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UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France, 3 Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS
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Abstract

The PTEN tumour suppressor encodes a phosphatase, and its daf-18 orthologue in Caenorhabditis elegans negatively regulates
the insulin/IGF-1 DAF-2 receptor pathway that influences lifespan in worms and other species. In order to identify new DAF-18
regulated pathways involved in aging, we initiated a candidate RNAi feeding screen for clones that lengthen lifespan. Here, we
report that smg-1 inactivation increases average lifespan in a daf-18 dependent manner. Genetic analysis is consistent with
SMG-1 acting at least in part in parallel to the canonical DAF-2 receptor pathway, but converging on the transcription factor
DAF-16/FOXO. SMG-1 is a serine-threonine kinase which plays a conserved role in nonsense-mediated mRNA decay (NMD) in
worms and mammals. In addition, human SMG-1 has also been implicated in the p53-mediated response to genotoxic stress.
The effect of smg-1 inactivation on lifespan appears to be unrelated to its NMD function, but requires the p53 tumour
suppressor orthologue cep-1. Furthermore, smg-1 inactivation confers a resistance to oxidative stress in a daf-18-, daf-16- and
cep-1-dependent manner. We propose that the role of SMG-1 in lifespan regulation is at least partly dependent on its function
in oxidative stress resistance. Taken together, our results unveil a novel role for SMG-1 in lifespan regulation.
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Introduction

The insulin/IGF-1 DAF-2 receptor pathway is implicated in

lifespan control in several species [1]. In C. elegans, DAF-2 signals

to the PI3 kinase (PI3K) homolog AGE-1. AGE-1 generates

phosphatidyl inositol 3, 4, 5 triphosphate, or PIP3, which is in turn

responsible for the activation of the AKT-1, AKT-2 and SGK-1

serine threonine kinases in a PDK-1 dependent manner [2–5].

Phosphorylation of the FOXO transcription factor DAF-16 by

these kinases inhibits DAF-16 function by inducing its sequestra-

tion into the cytoplasm [6–8]. The DAF-2 receptor pathway is

downregulated by DAF-18, which is encoded by the C. elegans

orthologue of the human tumor suppressor gene PTEN. Like

PTEN, daf-18 encodes a PIP3 phosphatase that antagonizes the

activity of AGE-1 in the DAF-2 pathway to regulate lifespan [9–

13]. As daf-18 mutations suppress the lifespan phenotype of daf-2

and age-1 mutants, it has been proposed that the role of DAF-18 in

lifespan regulation relies on inhibition of the insulin/IGF-1

signaling pathway (Mihaylova et al., 1999).

In order to identify new DAF-18 partners, we initiated a

candidate RNAi feeding screen for clones that lengthen lifespan in

a daf-18 dependent manner, focusing on potential protein kinases.

We identified one clone encoding the protein kinase SMG-1.

Genetic analyses strongly suggest that SMG-1 acts in parallel to

DAF-2, AGE-1 and AKT-1, but requires DAF-16, to modulate

lifespan. SMG-1 is conserved across species and is involved in a

mechanism responsible for the degradation of premature stop

codon containing mRNA, also called NMD for ‘‘nonsense

mediated mRNA decay’’ in C. elegans and in mammalian cells

[14–16]. Interestingly the role of SMG-1 in lifespan appears to be

unrelated to its function in NMD, but requires the p53 C. elegans

ortholog, cep-1, daf-18, and daf-16. Furthermore, our results

uncover a role for SMG-1 in oxidative stress response that may

be responsible for its effect on lifespan. Overall, our study unveils a

novel role for SMG-1 in oxidative stress response and lifespan

regulation that may be conserved in mammals.

Results and Discussion

smg-1 inhibition increases average lifespan in a daf-18
dependent manner

The screen was performed with rrf-3 (pk1426) single and rrf-3

(pk1426); daf-18 (e1375) double mutants. The daf-18 (e1375)

PLoS ONE | www.plosone.org 1 October 2008 | Volume 3 | Issue 10 | e3354



mutation is a hypomorphic allele of daf-18, while the rrf-3 mutant

was chosen because it shows an enhanced sensitivity to RNAi

feeding [17]. As expected, RNAi of genes acting in the insulin

pathway, including daf-2, age-1 and akt-1, resulted in a daf-18

dependent lengthening of lifespan, validating our experimental

approach.

In addition, from the 269 hand picked clones tested (Table S1)

we identified one corresponding to the smg-1 gene. The average

lifespan of the rrf-3 strain was increased by 25% when worms were

fed either one of the two non-overlapping RNAi clones for smg-1

(C48B6.6 and C48B6.7) and the increase in lifespan was

completely suppressed in rrf-3(pk1426); daf-18(e1375) mutants

(Table 1; Figure 1A). Therefore, inhibition of smg-1 by RNAi

increases lifespan, and this effect requires DAF-18 activity.

We next tested whether the previously isolated smg-1(r861) null

allele [18] also shows a lifespan phenotype. The average lifespan of

smg-1(r861) mutant animals was not increased compared to wild-

type animals (data not shown). Nonetheless, despite the fact that

these mutants did not live longer than wild-type, we observed a

delayed accumulation of the aging marker lipofuscine [19] during

the first week of life of smg-1(r861) mutants, as observed in smg-1

RNAi treated animals (data not shown).

Furthermore, in agreement with previously published data smg-

1(r861) null mutants are associated with a fully penetrant

protruding vulva phenotype (94%; n = 205), while this phenotype

was only observed in 31% (n = 969) of smg-1 RNAi treated

animals. The majority of other smg-1 mutants we tested behave like

the smg-1(r861) null allele (data not shown) besides smg-1(tm869)

mutants (recently isolated by the Japanese C.elegans knockout

consortium). An exception is the smg-1(tm869) allele, which results

in a protruding vulva phenotype with similar penetrance (47%,

n = 351) to smg-1 RNAi fed animals. Indeed, lifespan tests revealed

that the smg-1(tm869) mutation increases average lifespan by more

than 20% (Figure 1B and Table 1).

Table 1. Effect of smg-1 inactivation on adult lifespan in different genetic backgrounds.

Genotypes RNAi
Mean lifespan+/-SE
(days)

Median
lifespan
(days)

P-values
against
control a

P-values
against
specific group

# death/#
total (# trials)i

wild-type 16.26 0.4 15 229/234(3)

smg-1(tm869) 19.86 0.3 21 ,1023 187/351(3)

rrf-3(pk1426) control 16.9 6 0.2 15 701/925 (10)

smg-1 * 21.2 6 0.3 22 ,1023 540/969 (11)

smg-2 15.96 0.4 15 0.002 158/169 (2)

smg-4 18.96 0.6 18 0.07 94/179 (2)

smg-5 18.56 0.5 18 0.074 133/182 (2)

smg-7 176 0.6 15 0.9 97/180 (2)

cep-1 18.6 6 0.5 15 0.006 246/300 (3)

smg-1+cep-1 20 6 0.5 19 ,1023 0.03 b 227/294 (3)

daf-2 31.1 6 0.6 32 ,1023 289/351 (4)

age-1 23.6 6 0.5 22 ,1023 313/396 (4)

daf-2+age-1 30 6 0.8 32 ,1023 0.48 c 160/184 (2)

smg-1+daf-2 37.3 6 0.7 39 ,1023 ,10-3 c 147/177 (2)

smg-1+age-1 31.1 6 0.8 32 ,1023 ,1023 d 147/193 (2)

akt-1 25.3 6 0.6 26 ,1023 138/198 (2)

smg-1+akt-1 29.7 6 0.6 32 ,1023 ,1023 e 134/196 (2)

daf-18 14.7 6 0.3 14 ,1023 144/200 (2)

daf-16 12.6 6 0.2 12 ,1023 156/289 (3)

smg-1+daf-16 12.3 6 0.2 12 ,1023 0.49 f 114/199 (2)

daf-19 20.9 6 0.6 21 ,1023 162/288 (2)

smg-1+daf-19 21.9 6 0.7 21 ,1023 0.09 b 101/174 (2)

daf-19+daf-18 14.4 6 0.3 14 ,1023 0.52 g 134 /202(2)

daf- 19+daf-16 13.4 6 0.3 12 ,1023 ,1023 h 105/198 (2)

daf-18(e1375); rrf-3(pk1426) control 12.7 6 0.2 12 0.79 202/226 (3)

smg-1 12.5 6 0.3 12 138/197 (3)

tax-4(p678); rrf-3(pk1426) control 22.6 6 0.5 24 ,1023 146/201 (2)

smg-1 26.5 6 0.6 26 105/192 (2)

All experiments were carried out by RNAi feeding at 20uC (see experimental procedures). a-i: p-values from a log rank test comparing RNAi treatment population to the vector
control a or to specific groups (smg-1b, daf-2c, age-1d, akt-1e, daf-16f, daf-18g or daf-19h RNAi). P-values less than 0,05 are considered statistically significant, demonstrating that
the two lifespan populations are different. *: results obtained with two independent RNAi feeding clones that gave similar results have been pooled.i The total number of
individuals scored is shown followed by the number of individuals censored due to bursting vulva, bagging, or crawling off the agar. Data obtained in individual tests are
reported in Table S2.
doi:10.1371/journal.pone.0003354.t001
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Overall, our results suggest that RNAi mimics a hypomorphic

mutation, while complete loss of SMG-1 function is deleterious

and masks a longevity phenotype.

SMG-1 may act in parallel of the insulin/IGF-1 DAF-2
receptor

Since DAF-18 functions in the insulin/IGF-1 DAF-2 receptor

pathway to regulate lifespan, we tested whether SMG-1 also acts in

this signaling cascade.

We favored RNAi approaches to assess epistatic relationships

between smg-1 and the different components of the insulin

pathway in order to analyse data in an isogenic background.

RNAi of daf-2 increased lifespan by 84% compared to control

RNAi (Table 1; Figure 2B). RNAi of both daf-2 and smg-1 further

extended the average lifespan to 120% (Table 1; Figure 2B).

Similarly, the average lifespan of age-1 RNAi and akt-1 RNAi

treated worms was further increased from 40 to 84% and from 50

to 75%, respectively, when fed with smg-1 RNAi (Table 1; Figure 2

C,D). Conversely, the lifespan of animals treated with RNAi for

both daf-2 and age-1, which act in the same pathway, was not

significantly different from the lifespan of daf-2 RNAi worms alone

(Table 1; Figure 2A). Therefore, smg-1 inactivation increases

lifespan independently of daf-2, age-1 or akt-1. However, the

extension of lifespan by smg-1 RNAi was completely suppressed

when daf-16 was inactivated by RNAi (Table 1; Figure 2E).

Overall, these data suggest that SMG-1 may act in a pathway

parallel to DAF-2, AGE-1 and AKT-1, but requiring DAF-16

activity.

Nonetheless, because gene inactivation by RNAi mimics a

hypomorphic rather than a null mutation, we cannot formally

exclude that the insulin receptor pathway partially contributes to

the smg-1 effect on lifespan.

DAF-16 function can be modulated through its nuclear

localization [6,7,20,21]. To investigate whether SMG-1 controls

DAF-16 sub-cellular localization, we made use of a strain carrying

a daf-16::gfp reporter construct to visualize nuclear translocation in

vivo [6]. DAF-16::GFP was localized in both the cytoplasm and the

nucleus in all tissues of worms after smg-1 inactivation by RNAi or

by mutation (Figure 3), as observed in control worms. Conversely,

under the same experimental conditions, daf-2 RNAi induced

DAF-16::GFP nuclear accumulation (Figure 3). These results

strongly suggest that SMG-1 does not regulate DAF-16 activity

through its sequestration into the cytoplasm, and further support

the idea that SMG-1 and DAF-2 may act in different pathways to

regulate lifespan.

Nonetheless, these observations do not exclude that SMG-1

may behave as a weak enhancer of the insulin pathway, since

Henderson and Johnson [6] showed that some age-1 mutants also

fail to induce nuclear re-localization of this reporter. We thus

addressed the relationship between the DAF-2 pathway and SMG-

1 by a third approach.

The DAF-2 pathway is also critical for controlling dauer

formation. To further assess a potential functional link between

SMG-1 and DAF-2 we tested the involvement of SMG-1 in dauer

formation. One would predict that if the role of SMG-1 in lifespan

control relies on its interaction with the DAF-2 pathway, then

SMG-1 inhibition should increase dauer formation. However, we

found that smg-1 RNAi slightly increased the ability of worms to

recover from larval arrest rather than enhancing dauer formation.

When daf-2(e1370) or daf-2(e1370); rrf-3 (pk1426) double mutants

were maintained at the semi-nonpermissive temperature 22uC [22],

78+/27% of smg-1 RNAi treated worms had reached the adult

stage after 4 days, compared to 68+/24.8% of worms grown on

HT115 control bacteria (P = 0.02). These data strongly suggest that

SMG-1 is not a broad positive regulator of the insulin pathway.

Overall our data support a model in which SMG-1 functions at

least in part independently of DAF-2 to regulate lifespan.

The role of SMG-1 in lifespan control does not depend on
its function in NMD

smg-1 encodes a conserved serine threonine kinase involved in

nonsense mediated mRNA decay (NMD), a mechanism respon-

sible for the degradation of mRNAs containing a premature stop

codon [14-16].

Figure 1. smg-1 inactivation increases mean lifespan in a daf-18 dependent manner. (A) Survival curves of rrf-3(pk1426) and daf-18(e1375);
rrf-3(pk1426) mutants fed either bacteria not expressing any dsRNA (control RNAi) or bacteria expressing dsRNA that targets smg-1 (two independent
clones gave similar results). For additional data, see Table 1. (B) Survival curves of smg-1(tm869) mutants and wild-type used for backcrosses (see
Materials and Methods).
doi:10.1371/journal.pone.0003354.g001
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In addition to SMG-1, six evolutionary conserved SMG

proteins are also required for NMD in C. elegans and in

mammalian cells. Genetic studies have determined that smg genes

are regulators of the phosphorylation state of SMG-2. SMG-1,

SMG-3 and SMG-4 are required for the phosphorylation of

SMG-2, whereas SMG-5, SMG-6 and SMG-7 are involved in its

dephosporylation [23].

If the role of SMG-1 in lifespan relies on its function in NMD,

inactivation of other smg genes should also have an effect on

lifespan. The average lifespan of worms fed with smg-2, smg-4, smg-

5 or smg-7 RNAi clones was not significantly increased (Table 1),

suggesting that NMD inactivation may not be responsible for

lifespan extension. To further explore this hypothesis, we assess

NMD activity in smg-1 RNAi treated worms. Longman et al. [24]

developed an assay using transgenic strains expressing a GFP

reporter constructs either with a natural stop codon or harboring a

premature termination codon (PTC). Introduction of a PTC into

the reporter induces a robust NMD response, as determined by

the lack of GFP expression in transgenic worms. Conversely, smg-2

RNAi, which abrogates NMD, restores GFP expression [24].

Under our experimental conditions, GFP expression was induced

in 100% of PTC transgenic worms fed with the smg-1 RNAi clone

(Figure 4), demonstrating the effectiveness of smg-1 RNAi feeding

in NMD inhibition. daf-18 and daf-16 are required for the smg-1

dependent lifespan increase. We reasoned that if NMD inhibition

is responsible for the role of smg-1 in lifespan control, inactivation

of daf-18 or daf-16 should antagonize this function and thus

impede GFP expression in smg-1 RNAi treated PTC transgenic

worms. Inactivation of either daf-18 or daf-16 by RNAi, which is

sufficient to suppress the smg-1 lifespan phenotype, did not reduce

Figure 2. Interaction between smg-1 and the insulin/IGF-1 signalling pathway genes for lifespan phenotype. (A) Survival curves of rrf-
3(pk1426) mutants treated by daf-2 and/or age-1 RNAi. (B-E) Survival curves of rrf-3(pk1426) mutants treated by daf-2 (B), age-1 (C), akt-1 (D) and daf-
16 (E) RNAi alone or with smg-1 RNAi. For additional data, see Table 1.
doi:10.1371/journal.pone.0003354.g002
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the number of GFP expressing worms. Furthermore, the level of

GFP expression in individual worms was unaffected or increased

by daf-18 and daf-16 RNAi, respectively (Figure 4).

Overall our results show that there is no correlation between

NMD inactivation and lifespan phenotypes, thus indicating that

SMG-1 functions independently of NMD to regulate lifespan.

p53/cep-1 is involved in smg-1 dependent lifespan
modulation

It was recently reported that human SMG-1 is functionally

linked to the tumor suppressor checkpoint protein p53. hSMG-1

phosphorylates and stabilizes p53 in response to genotoxic stress

induced by UV and c irradiation [25]. In worms, the p53

homologue cep-1 is required for DNA damage-induced apoptosis

[26,27]. Interestingly, Arum et al. recently showed that cep-1

mutations also increase longevity without altering DAF-16::GFP

nuclear localization [28]

We therefore tested whether cep-1 is involved in the regulation

of lifespan by smg-1. cep-1 RNAi partially suppressed the extension

of lifespan due to smg-1 inhibition (Table 1; Figure 5). The genetic

interaction between cep-1 and smg-1 is specific, as cep-1 RNAi

alone did not reduce lifespan (Table 1; Figure 5). These results

indicate that when smg-1 is inactivated, cep-1 is required to extend

lifespan.

smg-1 inactivation confers resistance to oxidative stress
Resistance to oxidative stress is a hallmark of many longevity

mutants in C. elegans [29]. Consistently, we observed that worms

were more resistant to oxidative stress induced by paraquat when

smg-1 was inactivated by RNAi or by mutation, as 47% of worms

were still alive after 7 days of paraquat treatment compared to 7%

for control RNAi (Figure 6 A, B). Conversely, daf-18 and daf-16

RNAi inhibited the resistance of worms to oxidative stress

compared to control RNAi and dramatically reduced the stress

resistance induced by smg-1 inactivation (Figure 6 A, B). These

results show that SMG-1 requires DAF-16 and DAF-18 to confer

oxidative stress resistance as well as to function in lifespan control.

A correlation between lifespan and oxidative stress resistance

phenotypes was also observed for the genetic interaction between

daf-2 and smg-1, as the resistance to oxidative stress of daf-2 RNAi

treated animals was further increased by smg-1 inactivation

(Figure 6 A, B; p,1023).

To further explore the relationship between lifespan and

resistance to oxidative stress phenotypes, we investigated the role

of cep-1/p53 in oxidative stress resistance. Under experimental

conditions where cep-1 RNAi increased lifespan (Figure 5),

resistance to oxidative stress of RNAi treated animals increased

Figure 3. DAF-16::GFP sub-cellular localization is not altered by
smg-1 inactivation. DAF-16::GFP is localized both in the cytoplasm
and nuclei of all tissues at all developmental stages of rrf-3(pk1426) (A)
and wild-type (B) control animals as illustrated here for adults. Similar
results were obtained for rrf-3(pk1426) smg-1 RNAi-treated animals (C)
and smg-1(r861) single mutants (data not shown). (D) DAF-16::GFP
accumulates in the nuclei of most cells in rrf-3(pk1426) animals treated
with daf-2 RNAi. Scale bars: 100 mm.
doi:10.1371/journal.pone.0003354.g003

Figure 4. The SMG-1 dependent effect on NMD regulation is
not suppressed upon DAF-18 or DAF-16 inactivation. Animals
carrying the PTC transgenic reporter were fed with the different RNAi
clones and scored for GFP expression (see experimental procedures).
Three independent experiments were carried out and gave similar
results. (A) Animals treated with the control (n = 80) lack GFP
expression. Conversely, 100% of worms treated by smg-1 RNAi
(n = 80) (B), or by smg-1 and daf-18 RNAi (n = 60) (C), or by smg-1 and
daf-16 RNAi (n = 50) (D) showed GFP expression. Scale bar: 200 mm. (E)
GFP quantification using arbitrary units (see experimental procedure).
The error bars reflect the variation between animals. P values
correspond to comparison of average GFP intensity between the test
group and worms treated with smg-1 RNAi using Student’s t test.
doi:10.1371/journal.pone.0003354.g004
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significantly compared to control animals (Figure 6 C, D;

p,1023). Conversely, the stress resistance of smg-1 RNAi animals

was reduced by cep-1 RNAi (Figure 6 C, D; p,1023), as expected

from the partial suppression observed for the lifespan phenotype

(Figure 6).

Altogether, our results show that CEP-1 has opposing effects on

oxidative stress resistance depending on the presence or absence of

smg-1. This apparent paradox may be explained by the role of p53

in mammalian cells, where it displays either pro-oxidant or anti-

oxidant functions depending on the level of oxidative stress (high

or low, respectively, [30]. In wild-type animals treated with

paraquat, where the level of oxidative stress is high, p53 plays a

pro oxidant function, thus explaining the beneficial effect of

reducing its expression. Upon smg-1 inactivation, the levels of

oxidative stress may be lower; p53 could play an antioxidant

function in this context [30], explaining the deleterious effect of its

removal.

Overall, our results show that positive and negative regulators of

SMG-1 activity in lifespan regulation act in a similar manner in the

oxidative stress response. These data support the hypothesis that the

resistance to oxidative stress of smg-1 animals may be responsible for

Figure 5. SMG-1 requires CEP-1 to regulate lifespan. Survival
curves of rrf-3(pk1426) mutants treated by smg-1 and/or cep-1 RNAi.
This figure uses the same data set as Table 1.
doi:10.1371/journal.pone.0003354.g005

Figure 6. SMG-1 regulates resistance to oxidative stress in a DAF-18, DAF-16 and CEP-1 dependent manner. (A, C) Survival curves of
RNAi treated animals in presence of paraquat (see materials and methods). (B,D) Histograms presented as mean 6 SEM at day 7 of paraquat
treatment. smg-1(r861) null mutants behave similarly to smg-1 RNAi animals (data not shown). Genetic interactions for oxidative stress resistance
between smg-1 and either daf-2, daf-18 or daf-16 (A, B) and between smg-1 and cep-1 (C, D).
doi:10.1371/journal.pone.0003354.g006

SMG-1 Role in Lifespan
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their increased lifespan phenotype. However, other mechanisms

may also be involved since daf-16 (or daf-18) inactivation is sufficient

to suppress smg-1 lifespan regulation without completely inhibiting

the smg-1 stress resistance phenotype.

A role for SMG-1 in sensory neuron signaling for lifespan
regulation

Several observations prompted us to investigate the role of smg-1

in the regulation of lifespan via sensory neurons. Firstly, among the

different mechanisms that modulate C. elegans lifespan, mutations

in sensory neurons lengthen lifespan in a daf-16 dependent manner

[31]. Secondly, a number of genes that act in the nervous system

have been shown to be refractory to RNAi in a wild type context,

but efficiently inactivated in an rrf-3 RNAi hyper-sensitive

background [17]. Similarly, smg-1 RNAi increased lifespan in

RNAi hyper-sensitive backgrounds such as rrf-3 and ppw-1 [32],

but not in wild-type animals (Figure 1 and data not shown).

We therefore asked whether smg-1 genetically interacts with tax-

4 and daf-19 , two genes involved in lifespan regulation by sensory

neurons [31]. The lifespan of tax-4(p678); rrf-3(pk1426) double

mutants was increased when these animals were fed with smg-1

RNAi (Table 1), suggesting that tax-4 and smg-1 act independently

to regulate lifespan. Conversely, the lifespan of animals fed with

both daf-19 and smg-1 RNAi was not significantly lengthened

compared to either RNAi alone (Table 1; Figure 7A). Further-

more, similarly to smg-1, the lifespan increase caused by daf-19

RNAi inactivation was fully suppressed by daf-16 RNAi (Table 1;

Figure 7B), as previously reported for daf-16(mu86); daf-19(m86)

Figure 7. Genetic interaction between smg-1 and daf-19 for lifespan and oxidative stress resistance phenotypes. (A, B): Survival curves
of rrf-3(pk1426) mutants treated with smg-1 and/or daf-19 RNAi (A) and treated with daf-19 RNAi alone or in combination with daf-18 or daf-16 RNAi
(B). Curves are drawn from data set of Table 1. (C) Survival curves of RNAi treated animals in presence of paraquat (see Materials and Methods). (D)
Histograms presented as mean 6 SEM at day 7 of paraquat treatment. Genetic interactions for oxidative stress resistance between daf-19 and either
smg-1, daf-18 or daf-16 are shown.
doi:10.1371/journal.pone.0003354.g007

SMG-1 Role in Lifespan
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double mutants [31], as well as by daf-18 RNAi (Table 1;

Figure 7B).

daf-19, which encodes an evolutionary conserved RFX-type

transcription factor, is a master gene for the development of a

ciliary module in C. elegans [33]. In order to assess the role of

SMG-1 in sensory neuron formation, animals were stained with

DiO, a fluorescent probe which enters through functional cilia (see

material and methods).We counted on average 10.2+/20.2

(n = 50); 9.4+/20.3 (n = 42); 9.6+/20.2 (n = 29) and 0 (n = 21)

ciliated neurons, respectively, in rrf-3 animals maintained on

control bacteria, rrf-3 animals on daf-19 RNAi, in daf-12(sa204)

mutants, and in daf-19(m86); daf-12(sa204) mutants. Therefore,

while daf-19(m86) mutants do not stain at all [33], inhibition of daf-

19 expression by RNAi is not strong enough to interfere with

sensory neurons development, as also observed by others (Peter

Swoboda, personal communication). Furthermore, smg-1 RNAi

treated animals stained a similar number of sensory neurons as

animals fed on control bacteria (10.5+/20.2, n = 40). Overall our

results show that smg-1 inhibition by RNAi does not compromise

sensory neurons formation. These results do not however exclude

a possible function for SMG-1 in sensory perception. The smg-1

predicted promoter contains the canonical DAF-19 target

sequence [34], suggesting that smg-1 expression may be regulated

by DAF-19. As daf-19 expression is restricted to sensory neurons,

smg-1 may well play a role in these cells to regulate lifespan.

Nonetheless, the SMG-1 mode of action differs from the

previously described pathways, as sensory mutants, but not smg-1

inactivation, affect DAF-16 nuclear translocation [31].

As observed upon smg-1 inactivation, resistance to oxidative stress

was increased after daf-19 RNAi, and was suppressed when daf-19

was inactivated in combination with daf-16 or daf-18 (Figure 7C, D).

Furthermore, in contrast to daf-2 and smg-1 double RNAi,

inactivation of daf-19 did not confer higher resistance to smg-1

RNAi animals. These results strongly suggest that SMG-1 may

function with DAF-19 to regulate both lifespan and oxidative stress.

In conclusion, we identified smg-1 as a novel gene involved in

lifespan regulation. Furthermore, our results suggest that SMG-1

may act independently of DAF-2 and requires DAF-18/PTEN,

DAF-16/FOXO and CEP-1/p53 to regulate lifespan.

In mammalian cells, p53 and FOXO3A can act as cofactors to

regulate transcription [35]. Furthermore, PTEN has also been

shown to interact with and to stabilize the p53 protein [36]. Thus,

it is tempting to speculate that SMG-1 may affect DAF-16

transcriptional activity via the regulation of PTEN and p53.

Interestingly, the physical interaction between p53 and PTEN has

recently been shown to be regulated by oxidative stress [37], and

their functional crosstalk does not require the lipid phosphatase

activity of PTEN [37]. This is in agreement with our results

strongly suggesting that SMG-1 acts independently of the PI 3

kinase AGE-1. Finally, pull down experiments revealed that

PTEN and hSMG-1 physically interact in human cells [38]. It is

therefore possible that mammalian ortholog of smg-1 control

lifespan and the response to oxidative stress in mammals. Recent

data suggests a function for SMG-1 both in the oxidative stress

response [39] and a role in apoptosis unrelated to the suppression

of nonsense-mediated mRNA decay [40]. Understanding the

molecular interactions and mechanisms of the pathway involving

SMG-1 in aging will be the challenge for future studies.

Materials and Methods

Strains
Strains used were as follows: wild-type strains N2 Bristol, daf-

18(e1375) IV [13,41], rrf-3(pk1426) II [17], tax-4(p678) III [42],

daf-19(m86) II; daf-12(sa204) X and daf-12(sa204) [33]. smg-

1(r861) I [18] and smg-1(tm869), obtained from the C.elegans

knockout consortium directed by Pr Mitani, were outcrossed three

additional times. The PTCxi strain [24] was kindly provided by D.

Longman (J.F. Caceres Lab, MRC, Edinburgh, Scotland).

To construct double mutants daf-18 (e1375) IV; rrf-3 (pk1426) II,

rrf-3(pk1426) males were crossed to daf-18(e1375) hermaphrodites

and F2 progeny were assayed for sterility at 25uC and incapacity

to form dauer on overgrown plates. Double mutants tax-4(p678)

III; rrf-3(pk1426) II were generated by crossing tax-4(p678) III

hermaphrodites to rrf-3(pk1426) II males. F2 progeny were

screened for sterility at 25uC and dauer constitutive formation at

27uC. To obtain single mutants unc-54(r293) I, N2 males were

mated to smg-3(r930) IV; unc-54(r293) I and paralyzed F2 were

isolated. To generate rrf-3(pk1426) mutants carrying the DAF-

16::GFP transgene, rrf-3(pk1426) males were crossed to TJ356 [6]

hermaphrodites. F2 rollers were assayed for sterility at 25uC.

RNAi experiments
Bacterial feeding RNAi experiments were carried out essentially

as described previously [43]. Briefly, single colonies of HT115

bacteria containing plasmids of interest were first grown overnight

in LB with 100 mg/ml ampicillin and 12.5 mg/ml tetracyclin and

then for 8 h in LB with 100 mg/ml ampicillin. Bacteria were seeded

directly onto NGM plates containing 2 mM IPTG and 25 mg/ml

carbenicillin. Clones used: C48B6.6 and C48B6.7 (smg-1), F46B6.3

(smg-4), W02D3.8 (smg-5), Y43B6A.a (smg-7), B0334.8 (age-1),

C12D8.10 (akt-1), R13H8.1 (daf-16), F52B5.4 (cep-1), F33H1.1

(daf-19) and T07A9.6 (daf-18) have been purchased from. daf-2 and

smg-2 clones were kindly provided by C. Kenyon lab (University of

California, San Francisco, USA) and D. Longman (J.F. Caceres

Lab, MRC, Edinburgh, Scotland) respectively. Each clone has been

sequenced to confirm its identity.

Double RNAi experiments were carried out by mixing the

bacterial cultures directly before seeding the NGM plates. Controls

were RNAi clone 50% diluted with vector control RNAi bacteria.

Lifespan assays
Animals were grown on regular NGM plates at 20uC until

reaching the L4 stage and then transferred to RNAi plates (F0). F0

adults were removed after 24h and F1 L4 were transferred to

10 mM 5-fluorodeoxyuracile (5-FU, Sigma-Aldrich, Steinheim,

Germany) containing plates to prevent growth of progeny.

Lifespan assays were performed at 20uC. The day of the shift is

counted as day 0 in the adult lifespan assay. Control and

experimental animals were transferred in parallel to fresh RNAi

plates once a week. Lifespan was assessed every 2–3 days and

animals were scored as dead when they ceased moving and

responding to prodding. Animals that crawled off the plate, had a

‘‘protruding vulva’’ or an ‘‘exploded vulva’’ phenotype were

censored. smg-1 RNAi was also performed in absence of 5-FU and

gave similar results (data not shown).

Survival analyses were performed using the Kaplan Meier

method and the significance of differences between survival curves

calculated using the log rank test. The statistical software used was

SPSS, Version 11.5 (SPSS, Chicago, IL, USA) and all P-

values,0.05 were considered significant.

Assessment of NMD activity in living worms
Animals carrying the PTC transgenic reporter [24] were fed at

20uC with the control clone only or with the smg-1 RNAi clone

mixed either with the control, or daf-18, or daf-16 RNAi clones. F1

animals were scored for GFP expression at the L4 stage. For GFP
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intensity quantification, animals were photographed under a GFP

filter and the average brightness was determined for each

photograph by Lucia Nikon software. All images were handled

identically. At least 30 animals per RNAi conditions were

averaged.

Stress resistance assays
Synchronously cultured animals were kept on NGM plates at

20uC until the young adult stage. For each strain, 5 6 20 young

adults were transferred on Paraquat (methylviologene, Sigma-

Aldrich, Steinheim, Germany) containing plates (90 ml of 150 mM

Paraquat added on top of NGM plates already seeded with

HT115 bacteria). Surviving animals were scored every day during

8–9 days. At least three independent RNAi experiments have been

conducted for each clone tested. P-values were calculated using the

t-Student test to determine differences in oxidative stress

resistance.

Larval arrest assays
Five young adults daf-2(e1370) ; rrf-3(pk1426) double mutants

were fed at 22uC with either HT115 or smg-1 RNAi bacteria, then

removed 24 hours later. F1 progenies were followed every day and

the numbers of worms that have reached the adult stage were

counted at day 4. Numbers are given for 3 independent

experiments.

Observation of DAF-16::GFP sub-cellular localization and
DiO staining

The sub-cellular localization of the DAF-16::GFP protein was

analyzed in the smg-1(r861) mutant background and after smg-1

RNAi inactivation in a rrf-3(pk1426) mutant background by

fluorescence microscopy under a GFP filter. About 10 worms were

mounted on agar pads (2% agarose with 5 mM tetramisole) to

avoid DAF-16::GFP translocation due to stress [8]. At least 20

animals were examined for each developmental stage (embryo, L1,

L2, L3, L4 and adult).

Sensory neurons were stained by incubating L4 worms in M9

containing DiO (Molecular Probes) at 10 mg/ml final concentra-

tion for two hours. Worms were then transfered to plates for one

hour and observed by fluorescence microscopy under a GFP filter.

Supporting Information

Table S1 List of clones tested in the screen.

Found at: doi:10.1371/journal.pone.0003354.s001 (0.03 MB

XLS)

Table S2 Lifespan data for individual experiments

Found at: doi:10.1371/journal.pone.0003354.s002 (0.33 MB

DOC)
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