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Abstract

The pulsatile release of cortisol from the adrenal glands is controlled by a hierarchical system that involves corticotropin
releasing hormone (CRH) from the hypothalamus, adrenocorticotropin hormone (ACTH) from the pituitary, and cortisol from
the adrenal glands. Determining the number, timing, and amplitude of the cortisol secretory events and recovering the
infusion and clearance rates from serial measurements of serum cortisol levels is a challenging problem. Despite many years
of work on this problem, a complete satisfactory solution has been elusive. We formulate this question as a non-convex
optimization problem, and solve it using a coordinate descent algorithm that has a principled combination of (i)
compressed sensing for recovering the amplitude and timing of the secretory events, and (ii) generalized cross validation for
choosing the regularization parameter. Using only the observed serum cortisol levels, we model cortisol secretion from the
adrenal glands using a second-order linear differential equation with pulsatile inputs that represent cortisol pulses released
in response to pulses of ACTH. Using our algorithm and the assumption that the number of pulses is between 15 to 22
pulses over 24 hours, we successfully deconvolve both simulated datasets and actual 24-hr serum cortisol datasets sampled
every 10 minutes from 10 healthy women. Assuming a one-minute resolution for the secretory events, we obtain
physiologically plausible timings and amplitudes of each cortisol secretory event with R2 above 0.92. Identification of the
amplitude and timing of pulsatile hormone release allows (i) quantifying of normal and abnormal secretion patterns
towards the goal of understanding pathological neuroendocrine states, and (ii) potentially designing optimal approaches
for treating hormonal disorders.
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Introduction

Since many endocrine hormones such as cortisol are released in

pulses instead of having slowly varying concentrations, under-

standing normal and abnormal endocrine functioning requires

detection and quantification of both timing and amplitude of

hormone pulses [1]. Determining the number, timing, and

amplitude of hormone pulses is a challenging problem. For

hormones that are released under control of the hypothalamus and

anterior pituitary, release is regulated hierarchically; hypothalamic

hormone release induces pituitary hormone release [2]. Then,

either the pituitary hormone induces the release of another

hormone from an endocrine gland (e.g. cortisol from the adrenal

glands or thyroid from the thyroid gland) or the hormone of

interest is directly released from the pituitary (e.g. growth

hormone). These hormones are absorbed from the blood stream,

and implement regulatory functions throughout the body. Some

hormones exert negative feedback on release of their hypothalamic

and pituitary regulatory hormones, and consequently their further

release [2].

Current data analysis methods for pulsatile hormone secretion

either assume that the timing of the impulses belongs to a certain

class of stochastic processes (e.g. birth-death process) [3] or use

pulse detection algorithms [4]. The problem of recovering the

model parameters as well as the number, timing, and amplitude of

hormone pulses from a limited number of observations is ill-posed

(i.e., there could be multiple solutions). However, by taking

advantage of the sparse nature of hormone pulses and adding

more constraints, the problem becomes more tractable. Veldhuis

et al. [5] and Keenan et al. [6] have recently reviewed various
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methods used for analyzing pulsatile hormone secretion. One

method used for analyzing hormones is to assume point process

models for the secretory events and employ methods such as the

Markov Chain Monte Carlo (MCMC) algorithm [3]. For

example, Johnson et al. find hormone pulses by embedding a

birth-death process in an MCMC algorithm [3]. Keenan et al.

propose an algorithm that uses a Bayesian approach to identify the

pulses, and the secretion and clearance rates [6]. These methods

assume that the occurrence of the secretory events is stochastic. In

a recent work, Vidal et al. [4] use a pulse detection algorithm and

remove peaks whose heights are small compared to the other

detected pulses or some threshold. This pulse detection algorithm

is implemented on luteinizing hormone (LH) data from ewes. In

the LH data from ewes, one pulse decays significantly before the

next pulse occurs. GH time series patterns also consist of hormone

pulses that decay significantly before the next pulse occurs.

However, one cortisol pulse can occur before the previous one has

significantly decayed to near zero. Therefore, the extraction of the

pattern of pulses may be less clear in cortisol than in LH and GH

data, and analyzing cortisol data is more challenging.

As a first step in the study of novel methods of quantifying

pulsatile activity of hormones, we investigate cortisol secretion in

the hypothalamic-pituitary-adrenal (HPA) axis. Glucocorticoids,

including cortisol, are crucial in neurogenesis, glucose homeostasis,

metabolism, stress response, cognition, and response to inflamma-

tion [7]. Diseases that are linked to abnormalities in the HPA axis

include diabetes, visceral obesity and osteoporosis, life-threatening

adrenal crises and disturbed memory formation [8], [9]. Cortisol

secretion is initiated by the release of corticotropin releasing

hormone (CRH) from the hypothalamus; CRH induces pulsatile

release of adrenocorticotropin hormone (ACTH) from the anterior

pituitary, and through their stimulation by ACTH, the adrenal

glands produce cortisol. Cortisol exerts negative feedback effect on

the release of CRH and ACTH, and consequently future cortisol

release. Normal physiology includes variation of the cortisol level

over a 24-hour period; these variations are due to the circadian

modulation of the amplitude of the secretory events and ultradian

modulation of the timing of the secretory events. Thus, there is a

complex physiology required to produce the cortisol pulses and in

particular this physiology depends critically on the release of CRH

from the hypothalamus and pulsatile release of ACTH from the

anterior pituitary. In this study, we are only concerned with the

problem of estimating the pharmacokinetics properties of cortisol

as well as the number, timing and amplitude of the cortisol pulses

from the time-series of the serum cortisol levels. Over 24 hours,

there are 15 to 22 secretory events [10,11] with an average of 18

secretory events in both males and females [12]. Hence, since

there are a small number of secretory events that are significant,

these hormone pulses can be considered sparse and specific

analytic techniques can be applied.

In this paper, we use the characteristic of the sparsity of

hormone pulses (i.e., there are a small number of secretory events

that are important) and recover the timing and amplitude of

individual hormone pulses using compressed sensing techniques.

Compressed sensing is a technique for perfect reconstruction of

sparse and compressible signals using fewer measurements than

required by the Shannon/Nyquist sampling theorem [13]. For

compressible signals, where only a small number of coefficients are

large (i.e., most coefficients are small or zero) and small coefficients

can be discarded, the signal can be approximated by a sparse

representation and recovered using optimization or greedy

algorithms [13]. We describe a coordinate descent approach to

recover cortisol secretory events and model parameters. To

demonstrate the performance of the algorithm, we apply it to

cortisol data. Although we know the sparsity range of the input,

the number of pulses for each participant is an open question. In

finding the number of pulses, there is a trade-off between

capturing the residual error and the sparsity. We use generalized

cross-validation to find the number of pulses such that there is a

balance between the residual error and the sparsity. This

algorithm potentially can be applied to other pulsatile endocrine

hormones such as GH, thyroid hormone, LH, and testosterone.

Methods

Experiment
Blood from 10 healthy women collected every 10 minutes for

24 hours was assayed for cortisol in duplicate. The 24 hours began

with 8 hours of scheduled sleep followed by 16 hours of wake. The

participants were recruited via advertisements in local newspapers

to serve as healthy controls for a study on women with

fibromyalgia; participants with abnormal laboratory test results

or current medical problems were excluded [14]. None of the

participants had received glucocorticoids or estrogen/progester-

one within the year or 4 months before the study, respectively [14].

For 3 consecutive nights, at the General Clinical Research Center

of the Brigham and Womens Hospital, participants had 8 hours of

scheduled sleep in the dark at their habitual sleep-wake times and

three meals and two snacks; on day 4, all participants started a

constant routine protocol that included continuous wake, constant

posture, and small meals given hourly [14]. Blood drawing for

hormones analyzed in this study was performed during the third

night of sleep and during the first 16 hours of the constant routine.

A detailed description of the experiment is in [14]; clinical

characteristics of the participants are given in Table 1. The

experimental protocol was designed to minimize the effects of

ambulatory temperature, activity, eating, and stress on the

participants. Therefore, this dataset can be used to quantify

cortisol variations as a function of the time of the day, as controlled

by the circadian and the ultradian patterns.

Ethics Statement
This project has been reviewed and approved by the Brigham

and Women’s Hospital Institutional Review Board (IRB). During

the review of this project, the IRB specifically considered (i) the

risks and anticipated benefits, if any, to subjects; (ii) the selection of

Table 1. Clinical Characteristics of the Participants.

AGE BMI (
kg

m2
)

Systolic
BP (mmHg)

Diastolic
BP (mmHg)

28 20.8 100 70

41 23.6 120 80

41 22.5 130 70

24 20.7 108 78

23 27.4 108 68

26 25.2 108 68

23 29.3 110 74

37 29.6 138 80

44 29.9 135 82

42 22.9 108 62

BMI and BP refer to Body Mass Index and Blood Pressure, respectively. None of
the participants had a current diagnosis of depression
doi:10.1371/journal.pone.0085204.t001
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subjects; (iii) the procedures for securing and documenting

informed consent; (iv) the safety of subjects; and (v) the privacy

of subjects and confidentiality of the data. All subjects provided

written informed consent that was approved by the ethics

committees.

Model Formulation
We build a model based on the stochastic differential equation

model of diurnal cortisol patterns [10]. This model is based on the

first-order kinetics for cortisol synthesis in the adrenal glands,

cortisol infusion to the blood, and cortisol clearance by the liver,

while considering a doubly stochastic pulsatile input in the adrenal

glands that has Gaussian amplitudes and gamma distributed

interarrival times [10]. This input can be considered as an

abstraction of hormone pulses and marks the timing and

amplitude of the secretory events leading to cortisol secretion.

We assume that there are between 15 and 22 secretory events over

a 24-hour period that result in the observed cortisol profile

[10,11,15,16]. This model is represented as follows:

dx1(t)

dt
~{h1x1(t)zu(t) (Adrenal Glands) ð1Þ

dx2(t)

dt
~h1x1(t){h2x2(t) (Serum) ð2Þ

where x1 is the cortisol concentration in the adrenal glands and x2

is the serum cortisol concentration. h1 and h2, respectively,

represent the infusion rate of cortisol from the adrenal glands into

the blood and the clearance rate of cortisol by the liver.

u(t)~
PN

i~1 qid(t{ti) is an abstraction of the hormone pulses

that result in cortisol secretion where qi represents the amount of

the hormone pulse initiated at time ti (qi is zero if a hormone pulse

did not occur at time ti), and we assume that impulses occur at

integer minute values. N corresponds to the length of the input

(N = 1440).

Blood was collected, beginning at y0 and then, with a sampling

interval of 10 minutes, for M samples (M = 144). All samples were

assayed for cortisol. Let yt10
, yt20

,…, yt10M

ytk
~x2(tk)zntk ð3Þ

where ytk
and ntk

represent the observed serum cortisol level and

the measurement error, respectively, and missing data points can

be interpolated. For each participant, blood samples were assayed

in duplicate; hence, for each participant, we could obtain the

standard deviation of noise and model the corresponding

measurement error. A Gaussian density is a reasonably good

approximation of the probability density of the immunoassay error

[10], and, by using a least squares approach in our estimation

algorithm, we model the noise as a Gaussian random variable.

Using the serum cortisol level (x2) with a sampling interval of

10 minutes, we would like to estimate h1 and h2, and obtain the

number of pulses, their timing, and their amplitude.

Considering the known physiology of de novo cortisol synthesis

(i.e., no cortisol is stored in the adrenal glands) [10], we assume

that the initial condition of the cortisol level in the adrenal glands

is zero (x1(0)~0) [3], and solve for ytk
. Considering that we have

discrete data points sampled every 10 minutes, assuming that the

input occurs at integer minutes, and y0 is the initial condition of

the serum cortisol concentration, every observed data point ytk
can

be represented as follows:

ytk
~atk

y0zb’tk uzntk ð4Þ

where

btk
~

h1

h1{h2

(e{h2k{e{h1k)
h1

h1{h2

(e{h2(k{1){e{h1(k{1)) :::

�
h1

h1{h2

(e{h2{e{h1 ) 0 � � � 0|fflffl{zfflffl}
N{k

�0,atk
~e{h2k, and u represents the entire

input over 24 hours (elements of u take values qi for i~1,:::,1440).

Let y~ yt10
yt20

� � � yt10M
½ �0, h~ h1 h2½ �0, Ah~

at10
at20

� � � at10M
½ �0, Bh~ bt10

bt20
� � � bt10M

½ �0, and

~ nt10
nt20

� � � nt10M
½ �0.

We can represent this system as:

y~Ahy0zBhuz : ð5Þ

Estimation
In modeling cortisol secretion over 24 hours, results from

previous studies suggest that there are 15 to 22 secretory events

[10,11,15,16], and on average, there are 18 secretory events [12].

Hence, we assume u contains 15 to 22 nonzero elements out of

1440 possibilities and all these nonzero elements are nonnegative

(15ƒEuE0ƒ22, u§0). To estimate the model parameters, we

follow [10] and assume that the infusion rate of cortisol from the

adrenal glands to the circulation is at least four times the clearance

rate of cortisol by the liver (i.e., 4h2ƒh1). Because the hormone

infusion and clearance rates cannot be negative, we further assume

in the optimization algorithm that h§0. We can formulate this

problem as an optimization problem:

min Ey{Ahy0{BhuE2
2

ð6Þ

Table 2. The Estimated Model Parameters and the Squares of
the Multiple Correlation Coefficients (R2) for the Fits of the
Experimental Cortisol Time Series.

Participant h1(min21) h2(min21) N 2

1 0.0739 0.0067 18 0.97

2 0.0762 0.0057 17 0.93

3 0.0921 0.0082 16 0.96

4 0.1248 0.0061 17 0.93

5 0.0585 0.0122 18 0.95

6 0.0726 0.0095 20 0.96

7 0.0799 0.0107 16 0.97

8 0.0365 0.0091 16 0.93

9 0.0361 0.0090 16 0.92

10 0.0864 0.0073 20 0.94

Median 0.0751 0.0086 17 0.95

The parameters h1 and h2 are, respectively, the estimated infusion rate of
cortisol into the circulation from the adrenal glands and the estimated
clearance rate of cortisol by the liver. N is the estimated number of hormone
pulses and R2 is the square of the multiple correlation coefficient.
doi:10.1371/journal.pone.0085204.t002
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s:t:

15ƒEuE0ƒ22

u§0

Chƒb

where C~
{1 {1 0

4 0 {1

� �0
, b~ 0 0 0½ �0.

This optimization problem is generally considered as NP-hard.

It is possible to use an ‘1-norm relaxation and solve this problem

using different computational strategies such as the basis pursuit,

greedy algorithms, iterative-thresholding algorithms, or the

FOCUSS algorithm and its extensions [17]. We solve this problem

with an extension of the FOCUSS algorithm by first casting this

optimization problem as:

min
u§0

Chƒb

Jl(h,u)~ 1
2
Ey{Ahy0{BhuE2

2zlEuEp
p ð7Þ

where the ‘p-norm is an approximation to the ‘0-norm (0vpƒ2)

and l is chosen such that the sparsity of u is between 15 to 22.

Then, by using a coordinate descent approach, this optimization

problem can be solved iteratively through the following steps (for

l~0,1,2,:::) until convergence is achieved:

1.

u(lz1)~ argmin
u§0

Jl(h(l),u) ð8Þ

2.

h(lz1)~ argmin
Chƒb

Jl(h,u(lz1)) ð9Þ

The optimization problem in (8) now can be solved using the

FOCUSS algorithm, which uses a re-weighted norm minimization

approach. The solution at each iteration is found by minimizing

the ‘2-norm and the iteration refines the initial estimate to the final

localized energy solution [18]. In the FOCUSS algorithm,

assuming that a gradient factorization exists, the stationary points

of (8) satisfy u~PuBT
h (BhPuBT

h zlI){1yh [18], where

Pu~diag(DuiD2{p), and yh~y{Ahy0. By iteratively updating l
and u until convergence, we can solve for the sparse vector u. In

the optimization problem in (8), l balances between the sparsity of

u and the residual error Eyh{BhuE2. The sparsity of u increases

with l.

A version of the FOCUSS algorithm called FOCUSSz

proposed by Murray [19] allows for solving for u such that the

maximum sparsity of u is n (n = 22 for our current problem) and u

is nonnegative. This algorithm uses a heuristic approach for

updating l, which tunes the trade-off between the sparsity and the

residual error by increasing l to a maximum regularization lmax as

the residual error decreases. FOCUSSz works as follows:

1. P(r)
u ~diag(Du(r)

i D2{p)

2. l rð Þ~ 1{
yh{Bhu rð Þ�� ��

2

yh
�� ��

2

 !
lmax,lw0

Figure 1. Estimated Deconvolution of the Experimental Twenty-Four-Hour Cortisol Levels in 10 Women. Each panel shows the
measured 24-hour cortisol time series (red stars), the estimated cortisol levels (black curve), the estimated pulse timing and amplitudes (blue vertical
lines with dots) for one of the participants. The estimated model parameters are given in Table 2.
doi:10.1371/journal.pone.0085204.g001

Table 3. The Estimated Model Parameters and the Squares of the Multiple Correlation Coefficients (R2) for the Fits of the Simulated
Cortisol Time Series.

Participant ĥh1(min{1) ĥh2(min{1) N sn(
ug

dl
)

Dh1{ĥh1 D
h1

(%)
Dh2{ĥh2 D

h2

(%)

1 0.0628 0.0068 16 0.99 0.38 15.02% 1.49%

2 0.0569 0.0056 15 0.97 0.75 25.33% 1.75%

3 0.0747 0.0078 15 0.98 0.67 18.89% 4.88%

4 0.0918 0.0071 16 0.94 1.44 26.44% 16.39%

5 0.0492 0.0123 18 0.99 0.52 15.90% 0.82%

6 0.0490 0.0122 19 0.99 0.29 32.51% 28.42%

7 0.0770 0.0098 16 0.97 0.98 3.63% 8.41%

8 0.0375 0.0094 18 0.99 0.33 2.74% 3.30%

9 0.0365 0.0091 16 0.99 0.35 1.11% 1.11%

10 0.0654 0.0076 19 0.99 0.31 24.30% 4.11%

Median 0.0599 0.0084 16 0.99 0.45 17.39% 3.70%

The parameters ĥh1 and ĥh2 are, respectively, the estimated infusion rate of cortisol into the circulation from the adrenal glands and the estimated clearance rate of
cortisol by the liver. N is the estimated number of hormone pulses and R2 is the square of the multiple correlation coefficient. sn is the standard deviation of the zero
mean Gaussian noise added to each simulated data point. For each participant, blood samples were assayed in duplicate, and the corresponding standard deviation of
noise was obtained. The parameters h1 and h2 are, respectively, the infusion rate of cortisol into the circulation from the adrenal glands and the clearance rate of cortisol
by the liver used in simulating each dataset. The values of h1 and h2 are given in Table 2.
doi:10.1371/journal.pone.0085204.t003
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3. u(rz1)~P(r)
u BT

h (BhP(r)
u BT

h zl(r)I){1yh

4. u
(rz1)
i ƒ0?u

(rz1)
i ~0

5. After more than half of the selected number of iterations, if

Eu(rz1)E0wn, select the largest n elements of u(rz1) and set the

rest to zero.

6. Iterate

FOCUSSz usually converges in 10 to 50 iterations [19].

Although an estimate of the unknown quantities can be obtained

after iteratively solving for u and h (8–9) using FOCUSSz, h and

u should be updated by finding an optimal choice of l such that

enough noise is filtered out and the estimated u is not capturing

residual error by finding a less sparse solution. We use the

Generalized Cross-Validation (GCV) technique [20] for estimat-

ing the regularization parameter such that there is a balance in

filtering out the noise and the sparsity of u. The GCV function is

defined as:

G(l)~
LE(I{Hl)yhE2

(trace(I{Hl))2
, ð10Þ

where L is the number of data points, and Hl is the

influence matrix. For the FOCUSS algorithm, Hl~

BhPuBT
h (BhPuBT

h zlI){1. Zhaoshui et al. [17] employ the

GCV technique for estimating the regularization parameter for

the FOCUSS algorithm through singular value decomposition:

G(l)~

L
PL

i~1
f2
i ( l

s2
i
zl

)2PL
i~1

l

s2
i
zl

2
, ð11Þ

where f~RT yh~ f1 f2 � � � fL½ �0 and BhP
1
2
u~RSQT with

S~diagfsig; R and Q are unitary matrices and si’s are the

singular values of BhP
1
2
u. [17]. Zhaoshui et al. [17] propose

minimizing G(l) such that l is bounded between some minimum

and maximum values (lmin and lmax) using the MATLAB function

fminbnd (MATLAB R2011b), which is an implementation of the

golden section (GS) search. Although the GS search only finds a

local extremum, considering that G(l) is unimodal, the GS search

always finds the desired solution given a large range for l [17]. We

used a range of zero to 10 for l.

Considering the ill-posedness of deconvolution problems, small

variations in the data can result in large changes in the solution,

and a balanced choice of regularization is required to filter out the

effect of noise. Tikhonov regularization, truncated singular value

decomposition, and the method of L-curve are well-known

methods used when dealing with such problems [21]; among

these methods, the L-curve method appears to be the most

commonly used. Automatically searching for the minimum of the

GCV function is easier than finding the corner of the L-curve as

the L-curve method is computationally expensive, requiring

computation of the solution for several samples of the parameter

[17]. Moreover, Zhaoshui et al. point out that GCV is usually

more accurate in estimating the regularization parameter than the

L-curve method [17]. In the GCV technique, the optimal choice

of regularization minimizes the predictive mean-squared error.

Hence, one can update u by modifying FOCUSSz using the

GCV method. For r~0,1,2,::: GCV - FOCUSSz works as

follows:

1. P(r)
u ~diag(Du(r)

i D2{p)

2. u(rz1)~P(r)
u BT

h (BhP(r)
u BT

h zl(r)I){1yh

3. u
(rz1)
i ƒ0?u

(rz1)
i ~0

4. l(rz1)~ argmin
0ƒlƒ10

G(l)

5. Iterate until convergence

By combining the GCV method with FOCUSSz, one can find

an optimal choice of l at each iteration such that enough noise is

filtered out when solving for u, and iterate between solving (8) and

(9) until convergence is achieved. The following is the algorithm

that we propose for deconvolution of cortisol data:

1. Initialize ~hh0 by sampling a uniform random variable w on ½0,1�,
and let ~hh0~ w w

4

� �0
and j~1

2. Set ~hh equal to ~hhj{1; using FOCUSSz, solve for ~uuj by

initializing the optimization problem in (8) at a vector of all

ones

3. Set ~uu equal to ~uuj ; using the interior point method, solve for ~hhj

by initializing the optimization problem in (9) at ~hhj{1

4. Iterate between steps 2–3 for 30 iterations

5. Initialize ĥh0 and ûu0 by setting them equal to the ~hhj and ~uuj that

minimize Jl(h,u) in (7), and let i = 1

6. Set ĥh equal to ĥhi{1; using GCV 200 pt FOCUSSz, solve for

ûui by initializing the optimization problem in (8) at ûui{1

7. Set ûu equal to ûui; using the interior point method, solve for ĥhi

by initializing the optimization problem in (9) at ĥhi{1

8. Iterate between steps 6–7 until convergence

9. Repeat steps 1–8 for various initializations

10. Set the estimated model parameters ĥh and input ûu equal to

the values that minimize Jl(h,u) in (7). Since this

optimization problem is non-convex, there are multiple

local minima, and a reasonable procedure to choose among

the local minima is to select the one with the best goodness

of fit.

Step 1 initializes the algorithm randomly. Steps 2–4 use the

random initialization to find a good initialization for the unknowns

while using FOCUSSz for sparse recovery and interior point

method for finding the model parameters. Step 5 finds a good

initial condition by comparing the estimates obtained in Steps 2–4,

and selecting the h and u values that minimize the cost function.

The values found at Step 5 are used for initializing the main

algorithm. Steps 6–8 use a coordinate descent approach to

estimate the unknowns until convergence is achieved. Sparse

recovery is achieved using GCV 2 FOCUSSz which uses

generalized cross-validation for finding the regularization param-

eter; GCV 2 FOCUSSz selects the regularization parameter

such that there is a balance between capturing the sparsity and the

noise, and finds different sparsity levels for different individuals.

Step 9 repeats the initialization and estimation steps for various

Figure 2. White Gaussian Structure in the Model Residuals of 10 Women. In each panel, (i) the top sub-panel displays the autocorrelation
function of the model residuals in one of the 10 participants; the graph shows that the model captures the dynamics and that residuals are white; (ii)
the bottom sub-panel displays the quantile-quantile plot of the model residuals for that participant; the graph shows that the residuals are Gaussian.
doi:10.1371/journal.pone.0085204.g002
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initializations. Step 10 selects the h and u values that minimize the

cost function.

The main idea behind the algorithm is to solve the non-convex

problem in (7) using a coordinate descent approach to converge to

a local minimum for different initializations, and choose the local

minimum that minimizes the problem in (7). Convergence

properties of coordinate descent algorithms are well-studied and

a discussion can be found in [22].

We have implemented the algorithm by assuming that hormone

pulses occur at integer minutes. We ran the proposed algorithm

using 10 random initializations for each dataset. According to

[23], the FOCUSS algorithm converges faster for 0,p,1

compared to 1,p,2; however, it should be noted that for

0,p,1, the optimization problem is not convex and if p is too

small (e.g., p = 0.1), it is possible to stagnate into a local minimum;

hence, they suggest selecting a value slightly smaller than 1 but not

too small [23]. When running GCV 2 FOCUSSz, we let p = 0.5

to solve for u. Data analysis, estimation, and simulations were

performed in MATLAB R2011b.

Using the cortisol secretion model (1–2), we simulated ten 24-

hour cortisol datasets using parameters h1 and h2 in Table 2 and

impulse trains in Figure 1. Then, using the observation model (3),

we added zero mean Gaussian noise with a standard deviation of

sn to the simulated cortisol levels; sn in Table 3 models the

immunoassay error for each participant and was obtained using

blood samples assayed in duplicate.

Results

Figure 1 shows experimental data from each participant. For

most participants, the cortisol level is low at the beginning of the

scheduled sleep; the cortisol level increases rapidly around the

wake time and gradually decreases throughout the day.

Figure 1 shows the estimated amplitude and timing of hormone

pulses, experimental cortisol data, and model-predicted cortisol

estimates for each participant. There are variations in the timing

and amplitudes of the detected hormone pulses. The circadian

amplitudes of the recovered pulses demonstrate the known

circadian variation of cortisol time series [10]; for most partici-

pants, the recovered pulses are small at the beginning of the

scheduled sleep, and there is a large pulse towards the end of the

sleep period or beginning of the wake period. There are multiple

small and medium sized pulses during the wake period. The

number of detected pulses for all participants are within their

corresponding physiologically plausible ranges [10,11,15,16] with

a square of the multiple correlation coefficient (R2) above 0.92

(Table 2). The R2 is a statistical measure of the goodness of fit

obtained by model-predicted estimates of data; it measures the

fraction of the sample variance of data that is predicted by the

model: R2 values close to 1.0 suggest that the model is good at

estimating the data. Figure 2 shows the autocorrelation function

and the quantile-quantile plots of the model residuals for the 10

participants suggesting that the model captures the dynamics, and

that the residuals have a Gaussian structure and are white.

We simulated 10 datasets, each corresponding to one of the 10

experimental datasets (Figure 3). These datasets were simulated by

using the recovered pulses of the 10 experimental datasets shown

in Figure 1 as well as the estimated model parameters for each of

the corresponding datasets as shown in Table 2. Then, we added

zero mean Gaussian noise with standard deviations shown in

Table 3 to the simulated data. These 10 simulated datasets were

sampled every 10 minutes.

Table 3 shows the estimated model parameters, number of

pulses, the square of the multiple correlation coefficient (R2), the

percentage error in estimating the model parameters, and the

standard deviation of zero mean Gaussian noise used in simulating

the 10 datasets. These simulations were performed by adding

various values of zero mean Gaussian noise with standard

deviations sn ranging from 0.29 to 1.44; the level of noise was

based on the signal-to-noise ratio for data collection for each of the

participants. Errors in estimating h1 and h2 range from small

values (1.11% and 0.82%) to high values (32.51% and 28.42%),

respectively. The maximum error in finding the number of pulses

is two. There is zero error in finding the number of pulses for

participant 7 where the maximum error in the detected support is

14 minutes. The overall performance of the estimation for the

simulated dataset is best for the data that corresponds to

participant 7 with sn~0:98, and 3.63% and 8.41% error in

estimating h1 and h2, respectively. These estimates were obtained

by 10 random initializations, and considering that the optimiza-

tion problem solved for this estimation is non-convex, there are

multiple local minima and the estimation can be improved by

using more initializations. Since the noise added to the simulated

data is comparable in amplitude to small pulses of cortisol, the

pulsatile patterns of the simulated cortisol time series differ from

their corresponding experimental time series. This explains the

higher error in the estimated model parameters h1 and h2, and the

error in the estimated timing and amplitudes of pulses. This choice

of noise is based on the immunoassay error for each experimental

time series, so that the simulations are based on multiple metrics of

the experimental data. The algorithm performs better for lower

levels of noise that do not significantly affect the pulsatile patterns

of the simulated time series.

Figure 4 shows the actual sparse input, the recovered input, the

simulated cortisol data, and the estimated cortisol levels. Table 4

shows the maximum error in the detected timing of pulses, the

number of small pulses that are not detected, and the number of

extra pulses that are detected for each simulated dataset. The

recovered and the actual inputs are in good agreement for a

variety of noise levels when detecting significant pulses; however, a

few of the small pulses cannot be detected for some cases or in

some cases noise is captured as a small pulse. The maximum error

in detecting the support is 26 minutes.

Discussion

Understanding the cortisol secretion process and modeling the

underlying system is a challenging problem for several reasons. (I)

Due to the simultaneous release and clearance of hormones and

the unknown timing and amplitudes of the secretory events,

identifying the pulsatile input to the system and the infusion and

clearance rates is challenging. (II) Due to data collection difficulties

and cost, the sampling interval is usually relatively large (10–

60 minutes) compared to the expected inter-pulse intervals as well

as secretion and clearance rates of cortisol. This low resolution of

the data makes identifying the delays in the system and potential

Figure 3. Simulated Twenty-Four-Hour Cortisol Levels with Measurement Errors Corresponding to Datasets from 10 Women. Each
panel displays the simulated serum cortisol levels based on pulse patterns in Figure 1 and estimated model parameters h1 and h2 in Table 2 in one of
the 10 participants, assuming a zero mean Gaussian measurement error with standard deviation sn in Table 3. In all simulations the initial conditions
are x1(0)~0, x2(0) equals the initial cortisol level of the corresponding participant, and the cortisol levels are recorded every 10 minutes.
doi:10.1371/journal.pone.0085204.g003
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consecutive pulses that occur over one sampling interval

challenging. (III) Cortisol secretion differs in sleep and wake states

and at different circadian times; therefore, the model parameters

might be time-varying. (IV) There is inter-individual variation,

even among healthy individuals. (V) The properties of noise in the

system are not known.

In this paper, we modeled secretory events that result in cortisol

time series, and proposed a coordinate descent approach to

estimate the model parameters and recover the sparse time-

varying secretory input. Considering the sparsity of the input, we

recovered the impulses using compressed sensing. While a range

for the sparsity of the hormone pulses is known, the exact number

of pulses varies from one individual to another and is unknown. To

recover the accurate number of hormone pulses, the regularized

problem should be solved such that there is a balance between

capturing the sparsity and the residual error. We used generalized

cross-validation for choosing the regularization parameter and

finding the number of pulses for each individual. The algorithm

described in this paper provides a general framework that can also

be implemented on other hormones. For the case of cortisol data,

the high R2 values (found to be greater than 0.92 for all 10

participants) suggest that our proposed algorithm can successfully

uncover physiologically plausible hormone pulse information

underlying cortisol secretion. There are variations in the timing

and amplitudes of cortisol secretory events. The amplitude

variations throughout the day occur as a result of the circadian

rhythm underlying cortisol release; the variations in the timing of

impulses reflect the ultradian rhythm underlying cortisol release.

Our algorithm makes it possible to capture the circadian and

ultradian features of hormone pulses as well as the parameters

underlying the first-order kinetics of cortisol release. Furthermore,

our algorithm recovered the impulse train input from simulated

data with various noise levels and detected the significant pulses;

however, depending on the dataset, it misses one or two of the

insignificant pulses or captures noise as one or two small pluses.

Our approach can be applied to GH, thyroid hormone, and

gonadal hormones in a similar fashion. Future directions for this

research include modeling simultaneous measurements of ACTH

and cortisol data. In addition, as we postulate that the human

body controls hormone secretion by solving an optimization

problem, we can use these methods to begin to understand the

underlying physiology. Correlation analysis of the residuals

suggests that the model captures the dynamics, and residuals are

Gaussian and white.

Many data analysis methods for modeling hormone pulsatility

either assume the timing of the impulses belongs to a certain class

of stochastic processes or use pulse detection algorithms [3,4].

These procedures work well when the pulses are readily

identifiable and are more challenging when the pulses are more

difficult to discern by visual inspection as in the case of cortisol.

Johnson et al. [3] and Vidal et al. [4], respectively, analyze LH

data using a birth-death process in an MCMC algorithm and a

pulse detection algorithm. While our algorithm also can be applied

to LH, we analyzed cortisol data, in which the timing of the

hormone pulses is not as clearly defined as in LH data. In

summary, our proposed algorithm works well even when the

pulses are not easily identifiable while still being applicable to cases

in which pulses are identifiable by visual inspection. Furthermore,

our algorithm does not require assumptions about the inter-arrival

times of the pulses, and timings of pulses can be recovered for

different classes of distributions of inter-arrival times.

Although our proposed algorithm runs on average in less than

half an hour, it can be accelerated. In the data that we analyzed,

the likelihood of two pulses occurring during small intervals is low

because the experiment was conduced when the participants were

under relatively low stress, were fed regularly, had low constant

activity levels, and the ambient temperature was held constant. We

have not tested our algorithm on data from settings in which the

likelihood of two impulses occurring in short intervals is high due

to external factors such as stress. Moreover, in our analysis, we

make the assumption that the pulses occur at any minute; hence,

the detected pulses could have happened within a minute before or

after the pulse was detected. Using an approach similar to the one

proposed here, with an appropriate number of data points, one

could bin the data assuming the pulses occur at any second, or

even millisecond and detect the pulses with a higher resolution.
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