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A novel autonomous 5-D hyperjerk RC circuit with hyperbolic sine function is proposed in this paper. Compared to some existing
5-D systems like the 5-D Sprott B system, the 5-D Lorentz, and the Lorentz-like systems, the new system is the simplest 5-D
system with complex dynamics reported to date. Its simplicity mainly relies on its nonlinear part which is synthetized using
only two semiconductor diodes. The system displays only one equilibrium point and can exhibit both periodic and chaotic
dynamical behavior.The complex dynamics of the system is investigated bymeans of bifurcation analysis. In particular, the striking
phenomenon of multistability is revealed showing up to seven coexisting attractors in phase space depending solely on the system’s
initial state. To the best of author’s knowledge, this rich dynamics has not yet been revealed in any 5-D dynamical system in general
or particularly in any hyperjerk system. Pspice circuit simulations are performed to verify theoretical/numerical analysis.

1. Introduction

The study of three-dimensional dynamical systems seems to
be mature [1–15].The interest is now focused on high dimen-
sional systems [16–21]. The reason is that they have been dis-
covered tomodel natural phenomenamore explicitly than the
three-dimensional dynamical systems. Recently, hyperjerk
systems have received great attention. In 2005, Konstantinos
and Sprott proposed a class of chaotic/hyperchaotic hyperjerk
systems [19]. They investigated the dynamical properties
of the proposed systems focusing on potential chaotic and
hyperchaotic dynamics. They also claimed to have proposed
surprisingly simple and most elegant functional forms of
hyperjerk systems. A year later, Stefan showed that the con-
cept of hyperjerk systems might serve as an appropriate
starting point to study the dynamics of driven or coupled
oscillators in a unified way [22]. The five-dimensional (5-D)
hyperchaotic Sprott B system has ten terms including two
quadratic nonlinear terms and only one control parameter.
Hong Mey and collaborators have recently proposed a novel

cryptosystem based on 5-D hyperchaotic system [23]. The
system is combined with the logistic map for the generation
of pseudo random sequences of better properties. In order
to analyze the behavior of chaotic systems, some researchers
focused on the synchronization and control of the 5-D
systems [23–26]. These systems are algebraically simpler
than Lorenz and Lorenz-like 5-D systems with twelve terms,
three quadratic nonlinear terms including five or six control
parameters. Let us note that the practical realization of quad-
ratic nonlinearity found in these works is expensive due to
the presence of analogue multipliers. Recently multistability
has attracted tremendous research efforts [1, 5, 12]. However
to the best of the author’s knowledge, multistability in 5-D
hyperjerk systems is very little documented. Also it is very
interesting to question whether there exists a simple chaotic
5-D hyperjerk system capable of multiple coexisting attrac-
tors.

This paper investigates the dynamics of a novel 5-D
hyperjerk circuit with a very simple nonlinear part (a pair
of semiconductor diodes). The new circuit can be regarded
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Figure 1: Electronic circuit of the proposed 5-D hyperjerk system.

as a 5-D version of the jerk circuit previously reported by
Kengne and collaborators [27]. It is important to stress that
the simplicity of the 5-D autonomous circuit relies on the
practical standpoint where the nonlinear part is constructed
using semiconductor diodes. Despite the relative simplicity of
their electronic circuits, the proposed circuit is characterized
by rich and striking nonlinear behaviors such as chaos, anti-
monotonicity, multiple coexisting attractors.

The paper is organized as follows: Section 2 deals with the
modeling process. The electronic structure of the oscillator
is described and a suitable mathematical model is derived to
investigate the dynamics of the system. Section 3 is concerned
with the numerical analysis. Various bifurcation diagrams
combined with their corresponding graphs of the largest Lya-
punov exponent are plotted to reveal different transitions to
chaos. The occurrence of multiple attractors is also discussed
using bifurcation diagrams as arguments. In addition the
bubbling phenomenon is presented. Pspice circuit simula-
tions results are carried out in Section 4. Some concluding
remarks are presented in Section 5.

2. Presentation of the Novel 5-D Circuit

The electronic circuit of the oscillator under investigation
is depicted in Figure 1. It consists of five successive active
integrators in a feedback loop. Additionally, another feedback
loop involving two of the integrators and a pair of diodes (e.g.,
type 1N4148) connected in antiparallel is used to synthetize
the nonlinear part. The pair of semiconductor diodes is the
only element responsible for the complex dynamics of the
circuit. For instance, up to seven disconnected attractors have
been found depending solely on the system’s initial state.
Upon applying Kirchhoff ’s electrical circuit laws and the
Shockley diode equation [26] to the circuit of Figure 1, the
following set of five coupled first-order differential equations
can be derived:

𝐶1 𝑑𝜐1𝑑𝑡 = 𝜐2
𝑅

𝐶2 𝑑𝜐2𝑑𝑡 = 𝜐3
𝑅

𝐶3 𝑑𝜐3𝑑𝑡 = 𝜐4
𝑅

𝐶4 𝑑𝜐4𝑑𝑡 = 𝜐5
𝑅𝑏

𝐶5 𝑑𝜐4𝑑𝑡 = − 𝜐5
𝑅𝑎0 −

𝜐3
𝑅𝑎1 −

𝜐2
𝑅𝑎2 −

𝜐1
𝑅𝑎3 − 2𝐼𝑠 sinh ( 𝜐4

𝜂𝑉𝑇)

(1)

To ease the numerical analysis of the circuit, the following
change of variable and parameters is considered:

𝜐𝑖 = 𝑥𝑖𝑉𝑟𝑒𝑓 (𝑖 = 1 ⋅ ⋅ ⋅ 5) ;
𝑡 = 𝑅𝐶𝜏;

𝑉𝑟𝑒𝑓 = 𝜂𝑉𝑇;

𝑏 = 𝑅
𝑅𝑏 ;

𝑎𝑗 = 𝑅
𝑅𝑎𝑗 (𝑗 = 0 ⋅ ⋅ ⋅ 3) ;

𝛾 = 2𝑅𝐼𝑆
𝑉𝑟𝑒𝑓

(2)

Thus the dimensionless circuit equations are derived as fol-
lows:



The Scientific World Journal 3

2.5 2.6 2.7 2.8 2.9 32.4
a2

0

2

4

6

8

10
x 1

(a)

2.5 2.6 2.7 2.8 2.9 32.4
a2

−0.05

0

0.05

0.1

0.15


Ｇ
；
Ｒ

(b)

Figure 2: Backward continuation of system (3) when decreasing a2 from 3 to 2.4 (a) and the corresponding graph of largest Lyapunov
exponent (𝜆max) plotted in the range 2.4 ≤ a2 ≤ 3 (b).

�̇�1 = 𝑥2
�̇�2 = 𝑥3
�̇�3 = 𝑥4
�̇�4 = 𝑏𝑥5
�̇�5 = −𝑎0𝑥5 − 𝑎1𝑥3 − 𝑎2𝑥2 − 𝑎3𝑥1 − 𝛾 sinh (𝑥4)

(3)

The simplicity of the new 5-D autonomous system (3) studied
in this paper mainly relies on its nonlinear part which is syn-
thetized using only two semiconductor diodes. With refer-
ence to some chaotic systems in the literature [16–21], cubic or
quadratic nonlinear product terms are mostly used. Accord-
ingly, the practical construction is more complicated due
to the use of multipliers. In addition, themaximumLyapunov
exponent of the studied 5-D chaotic system is bigger than
that of some dynamical systems. Hence, it has more complex
dynamic behaviors. Table 2 is provided for more illustra-
tion.

System (3) is dissipative since its divergence (∇𝑉 = −𝑎0) is
negative. Consequently, all system orbits will be confined to a
specific bounded subset of zero volume in state space and the
asymptotic dynamics converges to an attractor.This is true for
this particular case. However, the system is dissipative in the
sense of Levinson if there exists nonlocal Lyapunov function
which defines the absorbing set [23]. In addition, System (3)
is invariant under the transformation: (x1, x2, x3, x4, x5) ⇐⇒
(−x1, −x2, −x3, −x4, −x5). Consequently, if (x1, x2, x3, x4, x5)
is a solution of system (3) for a given set of parameters,
then (−x1, −x2, −x3, −x4, −x5) is also a solution for the same
parameter set. This property is responsible for the variety of
coexisting attractors in the system. Finally, it is found that the
novel oscillator under investigations has only one equilibrium
point that is the origin 𝐸0(0, 0, 0, 0).

3. System’s Dynamics

3.1. Computational Method. To produce phase portraits,
bifurcation diagrams, and Lyapunov spectrum, the system
was solved using the classical fourth-order Runge-Kutta
algorithm with the time step alwaysΔ𝑡 ≤ 0.005. Two different
methods are used to plot the various bifurcation diagrams in
order to highlight the sensitivity of the whole system to the
tiny changes of its parameters. The first method is by forward
and backward continuations, i.e., using a properly continu-
ation package for continuous-time systems [28], which is a
standard tool for numerical bifurcation analysis. The second
method is by following a specific attractor to obtain its
behavior at long term. The later method is used to justify
the abundant coexisting attractors in the system (up to seven
coexisting attractors).

3.2. Route to Chaos and Antimonotonicity. To reveal the type
of transition leading to chaos, a single control parameter (b)
was considered to vary in the range 2.4 < 𝑎2 < 3 while
the rest of system’s parameters are fixed as follows: a0 =
1.75; a3 = 1; a1 = 𝑏 = 3; 𝛾 = 0.0011. The bifurcation diagram
of Figure 2 is obtained by forward continuation. From this
diagram it is obvious that the system experiences the classical
reverse period doubling bifurcation. It moves from period-1
limit cycle to double band chaotic attractors going through
single band chaotic attractors and tiny windows of periodic
attractors. Figure 3 (left) illustrates this bifurcation sequence
with the numerical phase portraits.

As the system experiences the classical period doubling
route to chaos, it is obvious that antimonotonicity can be
observed. Represented on Figure 4, this behavior has been
searched by varying parameter b in the range 16 to 24 for
some discrete values of parameter a3. For instance, if a3 = 3
period-2 bubble is observed and each branch develops two
branches leading to a stable period-4 bubble for a3 = 4.
Similarly a period-8 bubble is obtained for a3 = 4.2. As the
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Figure 3: Numerical phase space trajectories (left) and Pspice based simulation results (right) showing the classical period doubling routes
to chaos in the novel 5-D system.
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Figure 4: Bifurcation diagrams showing local maxima of the coordinate 𝑥3 of the attractor in Poincaré cross section in terms of the control
parameter a2 for remerging Feigenbaum tree (bubbling): period-2 bubble for a3 = 3, period-4 bubble for a3 = 4, period-8 bubble for a3 = 4.2,
and full Feigenbaum remerging tree at a3 = 4.5.

discrete parameterb increases, more bubbles are created until
an infinitely tree (chaos) finally occurs when a3 = 4.5.
3.3. Multiple Coexisting Attractors. Multistability has been
previously revealed in many dynamical systems [29–34],

including jerk systems with self-excited attractors [30, 33, 34]
and hidden attractors [3, 6, 35]. But the models presented up
to date achieved at most six coexisting attractors in the phase
space. This behavior has not yet been discovered in any 5-D
hyperjerk systems.The system under study can challenge this
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Figure 6: Two-dimensional projections (x4-x5) of four coexisting chaotic and periodic attractors for b = 29.57, a0 = a2 = a3, a1 = 7, a4 = 5.4433
x 10−4. Initial conditions are indicated in Table 1.

limit by displaying up to seven coexisting attractors depend-
ing solely on the system’s initial state.

With reference to the bifurcation diagram of Figure 5 the
classical forward or backward continuation of parameter b is
obtained with the following initial conditions x1(0) = 3; x2(0)
= x3(0) = x4(0) = x5(0) = 0 and x1(0) = 1; x2(0) = x3(0) = x4(0)
= x5(0) = 0. A hysteretic window can be identified leading
to the coexistence of four disconnected chaotic and periodic
attractors (Figure 6) in the phase space for 𝑏 = 29.57, 𝑎0 =𝑎2 = 𝑎3 = 5, 𝑎1 = 7, 𝛾 = 5.4433𝑥10−4.

To observe more than four different attractors in the
system, the second method described above (see Section 3.2)
is used to plot the bifurcation diagrams of Figures 7 and 12
by varying parameter a2. If we fix systems parameters as a2 =2.458; a0 = 1.75; a1 = b = 3; a3 = 1; 𝛾 = 0.0054, the system
experiences four different periodic and chaotic attractors (see

Figure 8) where the cross section of the basins of attraction
of the attractors is also presented. This dynamics is justified
using the bifurcation diagrams of Figure 7.

If systems parameters are a2 = 3; a0 = 1.75; a1 = b =
3; a3 = 1; 𝛾 = 0.0054, the system displays five different
period-1 limit cycles (see Figure 9).This dynamics is justified
using the bifurcation diagrams of Figure 7.

For a2 = 2.71; a0 = 1.75; a1 = b = 3; a3 = 1; 𝛾 = 0.0054,
the system experiences five different periodic and chaotic
attractors (see Figure 10).This dynamics is justified using the
bifurcation diagrams of Figure 7.

For a2 = 2.8; a0 = 1.75; a1 = b = 3; a3 = 1; 𝛾 = 0.0054, the
system displays six different periodic and chaotic attractors
(see Figure 11).This dynamics is justified using the bifurcation
diagrams of Figure 7. The corresponding attraction basin is
shown in Figure 7. Let us note that an attractor is hidden
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Table 1: Comparative analysis of some dynamical systems by using the largest Lyapunov exponent (𝜆max).

References Dynamical system Parameters Maximum Lyapunov exponent 𝜆max

[16]

̇𝑥1 = 𝑎(𝑥2 − 𝑥1) + 𝑥4 + 𝑥5 𝑎 = 10 𝜆max = 0.4195
̇𝑥2 = 𝑐𝑥1 − 𝑥1𝑥3 − 𝑥2 𝑏 = 8

3̇𝑥3 = 𝑥1𝑥2 − 𝑏𝑥3 𝑐 = 28, 𝑝 = 1.3
̇𝑥4 = −𝑥1𝑥3 + 𝑝𝑥4 𝑞 = 2.5

̇𝑥5 = 𝑞𝑥1
[17]

̇𝑥1 = 𝑥2 𝑎 = 4 𝜆max = 0.1589
̇𝑥2 = 𝑎𝑥3 𝛾 = 0.06, 𝜇 = 0.75

̇𝑥3 = −𝛾𝑥2 − 𝜇𝑥3 + 𝑥1 − 𝑥1 𝑥1

[21]

̇𝑥1 = −𝑥2 − 𝑥3 𝑎 = 0.25, 𝑏 = 3 𝜆max = 0.112
�̇�2 = 𝑥1 + 𝑎𝑥2 + 𝑥4 𝑐 = 0.5, 𝑑 = 0.05

̇𝑥3 = 𝑏 + 𝑥1𝑥3
̇𝑥4 = −𝑐𝑥3 + 𝑑𝑥4

[23]

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑥4 𝑎 = 10, 𝑟 = 28 𝜆max = 0.39854
̇𝑥2 = 𝑐𝑥1 − 𝑥1𝑥3 − 𝑥2 𝑏 = 8

3 , 𝑑 = 1.3
̇𝑥3 = 𝑥1𝑥2 − 𝑏𝑥3
̇𝑥4 = −𝑥1𝑥3 + 𝑑𝑥4

This work

̇𝑥1 = 𝑥2 𝑏 fl 32 𝜆max = 0.82
̇𝑥2 = 𝑥3 𝑎0 = 5, 𝑎1 = 7
̇𝑥3 = 𝑥4 𝑎2 = 5, 𝑎3 = 4.50
̇𝑥4 = 𝑏𝑥5 𝑎4 = 5.4433 × 10−4

�̇�5 = −𝑎0𝑥5 − 𝑎1𝑥3 − 𝑎2𝑥2 − 𝑎3𝑥1 − 𝛾 sinh (𝑥4)

Table 2: Initial conditions for the abundant coexisting attractors.

Figures Type of coexistence Dimensionless
parameter

Corresponding
electronics
components

Numerical initial
conditions

(𝑥10, 𝑥20, 𝑥30, 𝑥40, 𝑥50)
Pspice initial conditions
(𝜐10, 𝜐20, 𝜐30, 𝜐40, 𝜐50)

6 Four disconnected
chaotic attractors 𝑏 = 29.18 𝑅𝑏 = 342.7Ω (a) (1, 0, 0, 0, 0)

(b) (3, 0, 0, 0, 0) –

8&14
Four disconnected
chaotic and periodic

attractors
𝑎2 = 2.458 𝑅𝑎2 = 17.91𝑘Ω

(a) (±6, 0, 0, 0, 0)
(b) (2, 0, 0, 0, 0)
(c) (3, 0, 0, 0, 0)

(a-b) (±0.3, 0, 0, 0, 0)
(c-d) (±1, 0, 0, 0, 0)
(e) (0, 0, 0.2, 0, 0)

10
Five disconnected
chaotic and periodic

attractors
𝑎2 = 2.71 𝑅𝑎2 = 14.65𝑘Ω

(a) (±5, 0, 0, 0, 0)
(b) (±0.6, 0, 0, 0, 0)
(c) (5.6, 0, 0, 0, 0)

(a-b) (±0.2, 0.1, 0.1, 0.2)
(c-d) (±0.5, 0.1, 0.1, 0.2)
(c-d) (±0.5, 0.1, 0.1, 0.2)

9&15 Five disconnected
periodic attractors 𝑎2 = 3 𝑅𝑎2 = 15.6𝑘Ω

(a) (±5, 0, 0, 0, 0)
(b) (±0.6, 0, 0, 0, 0)
(c) (5.6, 0, 0, 0, 0)

(a-b) (±0.1, 0, 0, 0, 0)
(c-d) (±0.2, 0, 0, 0, 0)
(e-f) (±0.3, 0, 0, 0, 0)

11&16
Six disconnected

chaotic and periodic
attractors

𝑎2 = 2.8 𝑅𝑎2 = 16.5𝑘Ω
(a) (±0.45, 0, 0, 0, 0)
(b) (±0.6, 0, 0, 0, 0)
(c) (±0.35, 0, 0, 0, 0)

(a-b) (±0.1, 0, 0, 0, 0)
(c-d) (±0.2, 0, 0, 0, 0)
(e-f) (±0.3, 0, 0, 0, 0)

13
Seven disconnected
chaotic and periodic

attractors
𝑎2 = 2.834 𝑅𝑎2 = 35.28𝑘Ω

(a) (1, 0, 0, 0)
(b) (±3, 0, 0, 0)
(c) (±2, 0, 0, 0)
(d) (4, 0, 0, 0)

–

if their basin of attraction does not intersect with small
neighborhoods of the equilibrium points of system. Given
that the single equilibrium point of system (3) 𝐸0(0, 0, 0, 0)
intersects with the basin of attraction of the coexisting
attractor Figure 7, we can conclude that the said attractor is

self-excited (instead of hidden attractors). Some literature can
provide systems with hidden attractors [3, 6, 35].

More interestingly, another window of multiple coexist-
ing attractors can be revealed when a0 = 1.75; a1 = b =
3; a3 = 1; 𝛾 = 0.0109 and the control parameter a2 is varied in
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Figure 9: Coexistence of five different period-1 limit cycles for a2 = 3 with the rest of system’s parameters as follows: b = a1 = 3, a0 = 1.75, a3
=1, a4 = 0.0054. Initial states are given in Table 1.

a tiny range. The bifurcation diagrams of Figure 12 revealed
a window in which up to seven disconnected attractors (see
Figure 13) coexist in the phase space depending solely on the
system’s initial state. Table 2 provides the initial conditions for
these coexisting attractors.

This work represents an enriching contribution to the
understanding of the nonlinear dynamics of this type of
oscillators [36]. However, this striking phenomenon of dis-
connected coexisting attractors is also reported in other non-
linear dynamic systems such as lazer system [37], chemical



10 The Scientific World Journal

−10

−5

0

5

10

−10 −5 0 5 10

Ｒ1

Ｒ
2

(a)

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

Ｒ1

Ｒ
2

(b)

−5 0 5
−10

−5

0

5

10

Ｒ1

Ｒ
2

(c)

Figure 10: Two-dimensional projections (x1-x2) of five coexisting attractors for a2 = 2.71 (a pair of chaotic attractors, a pair of period-1 limit
cycle, and a symmetric chaotic attractor) with the rest of system’s parameters as follows: b = a1 = 3, a0 = 1.75, a3 = 1, a4 = 0.0054. Initial states
are given in Table 1.



The Scientific World Journal 11

−10

−5

0

5

10

−10 −5 0 5 10

Ｒ1

Ｒ
2

(a)

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

Ｒ1

Ｒ
2

(b)

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

Ｒ1

Ｒ
2

(c)

Figure 11: Two-dimensional projections (x1-x2) of six coexisting attractors for a2 = 2.8 (two pairs of chaotic attractors and a pair of period-1
limit cycle) with the rest of system’s parameters as follows: b = a1 = 3, a0 = 1.75, a3 = 1, a4 = 0.0054. Initial states are given in Table 1.
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Figure 12: Bifurcation diagram for illustrating the coexistence of seven different attractors in the phase space.The diagrams are plotted using
the same methods as in Figure 7.
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Figure 13: Coexistence of seven disconnected attractors (two pairs of chaotic attractors, a pair of period-1 limit cycle, and a symmetric
period-1 limit cycle) for a2 = 3 with the rest of system’s parameters as follows: b = a1 = 3, a0 = 1.75, a3 = 1, a4 = 0.0109. Initial states are given in
Table 1.
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Figure 14: Pspice simulation results showing the coexistence of four different attractors for 𝑅𝑎2 = 17.91𝑘Ω (a pair of period-1 limit cycles,
and two symmetric chaotic attractors). Initial states are indicated in Table 1.

reaction [38], and the radio physical system [35]. A special
case where infinitely many attractors coexist, also referred to
as extreme multistability, is discussed in [26, 39]. The multi-
plicity of attractors represents an additional type of random-
ness [40] that is exploited in real applications such as chaos
based secret communication, image encryption, and random
signal generation as well. However, this type of behavior is
not desirable in general, thus the need for control. Detailed
analysis on this line is out of the scope of this paper. Also, we
suggest the excellent work on control of multistability by [41]
to interested readers.

4. Pspice Circuit Simulations

Our motivation in this section is to verify the theoretical/nu-
merical results obtained previously by performing some
Pspice based simulations of the circuit. Furthermore, it is
important to evaluate the effects of simplifying assumptions
(e.g., ideal diode model and ideal op. amplifiers) considered
during the mathematical modeling process, on the behavior
of a hardware prototype of the 5-D hyperjerk circuit in Pspice.

Briefly recall that an interesting aspect of using Pspice is the
possibility of setting initial capacitors’ voltages and analyzing
the corresponding influence on the dynamics of the complete
electronic circuit. Thus, the presence of multiple coexisting
attractors can be tracked in a straightforward manner.

First to report the reverse period doubling routes to chaos
observed during the numerical analysis, the circuit of Fig-
ure 1 has been simulated with the following electronic com-
ponents: R = 10kΩ,C = 10𝜂F, 𝑅𝑎0 = 5.71𝑘Ω,𝑅𝑎1 = 𝑅𝑏 =3.33𝑘Ω, 𝑅𝑎3 = 10𝑘Ω. By varying 𝑅𝑎2, the complete routes to
chaos are obtained and depicted in Figure 3-right. For 𝑅𝑎2 =15.5𝑘Ω a period-1 limit cycle is obtained, for 𝑅𝑎2 = 16.2𝑘Ω
a period-2 limit cycle is obtained, and chaotic attractors are
obtained for 𝑅𝑎2 = 17𝑘Ω and 𝑅𝑎2 = 18𝑘Ω.

Secondly, coexistence of multiple attractors can also be
confirmed by Pspice based simulations with the following
electronic circuit components: R = 50kΩ,C = 2𝜂F, Ra0 =28.57kΩ;Ra1 = 16.66kΩ; Ra3 = 50kΩ;Rb = 16.66kΩ. If 𝑅𝑎2
is fixed to 𝑅𝑎2 = 17.91𝑘Ω, four disconnected chaotic and
periodic attractors (see Figure 14) coexist depending solely
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Figure 15: Pspice simulation results showing the coexistence of five different attractors for 𝑅𝑎2 = 14.65𝑘Ω (a pair of chaotic attractors, a pair
of period-1 limit cycle, and a symmetric chaotic attractor). Initial states are indicated in Table 1.

on the system’s initial states as indicated in Table 2. For 𝑅𝑎2 =15.6𝑘Ω, five different period-1 limit cycles can be observed
(see Figure 15). The corresponding initial states are indicated
in Table 2. If 𝑅𝑎2 is fixed to 𝑅𝑎2 = 16.5𝑘Ω, six disconnected
chaotic and periodic attractors (see Figure 16) coexist de-
pending solely on the system’s initial states as indicated in
Table 2. A very good similarity between numerical phase por-
traits andPspice simulation results can be observed.However,

slight discrepancies that may be attributed to the simplifying
assumptions adopted during the modeling process can be
noted between the bifurcations points in Pspice compared
to the results from the theoretical analysis. It is important
to stress that while Pspice software is based on actual circuit
components, it still suffers from the discretization and its use
can lead towrong conclusions especially for hidden attractors
(the same is true for MATLAB) [42].
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Figure 16: Pspice simulation results showing the coexistence of six different attractors for 𝑅𝑎2 = 16.5𝑘Ω (two pairs of chaotic attractors and
a pair of period-1 limit cycle). Initial states are indicated in Table 1.
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5. Conclusion

A novel 5-D hyperjerk circuit with a very simple nonlinear
part has been introduced in this work.The circuit is obtained
by introducing additional feedback loops in the realization
circuit of a jerk system previously reported by J. Kengne
and collaborators. The modification yields the simplest 5-
D hyperjerk system reported up to date. More interestingly,
for some given sets of parameters, the system experiences a
plethora of multiple coexisting attractors. For instance, up to
seven disconnected attractors coexist in the system depend-
ing solely on the initial conditions. To the best of author’s
knowledge, such dynamics has not yet been reported in any
hyperjerk system and thus deserves dissemination. Pspice
based simulations were carried out to support the theoretical
analysis. A detailed exploration of the parameter space
(both experimentally and numerically) in view of revealing
hyperchaotic behavior and hidden attractors in system (3)
deserves further studies.
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