate into a profound effect on the cell. When we
performed this analysis, ErbB3 was identified as the most sensitive
node in the ErbB network, independent of which ligand was
driving signaling (Figure 1d). This finding was further confirmed
using the more comprehensive ErbB model.21 ErbB3 does not
meet the conventional criteria of a drug target in cancer: it is

generally expressed at low levels, is not gene amplified, is rarely
mutated, and has very weak kinase activity.22 EGFR and HER2,
which are considered validated drug targets, were also identified
as sensitive targets for Akt phosphorylation, but their sensitivity is
more dependent on the identity of the ligand driving pathway
activation.
On the basis of these modeling insights, we defined specific

design criteria for a therapeutic anti-ErbB3 monoclonal antibody.
According to our models, the ideal antibody would have a
sub-nanomolar monovalent binding affinity for ErbB3, would
block HRG from binding to ErbB3, would inhibit BTC-induced
ErbB3 phosphorylation via EGFR, and would trigger downregula-
tion of ErbB3. We selected fully human antibodies to the

Figure 5. Dual Targeting of EGFR and ErbB3: (a) Mechanistic model to predict the response of seribantumab and erlotinib combination in
A549, ACHN, DU145 and H322M cells. The initial conditions for the four cell lines (e.g., receptor levels) were set to those measured by qFACS
under basal conditions (Supplementary Table S3).For each cell line the simulation was run for 30 min to allow the receptors to equilibrate. The
inhibitors were then introduced for an additional 30 min, followed by virtual stimulation with HRG (1 nmol/l) and BTC (1 nmol/l) for 10 min to
assess the effect of the inhibitors on Akt phosphorylation. Values are normalized to cells treated with HRG and BTC alone. (b) In vitro signal
inhibition with the combination of seribantumab and erlotinib in H322M cells. Serum-starved H322M cells were pre-treated with either
seribantumab (1 μmol/l), erlotinib (1μmol/l) or the combination for 30 min, followed by treatment with different ligands; HRG (10 nmol/l)
alone, EGF (10 nmol/l) alone or both ligands for 1 h. Cell lysates were used for western blot analysis. In vivo activity of seribantumab in A549
(c) and H322M (d) xenografts. Subcutaneous tumors were established in nu/nu mice. Following randomization, animals were treated with
vehicle control (PBS), seribantumab (300 μg/dose, q3d, intraperitoneal (i.p.)), erlotinib (25 mg/kg, q3d, oral gavage) or combination of both
drugs (n= 8/group). Tumor growth was measured twice per week by calipers and plotted as mean± s.e.m. and plotted on a log scale to assess
the tumor growth kinetics for each treatment arm. (e) Tumor growth rate inhibition for A549 and the H322M xenograft model for the
individual treatment arms and the combination compared with Bliss independence.
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extracellular domain of ErbB3 using phage display and screened
candidate molecules for the one antibody, seribantumab, that
met all of our design criteria.1 To avoid potential immune-
mediated on-target toxicities, we elected to develop an antibody
with an IgG2 Fc backbone, which does not elicit antibody-
dependent cellular cytotoxicity. Subsequent to these initial efforts,
several other companies also developed ErbB3-targeting mono-
clonal antibodies, many of which are currently in clinical
development.23

Single agent activity and dose selection
Figure 2 summarizes the single agent activity of seribantumab
in vitro and in vivo. Seribantumab inhibits both basal and HRG-
induced phosphorylation of ErbB3 after 1 h or 24 h of treatment in
A549 lung carcinoma cells. This translates directly into inhibition
of Akt phosphorylation and, to a lesser extent, Erk phosphorylation
(Figure 2a). Similar results are observed across a variety of cell
lines.24 Notably, inhibition of ErbB3 signaling by seribantumab
in vitro translates into single agent anti-tumor growth activity in
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mouse xenografts. For example, treatment with seribantumab
controls the growth of A549 tumors in a dose-dependent manner
with maximal inhibition of tumor growth observed at a dose of
600 μg administered every 3 days (Figure 2b).
To inform a dosing strategy for the clinical administration of

seribantumab, we modeled how inhibition of tumor growth varies
with seribantumab serum concentration. Figure 2c shows the
results of fitting mouse serum levels of seribantumab to a
one-compartment pharmacokinetic model with first order absorp-
tion and non-linear clearance. Since the terminal half-life of
seribantumab in mice increased with higher dose levels,
non-linear saturable elimination process was used in the PK
model. The clearance rate of seribantumab gets accelerated when
the serum concentrations are lower than ~ 50 μg/ml (Figure 2c). As
we were unable to measure seribantumab serum levels in the
lower dose groups due to assay sensitivity, we simulated the
serum levels for these doses. We then plotted the tumor growth
rate inhibition as a function of seribantumab serum trough levels
based on a q3d dosing schedule (Figure 2d). We found that serum
levels of seribantumab above 50 μg/ml resulted in greater than
50% tumor growth inhibition. For the 600 μg q3d dose group of
seribantumab, 40–125% inhibition of tumor growth was observed,
and serum levels of seribantumab remained above 100 μg/ml. On
the basis of these findings, we set a goal to maintain
seribantumab trough levels above 100 μg/ml (667 nmol/l) in our
clinical studies.
To determine if seribantumab is inhibiting tumor growth by the

intended mechanism, we collected tumors from the dose-ranging
mouse xenograft study and measured both total and phosphory-
lated levels of ErbB3 by ELISA. Figure 2e shows the impact of
either one or two doses of seribantumab (600 μg/dose) on the
total and phosphorylated levels of ErbB3 measured 24, 48, or 72 h
after dosing the mice. Comparing pharmacodynamic effects
following the first and second dose of seribantumab, we found
that maximal inhibition and downregulation of ErbB3 is rapidly
achieved (Po0.05 by Wilcoxon rank-sum test in all paired groups
except for p-ErbB3 at 72 h), even after a single dose of the
antibody.

The cancer biology of ErbB3
Having engineered seribantumab to effectively inhibit ligand-
mediated ErbB3 signaling, we turned our efforts to determining
specific areas of cancer biology where ErbB3 blockade could
potentially provide clinical benefit. The central hypothesis under-
lying seribantumab development is that ligand-driven signaling
through ErbB3 serves as a widespread cancer cell survival
pathway, rendering cancer cells tolerant to standard of care
therapy, regardless of the class of therapy. Previously, three
different ErbB3-mediated resistance mechanisms had been
described: (i) increased levels of ErbB3 by enhanced ERBB3

transcription; ii) increased HRG autocrine signaling; and (iii)
ligand-independent activation of ErbB3 by other RTKs such as
HER2 and Met.25–27 To test our clinical hypothesis broadly, we
focused on the three major classes of systemic cancer therapy:
endocrine therapy, chemotherapy, and targeted therapy. In each
case, we sought to understand if ErbB3 signaling is a potential
mechanism promoting drug tolerance and asked if ErbB3
inhibition enables tumor cells to respond to these agents. These
three areas are addressed in the following three sections and
formed the basis of the Phase 2 clinical development program for
seribantumab.

HRG/ErbB3 bypasses anti-hormonal therapy in breast cancer
Approximately 80% of breast cancers express estrogen receptor
(ER), progesterone receptor (PR), or both, and are therefore
considered hormone receptor-positive (HR+). Patients with HR+
breast cancer often respond favorably to drugs such as
exemestane and letrozole, which inhibit hormone production by
blocking the enzyme aromatase, or to drugs such as tamoxifen
and fulvestrant, which act directly on ER to block estradiol-
dependent signaling. Collectively, this class of drugs is referred to
as anti-hormonal or endocrine therapy. As with other classes of
therapy, many patients with advanced HR+ breast cancer
encounter de novo or acquired resistance and require more
aggressive treatment options such as chemotherapy.
One prominent way in which resistance to endocrine therapy

arises is through activation of alternative signaling pathways that
are either intrinsically present or drug-induced. Notably, ER can be
activated not only by estradiol, a derivative of estrogen, but by a
variety of growth factors that act in an estrogen-independent
manner.28 As shown in Figure 3a, HRG-induced ErbB3 signaling
can lead to activation of ER through phosphorylation on serine
167 (Ser167) via the PI3K/Akt pathway29 and through phosphor-
ylation on serine (Ser305) via the PI3K/p21-activated kinase 1
(Pak1) pathway.30 In addition, it has been shown that anti-
hormonal therapies like fulvestrant rapidly induce ERBB3 expres-
sion, further sensitizing cells to HRG.31,32 Indeed, the rapid
induction of ERBB3 expression may constitute a key mechanism
of acquired resistance to endocrine therapy.
In our own hands, in vitro stimulation of MCF-7Ca ER+ breast

cancer cells with HRG led to rapid phosphorylation of ErbB3 and
Akt, as well as phosphorylation of ER on Ser167 and Ser305
(Figure 3b). Pre-incubation with 1 μmol/l seribantumab, on the
other hand, resulted in complete inhibition of ErbB3 phosphoryla-
tion, partial inhibition of Akt phosphorylation, and reduction or
complete inhibition of ER phosphorylation on Ser305 and Ser167,
respectively.33 On the basis of these data, we sought to determine
if ErbB3 signaling is active in MCF-7Ca-based xenograft models,
and if blocking this pathway affects tumor growth. MCF-7Ca cells,
which are engineered to express aromatase, were implanted

Figure 6. (a) Normalized tumor growth rate inhibition observed in MALME 3 M, DU145, ADRr and ACHN cell lines treated q3d with 300
μg/dose seribantumab plotted as a function of p-ErbB3 levels measured by ELISA in untreated tumors of about 200–300 mm3. (b) Sensitivity
analysis of the ErbB model. The normalized time-integrated sensitivity of p-ErbB3 phosphorylation to each non-zero species was determined
by varying the amount of each non-zero species and simulating the time course of p-ErbB3 in response to 1 nmol/l HRG or BTC, with the
calibrated computational model. The normalized sensitivity integrated over the 2 h time course is shown, with species ranked according to
their sensitivity during HRG stimulation. (c) Simulations results indicate that an anti-ErbB3 antibody (seribantumab, in blue) would be more
potent in the HER2 low setting, while an ErbB3/HER2 bispecific molecule would be most effective in the HER2-high setting. In the simulated
experiment, after 30 min incubation with a dose titration of MM-111 or MM-121 cells expressing different levels of HER2 were stimulated for
10 min with 1 nmol/l HRG. The p-Akt IC50 values derived from the simulations are plotted as a function of the HER2 expression levels.
(d) Experimental validation of the simulated observation that the potency of MM-111 and seribantumab vary with the HER2 levels. The
annotated cell lines were cultured in 4% serum, stimulated for 5 h with 5 nmol/l HRG, followed by drug treatment for another 5 h. Total ErbB3
and p-ErbB3 was measured using ELISA and IC50 curves fitted and plotted against the total ErB2 levels by qFACS. (e) HRG levels in patient-
derived xenograft models. Tumor lysates were prepared from untreated tumors and HRG levels determined using ELISA method. (f) Single
agent activity of seribantumab measured in select patient-derived xenografts; MAXF449, MAXF1162 and MAXF574. Tumors were established
subcutaneously in nu/nu mice. Following randomization, animals were treated with vehicle control (PBS) or seribantumab (600 μg/dose,
q3d, i.p.) Tumor growth was measured twice per week by calipers and plotted as mean± s.e.m. (n= 8/group).
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subcutaneously in ovariectomized mice. In this model, tumors
initially respond to the aromatase inhibitor letrozole, but
spontaneously become letrozole tolerant and continue to grow
despite prolonged exposure. As anticipated, treatment with
letrozole initially led to tumor stasis, but was followed by
persistent tumor progression around week 14 (Figure 3c). In
contrast, mice that were co-treated with seribantumab and

letrozole continued to show tumor stasis at week 14, indicating
that seribantumab can delay the onset of tumor drug tolerance.
Once tumor progression emerged in the cohort of mice treated
with only letrozole, the mice were re-randomized and treated
either with letrozole alone or the combination of letrozole and
seribantumab. In the cohort of mice receiving combination
therapy, the tumors that had progressive tumor growth rapidly

Figure 7. (a) Graphical description of the trial design of the three randomized Phase 2 trials in metastatic cancer: in combination with
paclitaxel versus paclitaxel alone in platinum-resistant/refractory ovarian cancer; in combination with exemestane versus exemestane plus
placebo in ER/PR+, HER2− breast cancer and in combination with erlotinib versus erlotinib alone in EGFR wild-type non-small cell lung cancer.
(b) Kaplan-Meier plots of progression-free survival (PFS) in the unselected population across the three trials and the observed Hazard Ratios.
(c) HRG appeared to be a prognostic marker of rapid progression on the control arm as indicated by the Kaplan-Meier plots of PFS of the
control arm in the biomarker positive versus the biomarker negative population. (d) HRG+ patients appeared to derive benefit from
seribantumab by comparing Kaplan–Meier PFS plots of the experimental arm with the control arm.
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regressed, returning to the size of tumors in the cohort at the
beginning of treatment.33 This suggests that the persistence of
HRG-positive cancer cells observed in tumors from patients with
advanced breast cancer will directly impact clinical outcomes of
patients receiving endocrine therapies. Co-administration of
seribantumab and the endocrine therapy such as AIs is warranted
to effectively combat the tumor holistically. Seribantumab would
not be expected to act as a single agent since it essentially
converts HRG-positive cancer cells into phenotypically HRG-
negative cancer cells and as such allows effective targeting of
all cancer cells through the combination drug.

HRG/ErbB3 blunts the cytotoxic activity of chemotherapy in
ovarian cancer
In breast cancer, there is a direct mechanistic reason why HRG
overcomes endocrine therapy in drug-tolerant HRG-positive
‘persister’ cells: ErbB3 signaling activates ER in an estrogen-
independent manner. In the case of cytotoxic chemotherapy,
however, it appears that ErbB3 sends a general, pro-survival signal
to the cell, abrogating the cytotoxic effects of a broad range of
chemotherapeutic agents. To illustrate, when ADRr ovarian cancer
cells are treated with increasing doses of paclitaxel (a microtubule-
stabilizing drug), cell viability is inhibited in a dose-dependent
manner (Figure 4a). When the same experiment is performed in
the presence of 1 nmol/l HRG, the dose-response curve is shifted
toward increased cell viability, even at relatively high concentra-
tions of paclitaxel (100 nmol/l–1 μmol/l). In the presence of
seribantumab, however, HRG-mediated insensitivity is alleviated.
In fact, the dose-response curve to paclitaxel in the presence of
HRG and seribantumab falls below the control curve, suggesting
the presence of an autocrine HRG loop in these cells. By plotting
the area under the curve (AUC) for paclitaxel in the presence or
absence of HRG for multiple ovarian cancer cell lines, we found
that HRG renders ~ 50% of these cell lines insensitive to paclitaxel
(Figure 4b). When the HRG-responding cell lines were treated with
HRG and seribantumab in combination with paclitaxel, all of the
cell lines were re-sensitized to paclitaxel basically converting them
back to HRG-negative cells (Figure 4c).
Although these experiments show that HRG/ErbB3 signaling has

the ability to render ovarian cancer cells insensitive to paclitaxel,
the question remains whether or not cancer cells invoke this
mechanism to adapt to the stress of cytotoxic therapy. Behrens
and colleagues previously described a chemo-resistant cell line,
A2780cis, that they generated by chronic exposure of the drug-
sensitive ovarian cell line A2780 to increasing concentrations of
cisplatin.34 Notably, the resistant cell line has higher levels of total
ErbB3 than the parental line, and higher basal activation of both
ErbB3 and Akt (Figure 4d). It is also much more responsive to
stimulation with HRG. Treatment with seribantumab inhibited
both basal and HRG-induced activation of ErbB3 and Akt in the
chemo-resistant cell line (Figure 4d). When grown as subcuta-
neous xenografts in mice, the parental line (A2780) responded to
paclitaxel, but was unresponsive to seribantumab (Figure 4e). In
contrast, tumors derived from the resistant cell line (A2780cis) did
not respond to either cisplatin (not shown) or paclitaxel (Figure 4f),
but were clearly responsive to seribantumab (Figure 4f). Con-
sistent with this observation, HRG levels were elevated in A2780cis
tumors relative to A2780 tumors (Figure 4f inset), supporting the
notion that insensitivity to chemotherapy is ErbB3-mediated.
Importantly, this is also observed clinically. In late-stage ovarian
cancer patients, approximately 30% of primary tumor cells derived
from malignant ascites fluid show constitutive active p-ErbB3,
which is inhibited by seribantumab.35

Dual targeting of EGFR and ErbB3 is synergistic in non-small-cell
lung cancer
In addition to empirically discovering drugs like paclitaxel that
combine well with seribantumab, we also used our computational
models to predict which targeted agents would mechanistically
synergize with seribantumab to inhibit p-Akt.36 On the basis of
dynamic simulations, the combination of an anti-EGFR inhibitor
with seribantumab emerged as the most potent way to inhibit Erk
and Akt activation in the presence of EGF and HRG. Erlotinib was
chosen as a representative EGFR inhibitor, based on its clinical use
in NSCLC. Simulations were performed at 1 μmol/l of erlotinib and
1 nmol/l of seribantumab, in the presence of 1 nmol/l HRG and
1 nmol/l BTC across four different cell lines (Figure 5a). The ligands
and ligand concentrations were chosen to mimic autocrine
signaling. We chose suboptimal drug doses in order to observe
the combination effect. Erlotinib was implemented into the
computational model similar to lapatinib, as previously repor-
ted1 and included in the updated model code in Supplementary
Table S4. Additional biochemical reactions without impact on the
results of the original model simulations were included in the
model to enable the simulation of drug combinations in the
presence of HRG and BTC as described in the Materials and
Methods and model code (Supplementary Table S4). We tested
our predictions experimentally by measuring p-ErbB3, p-Akt, and
p-Erk in response to ligand stimulation and drug treatment as
shown for the H322M cell line in Figure 5b. Whereas seribantumab
was effective at inhibiting HRG-induced p-ErbB3 and p-Akt and
erlotinib was effective at inhibiting EGF-induced p-Erk, only the
combination of both drugs shut down both pathways in the
presence of HRG and EGF, which is qualitatively in agreement with
the simulation results.
Dual targeting of EGFR and ErbB3 most effectively blocked p-Erk

and p-Akt in the presence of EGFR ligands and HRG, which
translated into synergistic inhibition of tumor growth in A549
(Figure 5c) and H322 (Figure 5d). To better compare the effects of
the different therapies, the tumor growth curves were fitted to
exponential functions for each mouse within each treatment
cohort (Figure 5c and Figure 5d). By comparing the experimentally
observed inhibition of tumor growth with the predicted tumor
growth rate inhibition using a Bliss additivity model,37 we found
that the combination of seribantumab and erlotinib is synergistic
in the A549 and H322M xenograft models (Figure 5e). These
results are consistent with those observed with other ErbB3
inhibitors. For example, AV-203, an anti-ErbB3 antibody developed
by Aveo Oncology, was shown to reverse ErbB3-induced tolerance
to targeted therapies like erlotinib and lapatinib in vitro.38

Preclinical biomarker hypotheses based on computational
modeling
Because seribantumab is designed to block ErbB3 signaling, we
only expect it to be effective in cancers in which a substantial
proportion of cancer cells with active signaling persists within a
heterogeneous tumor. In the early stages of drug development,
however, it is not always obvious how best to diagnose pathway
activation. This is another circumstance in which the tools of
Systems Biology can prove useful. In preclinical experiments, we
found that the degree of tumor growth rate inhibition by
seribantumab correlated linearly with basal levels of p-ErbB3
measured in tumors of mouse xenograft models (Figure 6a). It is
challenging, however, to measure p-ErbB3 levels in tumor biopsies
because ErbB3 is rapidly dephosphorylated once the tumor
sample is removed from the patient (i.e., in ischemic tissue).39

We, therefore, sought to identify stable biomarkers that could
serve as surrogates for p-ErbB3. Using our computational model
we ran a sensitivity analysis to identify biomarkers whose levels
most profoundly affect the degree to which ErbB3 is phosphory-
lated: the ligands HRG and BTC; and the receptors ErbB3, HER2,
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and EGFR (Figure 6b). To challenge our model predictions, we also
investigated the potential role of genetic biomarkers in modulat-
ing seribantumab activity. As described in detail by Yarar and
colleagues., for example, we found that activating mutations in
PIK3CA did not substantially affect response to seribantumab;40

therefore we concentrated on our five preclinical biomarkers and
developed clinically applicable assays that could be used to
quantify these biomarkers at either the protein or mRNA level:
fluorescence-based quantitative IHC assays for the receptors
(protein level); RNA-in situ hybridization assays for the ligands
(mRNA level); and reverse transcriptase–quantitative PCR assays
for all five biomarkers (mRNA level).
For the ligands HRG and BTC, it is intuitive that higher levels of

these biomarkers would lead to higher levels of ErbB3 signaling
and hence increased need for an ErbB3 inhibitor. Similarly, we
would expect that higher levels of ErbB3, HER2, and EGFR would
all correlate with increased signaling and hence increased benefit
from seribantumab. We were, therefore, surprised when model
simulations predicted the opposite for HER2. By modulating the
levels of HER2 in silico, we found that the potency of p-Akt
inhibition by seribantumab decreases as HER2 levels increase
(Figure 6c). This prompted us to develop, in parallel, a second
ErbB3-targeted agent, MM-111, that co-targets HER2 and ErbB3.41

This bispecific antibody, which comprises two scFv fragments
connected by a human serum albumin linker, is designed to dock
onto HER2 receptors on HER2-positive tumor cells and potently
inhibit HRG/ErbB3 based on high avidity binding. Model simula-
tions showed that, in contrast to seribantumab, MM-111 potency
increases with increasing HER2 levels (Figure 6c). The biochemical
equations describing the mechanism of action of MM-111 are
included in the updated model code in Supplementary Table S4.
These model simulations were tested experimentally by measur-
ing the IC50 for p-ErbB3 inhibition of seribantumab and MM-111
in a variety of cell lines exhibiting a range of HER2 levels. As
predicted, seribantumab was most potent in cells with low HER2
levels (o ~ 200,000 receptors/cell), whereas MM-111 was most
potent at inhibiting p-ErbB3 in cell lines with high HER2 levels
(4~ 200,000 receptors/cell; Figure 6d). To test these insights, we
measured the levels of all five biomarkers in 18 patient-derived
xenograft models. We selected three models that expressed
moderate-to-high levels of ErbB3, low levels of HER2, and a range
of HRG levels (low, medium, and high; Figure 6e). As predicted,
seribantumab had the greatest impact on the MAXF449 model,
which had the highest HRG levels (Figure 6f). Moderate activity
was observed with the MAXF1162 model, which had intermediate
levels of HRG, and no activity was observed with the MAXF574
model, which had near undetectable levels of HRG. We also built a
support vector machine (SVM) predictor of seribantumab activity
based on the levels of these five biomarkers.24 The predictor was
trained using data from eight cell line-derived xenograft models,
which were classified as either responders to seribantumab
(450% tumor growth inhibition) or non-responders (o50%
tumor growth inhibition). Using an independent test set of 12
additional models, the predictor accurately classified all 12
models. Notably, the biomarker providing the most predictive
information in this classifier was HRG.

Clinical investigation of seribantumab in late-stage, metastatic
cancers
Having established that ligand-driven ErbB3 signaling either
blunts or circumvents response to endocrine therapy, chemother-
apy, and targeted therapy, and having defined a set of potential
biomarkers of seribantumab activity, we next sought to test these
hypotheses clinically. Seribantumab was first evaluated for safety
in several Phase 1 trials, both as a single agent and in combination
with a range of standard therapeutic drugs. In a first-in-human
Phase 1 trial (NCT00734305), seribantumab did not induce partial

or complete responses as a single agent, but appeared to induce
prolonged stable disease in a subset of patients. It was generally
well tolerated and combined safely with a variety of agents,
including anti-hormonal therapies (exemestane; NCT01151046),
targeted therapies (erlotinib, cetuximab, XL147; NCT00994123,
NCT01451632, NCT01436565), and chemotherapies (paclitaxel,
irinotecan, gemcitabine, carboplatin, pemetrexed, and cabazitaxel;
NCT01209195, NCT01451632, and NCT01447225).42–44

Next, to determine if seribantumab could prolong progression-
free survival, it was evaluated in three randomized Phase 2 trials in
metastatic cancer (Figure 7a): in combination with paclitaxel
versus paclitaxel alone in platinum-resistant/refractory ovarian
cancer (NCT01447706);45 in combination with exemestane versus
exemestane plus placebo in ER/PR+, HER2− breast cancer
(NCT01151046);46 and in combination with erlotinib versus
erlotinib alone in EGFR wild-type non-small-cell lung cancer
(NSCLC; NCT00994123).47 Because it was not known which of the
five biomarkers are sufficient to identify patients that would
benefit from seribantumab, and at what levels, all three trials were
designed to enroll ‘unselected’ patients, regardless of biomarker
status, and then answer this question retrospectively. It was also
not known how these biomarkers change as a function of
treatment history or disease progression. We therefore collected
archived tissue blocks if available which are typically acquired
from a patient by surgical resection when they are initially
diagnosed with cancer, as well as pre-treatment core-needle
biopsies, which reflect the patient’s current disease state as
indicated in Figure 7a. We then measured the five pre-specified
biomarkers in each sample using the assays detailed above.48

Biomarkers were initially evaluated by fitting to a Cox proportional
hazard model of biomarker-by-treatment interaction. Four bio-
markers (HRG, ErbB3, BTC and HER2) and their associated assays
were prioritized for further analysis and were directionally
consistent with preclinical predictions and relate directly to the
mechanism-of-action of seribantumab. Biomarkers showing a
treatment interaction (Po0.4) were subsequently evaluated using
two-variable models and thresholds were chosen based on local
HR scans.
Although the three trials were run in parallel, the first to

complete was the ovarian cancer trial (NCT01447706; Figure 7a). In
this study, patients with advanced ovarian cancer, either resistant
or refractory to platinum agents, were randomized 2:1 to receive
seribantumab in combination with paclitaxel, or paclitaxel alone.
The primary endpoint of the study was to determine if
seribantumab, when added to paclitaxel, extended progression-
free survival (PFS) relative to paclitaxel alone. Secondary objectives
included assessing the effect of the five pre-specified biomarkers
on PFS, as well as determining the effect of seribantumab on
overall survival (OS) and objective response rate (ORR). In this
study, the hazard ratio (HR) in the unselected patient population
was 1.06 (95% CI: 0.76–1.48 stratified log-rank test P= 0.719). Thus,
there was no evidence that seribantumab extended PFS in the
unselected patient population (Figure 7b). When the biomarker
data were analyzed, however, three of the five biomarkers
appeared to be predictive of benefit from seribantumab.
Increasing levels of HRG and ErbB3 both correlated with
decreasing (i.e., more favorable) hazard ratios, whereas decreasing
levels of HER2 correlated with decreasing hazard ratios. All three
of these effects were directionally consistent with preclinical
predictions.
When pairs of biomarkers were tested, the best two-biomarker

model comprised the combination of HRG and HER2 (i.e., these
two biomarkers provided orthogonal information). A ‘biomarker-
positive’ (BM+) subpopulation was therefore defined as patients
having detectable levels of HRG (HRG+) and low levels of HER2
(HER2o126,000 receptors/cell). This two-variable biomarker
appeared both prognostic of poor outcome for patients receiving
paclitaxel alone and predictive of benefit from seribantumab in
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combination with paclitaxel. Focusing on the control arm patients
(i.e., those receiving paclitaxel alone), the BM+ patients progressed
rapidly relative to the BM− patients (hazards ratio (HR) = 2.21;
95% confidence interval (CI): 1.08–4.51; P= 0.029; Figure 7c). This is
consistent with the hypothesis that HRG-driven ErbB3 signaling
mediates insensitivity to paclitaxel. Comparing experimental and
control arms, the biomarkers also appeared predictive of benefit
from seribantumab: in the BM+ subpopulation, the PFS HR was
0.37 (95% CI: 0.18–0.76; P= 0.007; Figure 7d).
The second study to complete was the breast cancer trial

(NCT01151046; Figure 7a), in which patients with hormone
receptor-positive, HER2-negative metastatic breast cancer were
randomized 1:1 to receive either exemestane in combination with
seribantumab, or exemestane in combination with placebo. As
with the ovarian cancer study, the trial did not formally meet its
primary endpoint of extending PFS in the unselected patient
population, although in this case a trend was observed toward
increased PFS in the experimental arm relative to the control arm
(HR= 0.772; 95% CI: 0.496–1.201; P= 0.249; Figure 7b). Importantly,
when the biomarker data were analyzed, HRG once again
appeared both prognostic of poor outcome and predictive of
benefit from seribantumab. On the control arm, the HRG+ patients
progressed rapidly relative to the HRG− patients (HR= 3.4; 95% CI:
1.48–7.85; P= 0.004; Figure 7c). Similarly, comparing the experi-
mental arm with the control arm, HRG+ patients appeared
to derive benefit from seribantumab (PFS HR= 0.26; 95%
CI = 0.11–0.63; P= 0.003; Figure 7d). In this trial, it was deemed
unnecessary to measure HER2. The trial was performed in HER2−
breast cancer patients and the overwhelming majority of patients
had HER2 levels that fell below the previously determined
threshold of 126,000 receptors/cell.
Finally, the third study to complete was the lung cancer trial

(NCT00994123; Figure 7a), in which patients with EGFR wild-type
NSCLC were randomized 2:1 to receive seribantumab in combina-
tion with erlotinib at a dose of 100 mg/day, or erlotinib alone at
150 mg/day. The dose of erlotinib in the experimental arm was
lower than in the control arm due to tolerability of the
combination therapy. As with the other two studies, seribantumab
did not significantly extend PFS in unselected patients (HR = 0.81;
95% CI: 0.55–1.20; P= 0.290; Figure 7b). Once again, however, HRG
was prognostic of rapid progression on the control arm (HR= 3.07;
95% CI: 1.19–7.91; P= 0.0.020; Figure 7c) and predictive of benefit
from seribantumab (HR= 0.35; 95% CI: 0.16–0.76; P= 0.008;
Figure 7d). HER2 is rarely overexpressed in NSCLC patients and
so was deemed unnecessary to measure.
Comparing data across the three clinical studies, the most

predictive biomarker was HRG mRNA. In breast cancer, measure-
ments were performed in archived tissue (pre-treatment biopsies
were not collected), whereas in lung cancer, measurements were
performed in pre-treatment biopsies (archived tissue was not
available for most patients). Interestingly, we were able to collect
both archived tissue and pre-treatment biopsies for most patients
on the ovarian cancer trial.49 In this setting, we found that HRG
mRNA was both prognostic and predictive, regardless of at which
time point it was measured. We found, however, that HRG status
changed during the course of disease progression. For those
patients that tested HRG+ in their archived tissue, 78% remained
HRG+ in their pre-treatment biopsies. In contrast, ~ 50% of
patients that were HRG− in their archived samples tested HRG+ in
their pre-treatment biopsies. This suggests that HRG-positive cells
are further selected as patients go through various lines of
therapy.
In addition to HRG mRNA, HER2 was also observed to be an

important biomarker in ovarian cancer. It is also likely to be
important in breast and lung cancer, but it was not necessary to
measure as a biomarker as it is naturally low in lung cancer and
already selected to be low in ‘HER2-‘breast cancer. Interestingly,
the level of HER2 in ovarian cancer below which seribantumab

provides benefit (~126,000 receptors/cell) closely matches the
level predicted by computational modeling and preclinical
experiments in which seribantumab potently inhibits ErbB3
phosphorylation (Figures 6c and d). Finally, consistent with our
preclinical studies, we did not find any evidence clinically that
PIK3CA mutations preclude seribantumab activity. On the basis of
the collective results from these Phase 2 studies, along with the
evolving treatment landscape in lung cancer, seribantumab is
currently being evaluated in combination with chemotherapy in a
randomized Phase 2 study in metastatic NSCLC in which patients
are prospectively selected based on HRG tumor cell expression
(NCT02387216).

DISCUSSION
With the advent of large-scale genomics efforts, cancer has been
increasingly subdivided and categorized based on genetic
abnormalities. Many of these mutations or gene amplifications
are directly targetable, and with our current tools we are now
frequently successful at identifying small molecules or therapeutic
antibodies that inhibit their corresponding proteins with sufficient
selectivity and potency. Although additional cancer-related genes
no doubt remain to be identified, the fundamental challenge in
cancer therapy is no longer finding new targets and drugging
them effectively. Instead, it is understanding how cancers interact
with their environment and rapidly adapt to avoid therapeutic
intervention or attack from the immune system. To make a
dramatic impact on patient survival, we need to learn: (1) how to
match drugs with the specific disease state of the patient through
precision diagnostics; (2) how to anticipate and avoid drug
tolerance and immune system evasion through rational drug
combinations and drug sequencing; and (3) how to optimize drug
delivery and pharmacology to maximize therapeutic index.
One of the frustrations of cancer drug development is that

targeted therapies are often less effective in the clinic than
anticipated. Often, this is because we do not understand well
enough how inhibiting a specific protein will impact the network
in which that protein resides. This shortcoming is further
compounded by genetic and epigenetic variability between
patients that often dilutes the overall effect of a drug for reasons
that are not well understood. Such heterogeneous response rates
and lack of response durability suggests the existence of a
multiple cancer phenotypes that are characterized by both a lack
of response and/or loss of initial responsiveness. This further
exemplifies the rather fluid evolutionary nature of many cancers
and the significant clinical challenge that arises due to the
existence of a patient population with heterogeneous tumors that
are difficult to treat. This inherent complexity in cancer
necessitates the development of computational models, whether
at a single biological level, such as cell signaling, or at multiple
levels, connecting molecular events to cell–cell communication to
whole-body pharmacology.50

As a first step in applying computational modeling to the
process of drug discovery and development, we used mechanistic
modeling to identify ErbB3 as a novel target in the ErbB network.
Although there are many druggable targets in this network, ErbB3
was highlighted as the most sensitive node with respect to Akt
inhibition. Sensitivity is an important network characteristic in
drug development, as it indicates which node, when perturbed to
a small extent, has a large impact on the desired outcome. In this
case, the desired outcome was to inhibit cancer cell survival, using
p-Akt as a surrogate. We found that small decreases in either the
total levels of ErbB3 or its activation by ligand would translate into
a large impact on pro-survival signaling.
Beyond identifying ErbB3 as a target, modeling and simulation

were used to design seribantumab. In the field of engineering,
modeling has an integral role in defining design criteria. The same
principles were applied to the design of seribantumab.
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Simulations were performed to determine the best way to inhibit
ErbB3. In principle, ErbB3 inhibition can be accomplished in a
variety of ways: by designing a ligand trap, which targets HRG; by
designing a ligand blocker, which prevents ErbB3 from under-
going the conformational change necessary for receptor activa-
tion; by designing a dimerization blocker, which prevents ErbB3
from pairing with another ErbB receptor; or by designing a
downregulator, which induces internalization and degradation of
ErbB3. Simulations led us to design an antibody with a dual
mechanism of action: one that blocks ligand binding and also
induces receptor downregulation. During this process, simulations
also highlighted how increasing levels of HER2 diminish seriban-
tumab potency, leading us to design a second drug, MM-111, that
inhibits HRG-driven ErbB3 signaling in HER2-high tumors.
Finally, modeling and simulation played a critical role in

identifying potential biomarkers for seribantumab. Our models
highlighted five biomarkers: all five biomarkers are sensitive nodes
in the network with respect to ErbB3 activation (phosphorylation
of ErbB3). Four biomarkers (HRG, ErbB3, BTC, and HER2) and their
associated assays were prioritized for further analysis and were
directionally consistent with preclinical predictions and relate
directly to the mechanism-of-action of seribantumab.
Biomarkers showing a treatment interaction (Po0.4) were

subsequently evaluated using two-variable models and thresholds
were chosen based on local hazard ratio (HR) scans. Based on the
trade-off between hazard ratio and prevalence, HRG and HER2
were identified as the most favorable pair of predictive
biomarkers. In ovarian cancer, benefit from seribantumab was
restricted to the patients with low levels of HER2 (o126,000
receptors/cell), whereas in the NSCLC and hormone receptor-
positive and HER2-negative breast cancer study all tumor biopsies
obtained tested below these HER2 levels. This threshold, observed
clinically in the ovarian cancer study as the level below which the
HR favored seribantumab (HRo1.0), closely matched results from
model simulations predicting seribantumab potency decreases
when HER2 levels rise above ~ 200,000 receptors/cell. The direct
translation of this modeling result to the clinical setting shows
that, even though preclinical results often do not translate from
bench to bedside, mechanism-based predictions are more likely to
bridge this gap.
One of the key findings from the Phase 2 studies of

seribantumab is that HRG mRNA appears to be a clinically
relevant biomarker for insensitivity to therapy identifying a
significant subset of patients burdened by the presence of a
substantial subset of HRG-positive cancer cells within their tumors
potentially directly impacting clinical outcomes on standard
therapies. Perhaps the best example is that of HER2, which, prior
to the advent of trastuzumab, was indicative of breast cancer
patients with particularly poor outcomes. HER2-positive breast
cancer patients represented a molecularly defined subset of breast
cancer that derived little benefit from chemotherapy. With the
advent of trastuzumab, however, these patients now have a
molecularly targeted therapy that dramatically improves patient
outcomes. Similarly, NSCLC patients with activating mutations in
EGFR are now routinely treated with erlotinib or other EGFR
tyrosine kinase inhibitors, and testing for these mutations has
become standard-of-care.51 In the clinic, we found that persis-
tence of HRG mRNA expressing cancer cells is prognostic of poor
response to standard therapy. In all three Phase 2 studies,
HRG-positive patients’ tumors on the control arm progressed
more rapidly than HRG-negative patients’ tumors, with hazard
ratios in excess of 2.0 (Figure 7c). A similar result was obtained in
the HERALD study of patritumab, another ErbB3-targeted mono-
clonal antibody developed by Daiichi Sankyo.52 In this Phase 1b/2
study, patritumab in combination with erlotinib was compared
with patritumab plus placebo in EGFR inhibitor-naïve advanced
NSCLC. A retrospective analysis of HRG mRNA levels, as assessed
by reverse transcriptase–quantitative PCR in tumor tissue, showed

that patients with HRG mRNA levels above the median progressed
more rapidly on the control arm than patients with levels below
the median.
These findings are also consistent with several epidemiological

studies. Shames and colleagues analyzed HRG and ErbB3 mRNA
levels in more than 750 tumors of diverse origin, including over
150 primary and recurrent tissue samples from patients with
squamous cell carcinoma of the head and neck.53 They found that
high HRG expression is associated with activation of ErbB3 (as
assessed by ErbB3 phosphorylation) and that HRG expression was
significantly higher in recurrent specimens compared with
patient-matched and unmatched therapy-naïve specimens. These
findings suggest that HRG expression may be both predictive of
response to ErbB3 inhibitors and prognostic for cancer recurrence.
Similarly, Qian and colleagues assessed the prognostic value of
HRG mRNA and ErbB receptor protein levels in 96 patients with
oropharyngeal squamous cell carcinoma54 HRG mRNA and ErbB3
protein levels were found to independently correlate with poor
overall survival (OS), with the stronger effect coming from HRG.
This combination of findings from us and others on HRG-ErbB3
activation in a variety of cancers is in many ways analogous to the
pre-trastuzumab days with HER2 being a predictor of poor clinical
prognosis. Thus, we suggest that the presence of HRG in tumors
has broader implications when we consider the current clinical
challenges in the precision medicine era. Namely, that HRG
appears to be indicative of a novel cancer cell ‘phenotype’
characterized by increased proliferative and cell cycle rates and
increased tumor survival under therapeutic pressures that
ultimately leads to patients that are difficult to treat in comparison
with those patients that do not exhibit persistence of HRG
expressing cancer cells within their tumors. If one considers the
heterogeneous nature of tumors, HRG-positive tumor cells exist
side by side with their HRG-negative counterparts but once
tumors are exposed to standard of care therapy it is the
HRG-positive cells that persist, due their intrinsic drug-tolerant
nature, and ultimately negatively impact clinical outcomes.
Collectively, these data all point to HRG mRNA being a clinically

relevant biomarker indicative of poor clinical outcomes. Fortu-
nately, HRG mRNA also appears to be an actionable biomarker.
Blocking HRG with seribantumab appears to sensitize those cancer
cells to concomitant therapy in essence converting them back to
phenotypically HRG-negative cells. Interestingly, the PFS curves of
HRG-positive patients receiving seribantumab plus standard-of-
care closely resembles those of HRG-negative patients receiving
standard-of-care alone (Figures 7c and d). This suggests that
seribantumab acts primarily to block drug tolerance, rather than to
inhibit a driver of tumor growth. A similar result was observed in
the HERALD study, in which patritumab appeared to restore
sensitivity to erlotinib in patients with high HRG levels.52 It remains
to be seen if BTC emerges as an important biomarker for
seribantumab in EGFR dependent cancers like colon or head and
neck cancer.
The use of Systems Biology to highlight ErbB3 as a novel target,

to specify the design criteria needed to inhibit this pathway
effectively, and to uncover the biomarkers that define pathway
activity in human tumors represents only the beginning of how
the tools of computation and simulation can be used to focus and
accelerate the process of drug discovery. The key to future success
lies in learning how to translate insights obtained at the bench
and in silico to the clinical setting. For example, Yaffe and
coworkers recently showed how time-staggered dosing can be
used to rewire signaling networks and unlock previously
unrecognized drug synergies.55 Through mathematical modeling
they were able to explain and predict complex interactions
between growth factor signaling and the DNA damage response
network. These types of insights have the potential to dramatically
improve patient outcomes, but it will take innovative clinical trial
designs and diagnostic strategies to test these ideas and reduce
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them to practice. As Systems Biology advances from the realm of
basic science to clinical development, we may soon see a day in
which modeling and simulation have an integral role not just in
understanding complex biological phenomena, but in diagnosing
and treating patients.

MATERIALS AND METHODS
Cell lines and NCI-60 screen
Cell lines were obtained from the NCI’s Developmental Ther-
apeutics Program (http://www.dtp.nci.nih.gov) or purchased from
American Type Culture Collection. All cell lines were maintained in
RPMI 1640 medium (Gibco) supplemented with 10% fetal bovine
serum (Hyclone Labs, South Logan, UT, USA), 2 mmol/l L-glutamine
(Gibco), penicillin (100 U/ml), and streptomycin (100 mg/ml;
Gibco) and propagated in a humidified atmosphere of 5% CO2

and 95% air at 37 °C. For the NCI-60 cell line screen, cells were
plated to achieve approximately 75% confluence following
proliferation in complete media for 24 h in 96-well plates and
then starved in serum-free media for 24 h. Cells were exposed to
growth factors (diluted and stored according to the manufac-
turer’s recommendation; Supplementary Table S1) at a final
concentration of 100 ng/ml for 30 min and then lysed. The screen
consisted of three technical replicates within each plate for each
ligand stimulation and one experimental replicate (Supplementary
Table S2). The quantitative p-Akt (S473) measurements were
performed by enzyme-linked immunosorbent assay (ELISA) using
a standard curve of recombinant protein to regress against. Total
protein was measured by BCA assay (Pierce Biotechnology,
Rockford, IL, USA). For each cell line, the median human serum
albumin (HSA) control-based p-Akt signal was subtracted from the
ligand-induced p-Akt signal and normalized to the maximum
signal observed within each cell line.
Cell lines (HCC1419, BT474-M3, NCI-N87, AGS, ZR75-1, NCI-H358,

ADRr-HER2 over-expressing, and OVCAR8) were seeded onto
96-well plates (Corning, CLS3550) in RPMI supplemented with 4%
fetal calf serum, penicillin, and streptomycin. Twenty four
hours post-seeding, Cells were stimulated with heregulin for
5 h (5 nmol/l, R&D Systems, Minneapolis, MN, USA) and then
treated with seribantumab or MM-111, a bispecific antibody
targeting HER2 and ErbB3 (0 or 1 μmol/l) for 2 h. Cells were
washed with cold PBS and resuspended in lysis buffer (Invitrogen)
supplemented protease and phosphatase inhibitors (Roche).
P-ErbB3 levels were measured using a Luminex assay (ErbB3
capture antibody from R&D Systems, 4G10 detection antibody
from Roche). Two independent experiments, each with two
experimental replicates, were performed. Analysis was performed
with GraphPad Prism software (http://www.graphpad.com/scien
tific-software/prism/). HER2 levels were determined by qFACs.1

MCF-7Ca (human breast cancer cells, which have been stably
transfected with human aromatase gene) were provided by Dr S
Chen (City of Hope, Duarte, CA, USA) in 2012 and maintained as
previously described.33 A2780 and A2780cis cell lines was
obtained from Sigma-Aldrich and maintained as described above.
All cell lines were received prior to 2010 and were authenticated
before receipt. Cells were propagated for less than 6 months after
resuscitation and cultures were regularly tested for mycoplasma.
Erlotinib and paclitaxel were purchased from LC Laboratories
(Woburn, MA, USA).

Enzyme-linked immunosorbent assay
To study intracellular signaling, cell lysates were prepared and
ELISAs were performed as previously described.1 To generate
tumor lysates, flash frozen tumors were pulverized in a CryoPrep
pulverizer (Covaris, Woburn, MA, USA) and resuspended in T-PER
Tissue Protein Extraction Buffer (Thermo Scientific, Tewksbury, MA,
USA), supplemented with protease and proteinase inhibitors

(Roche, Indianapolis, IN). HRG was detected by indirect ELISA as
previously described.1

Immunoblot analysis
For in vitro signaling studies, 50,000 cells were propagated
overnight in 6 cm dishes followed by serum-starvation for an
additional 20–24 h in media with 0.5% fetal bovine serum at 37 °C.
Serum-starved cells were pre-incubated with either seribantumab,
erlotinib, or a combination of both agents, followed by stimulation
with either HRG, EGF or both ligands (R&D Systems). To generate
cell lysates, cells were washed with ice-cold PBS followed by lysis
with M-PER Mammalian Protein Extraction Buffer (Thermo
Scientific, Tewksbury, MA, USA) supplemented with protease
and proteinase inhibitors (Roche, Indianapolis, IN, USA). Total
protein was measured using a BCA assay (Thermo Scientific). For
immunoblot analyses, 30 μg protein was resolved by SDS-PAGE
and various proteins and phospho-proteins were detected using
fluorescently-labeled secondary antibodies. Bands were visualized
using the Odyssey detection system (LI-COR, Lincoln, NE, USA) and
quantitative analyses were performed using ImageStudio (LI-COR).
All measurements were corrected by calculating ratios relative to a
β-actin loading control. All antibodies were purchased from
Cell Signaling Technology (Danvers, MA, USA), unless otherwise
indicated: p-ErbB3 (#4784/ #4791), t-ErbB3 (#12708), p-Akt (#9271),
t-Akt (#9272), p-ERK (#4370), t-ERK (#4370), β-actin (#3700).

Spheroid growth assay and in vitro screening conditions
To measure cell viability in a three-dimensional spheroid culture,
cells were seeded into 96-well low-binding multi-spheroid culture
plates (Scivax USA) in culture medium supplemented with 4%
fetal bovine serum, 1% penicillin and 1% streptomycin at a density
of 5000 cells/well. To allow for spheroid formation, plates were
incubated for 48 h, after which cells were treated with ligand
(5 nmol/l HRG) and varying concentrations of inhibitors (seriban-
tumab and/or chemotherapies) in medium containing 2% fetal
bovine serum. Following 48 h of incubation, media, ligands and
drugs were replenished, and the plates were incubated for an
additional 48 h. Cell viability was determined by incubation
with CellTiter-Glo (Promega Corporation, Madison, WI, USA)
reagent for 10 min, with well luminescence measured using an
Envision plate reader (Perkin Elmer, Shelton, CT, USA). Each cell
line was tested separately for its ability to form spheroids in the
nanoculture plates (with or without Matrigel (BD Biosciences,
Bedford, MA, USA)) and its response to each chemotherapeutic
drug at varying doses, in the absence or presence of 5 nmol/l HRG.
This information was used to define appropriate dose ranges for
each drug and each cell line.

Seribantumab pharmacokinetic and pharmcodynamic study
Three to four week old female nu/nu mice were purchased from
Charles River Laboratories (Wilmington, MA, USA). The care and
treatment of experimental animals were in accordance with the
Institutional Animal Care and Use Committee guidelines.
Subcutaneous tumors were established by injecting five million
A549 cells suspended in 1:1 RPMI 1640 media and growth factor
reduced Matrigel into the right flank of recipient mice. When the
average tumor volume reached approximately 200 mm3, mice
were randomized into different treatment groups. For pharmaco-
kinetic studies, mice received a single intraperitoneal (i.p.) dose of
seribantumab at 150, 300, or 600 μg/mouse. Following 1, 4, 8, 24,
48, 72, 96, and 168 h after a single dose, mice were euthanized
and serum was collected to determine seribantumab levels by
ELISA. Samples were incubated for 2 h at room temperature in
96-well Maxisorb high-binding plates (Nunc,4737111) coated with
recombinant His6-tagged ErbB3. Seribantumab was detected with
HRP-mouse anti-human IgG (Invitrogen, cat#05–4220, Camarillo,
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CA, USA) for 2 h at room temperature. Luminescent signal was
measured with SuperSignal ELISA Pico Chemiluminescent
Substrate (Pierce, 37069). A one-compartment pharmacokinetic
model with first order absorption and non-linear clearance was
used to fit the observed serum concentration data in mice. For
pharmacodynamics studies, mice received either one or two doses
(every 3 days, i.p.) of seribantumab at 600 μg/mouse. Mice were
euthanized 24, 48, and 72 h after dosing with seribantumab, and
tumors collected to determine p-ErbB3 and t-ErbB3 levels by
ELISA, as described above.

Anti-tumor activity studies
Subcutaneous tumors were established in 3- to 4-week-old nu/nu
mice by injecting either five million cells for A549 and H332M or
two million cells for A2780 and A2780cis into the right flank of
recipient mice. Changes in tumor volume (calculated using the
following formula: volume=width2 × length × 0.52) were deter-
mined twice weekly by caliper measurement. When the average
tumor volume reached approximately 200 mm3, mice were
randomized into treatment groups. Seribantumab was adminis-
tered via i.p. injections every three days at the indicated doses. For
combination studies, erlotinib was administered orally every three
days and paclitaxel was administered i.p. weekly at the indicated
doses. The combination study with seribantumab and letrozole
in MCF-7Ca xenografts has been described previously.33

The exponential tumor growth rate was quantified by
log-transforming the tumor volume measurements and using a
generalized linear mixed effect model.56 Fixed effect (time) and
random effect (mouse ID) were used in order to get more robust
estimates of tumor growth rate in each treatment group. Bliss
additivity response37 was calculated based on percentage tumor
growth rate inhibition, which can be defined as the changes in the
exponential growth rate relative to the PBS control group:

%Tumor growth rate inhibition of treatment; i ¼ ðkPBS - kiÞ
kPBS

´ 100

where kPBS and ki are the exponential growth rate coefficients of
the PBS control group and the treatment group, i, estimated from
linear mixed effect models.
Efficacy studies using patient-derived xenograft models

(MAX449, MAX1162, and MAX574) were conducted at Oncotest
GmbH in Germany. The patient-derived xenograft tumor samples
were obtained from Oncotest and HRG protein levels were
measured by ELISA at Merrimack.

Tissue sample analysis
Archived tissue and/or pre-treatment biopsies were acquired from
each patient and five pre-specified biomarkers were measured in
each sample: heregulin (HRG), betacellulin (BTC), EGFR, HER2, and
ErbB3. All assays were performed using formalin-fixed, paraffin-
embedded (FFPE) tissue sections. The protein levels of the
receptors were measured either semi-quantitatively by chromo-
genic IHC assays or by quantitative IHC using fluorescence.57 For
the quantitative IHC assay, fluorescence measurements in patient
tumors were referenced to a standard curve, constructed using a
tissue microarray of cell pellets comprising cell lines with known
receptor levels (previously determined by quantitative FACS).
Experimental details for these assays have previously been
described (Liu J et al., JCO in press).

Computational model development and analysis
The computational model was constructed with the use of mass
action kinetics describing ligand-induced ErbB receptor homo-
and heterodimerization, receptor internalization and degradation,
constitutive dimerization, binding of the downstream kinase PI3K,
and subsequent activation of Akt and has been described in

detail1 and can be downloaded from the BioModels database. This
model was deposited in BioModels58 and assigned the identifier
MODEL1609190001. The model was originally encoded for the
MATLAB SimBiology Toolbox and was later exported to SBML. For
comparison, the model also contains reactions describing inhibi-
tion of heregulin− and betacellulin-driven AKT signaling by
MM-111 (a bispecific anti-ErbB2+anti-ErbB3 antibody) and erloti-
nib (an EGFR receptor tyrosine kinase inhibitor).Simulation
conditions as described in the paper include two phases:
an equilibrium phase followed by a treatment phase: In the
equilibrium phase, levels of receptors (EGFR, ErbB2, ErbB3) are set
to cell line-specific values and the model simulated for 30 min and
in the treatment phase, inhibitor(s) and/or ligand(s) are added
either sequentially or simultaneously (co-treatment).
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