metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis(2-acetamido-5-methylbenzoato- κO^1)tetraaquazinc

Jin-Feng Huang, Jian-You Zheng and Yu-Mei Dai*

College of Chemistry & Material Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People's Republic of China Correspondence e-mail: hjf@fjnu.edu.cn

Received 10 March 2011; accepted 31 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.179; data-to-parameter ratio = 13.0.

In the title compound, $[Zn(C_{10}H_{10}NO_3)_2(H_2O)_4]$, the Zn^{II} atom lies on a crystallographic inversion center and is sixcoordinated by two monodentate *trans*-related 2-(*N*-acetylamino)-5-methylbenzoato ligands and four water molecules, giving a slightly distorted octahedral geometry. There are two intramolecular hydrogen bonds [amine N-H···O_{carboxyl} and water O-H···O_{carboxyl}], while extensive intermolecular water O-H···O hydrogen-bonding interactions extend the complex units into a two-dimensional network structure along (100).

Related literature

The study of metal coordination polymers has enhanced our understanding of the relationship between molecular structure and material function, see: Dai *et al.* (2005); Moulton & Zaworotko (2001).

Experimental

Crystal data

 $\begin{bmatrix} Zn(C_{10}H_{10}NO_3)_2(H_2O)_4 \end{bmatrix}$ $M_r = 521.83$ Monoclinic, C2/c a = 19.300 (4) Å b = 9.3000 (19) Å c = 13.300 (3) Å $\beta = 107.60$ (3)°

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.626, T_{max} = 0.752$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.179$ S = 1.112130 reflections 164 parameters 2 restraints V = 2275.5 (9) Å³ Z = 4Mo K α radiation $\mu = 1.14$ mm⁻¹ T = 296 K $0.42 \times 0.40 \times 0.25$ mm

10817 measured reflections 2130 independent reflections 1941 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.49\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.77\ e\ \mathring{A}^{-3} \end{split}$$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO1$	0.86	1.95	2.616 (4)	133
$O1W-H1WA\cdots O2^{i}$	0.81(2)	1.90(2)	2.704 (4)	170 (5)
$O1W - H1WB \cdot \cdot \cdot O3^{ii}$	0.83 (2)	1.88 (2)	2.707 (4)	177 (4)
$O2W - H2WA \cdots O2^{i}$	0.80(4)	2.12 (4)	2.916 (5)	172 (5)
$O2W - H2WB \cdots O3^{iii}$	0.83 (4)	1.84 (3)	2.627 (4)	159 (5)
Symmetry codes: (i)	-x + 1, -y -	+1, -z + 2;	(ii) $-x + 1, y,$	$-z + \frac{3}{2};$ (iii)

-x + 1, -y, -z + 2.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the Foundation of the Ministry of Education of Fujian Province (JB08037).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2102).

References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dai, Y. M., Ma, E., Tang, E., Zhang, J., Li, Z. J., Huang, X. & Yao, Y. G. (2005). Cryst. Growth Des. 5, 1313–1315.

Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1639. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m542 [doi:10.1107/S1600536811012013]

trans-Bis(2-acetamido-5-methylbenzoato- κO^1)tetraaquazinc

J.-F. Huang, J.-Y. Zheng and Y.-M. Dai

Comment

In recent decades, the study of metal coordination polymers has witnessed tremendous growth as an attractive interface between synthetic chemistry and materials science, which significantly boosts the understanding of the relationship between molecular structure and material function (Moulton & Zaworotko, 2001; Dai *et al.*, 2005). The crystal engineering of coordination polymers is highly influenced by the judicious choice of ligands, metal coordination geometry, template design and other subtle factors, such as counterions, solvent choice and reaction temperature. The deprotonated 2-(*N*-acetylamino)-5-methylbenzoic acid (HNB) ligands are good candidates in this respect for the construction of supramolecular architectures because in such bitopical ligands the *N*-acetyl group can act as a hydrogen-bond donor and/or acceptor, while the carboxyl function has strong coordination abilities with many metal ions. Taking these advantages into account, recently we have begun to assemble HNB and zinc ions into polymeric complexes under hydrothermal conditions. Herein, we report the synthesis and crystal structure of the title compound, $[Zn(C_{10}H_{10}NO_3)_2(H_2O)_4]$ (I).

In the structure of (I) the Zn^{II} metal center lies on a crystallographic inversion center. The local coordination environment around Zn^{II} atom is slightly distorted octahedral, comprising two monodentate *trans*-related 2-(*N*-acetylamino)-5-methylbenzoato ligands and four water molecules (Fig. 1). Two intramolecular hydrogen bonds [amine N—H···O_{carboxyl}] and water O—H···O_{carboxyl}] stabilize the complex units while extensive intermolecular water O—H···O_{acetyl} hydrogen-bonding interactions are observed in the structure (Table 1), giving rise to double-stranded chains. Further interactions involving the coordinated water ligands and the uncoordinated O atoms of the carboxyl group are gives a two-dimensional network structure (Fig. 2).

Experimental

 $ZnSO_4$ 7H₂O (1.00 mmol, 0.28 g), 2-(*N*-acetylamino)-5-methylbenzoic acid (HNB) (1.00 mmol, 0.19 g) and NaOH (1.00 mmol, 0.04 g) were mixed in water (15 ml) and heated at 403 K for 3 days in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at a rate of 5° C h⁻¹, yellow block crystals were isolated, washed with ethanol and then dried in air (33% yield).

Refinement

H atoms attached to carbon and nitrogen were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.86, 0.96 and 0.93 Å for NH, CH₂ and aromatic CH groups, respectively and $U_{iso}(H) = 1.2U_{eq}(N, C)$]. The aqua H atoms were located from difference maps and their coordinates refined but with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Local coordination around Zn ion in (I). Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (a): -x + 1, -y, -z + 2

Fig. 2. The crystal packing of (I) with hydrogen bonds shown as dashed lines.

trans-Bis(2-acetamido-5-methylbenzoato-кO¹)tetraaquazinc

Crystal data

[Zn(C₁₀H₁₀NO₃)₂(H₂O)₄] $M_r = 521.83$ Monoclinic, C2/c Hall symbol: -C 2yc *a* = 19.300 (4) Å *b* = 9.3000 (19) Å c = 13.300 (3) Å $\beta = 107.60 \ (3)^{\circ}$ V = 2275.5 (9) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer	2130 independent reflections
Radiation source: fine-focus sealed tube	1941 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ω scans	$\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -23 \rightarrow 21$
$T_{\min} = 0.626, T_{\max} = 0.752$	$k = -10 \rightarrow 11$
10817 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from neighbouring sites

F(000) = 1088 $D_{\rm x} = 1.523 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4107 reflections $\theta = 3.1 - 25.6^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.42 \times 0.40 \times 0.25 \text{ mm}$

$wR(F^2) = 0.179$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.11	$w = 1/[\sigma^2(F_o^2) + (0.1075P)^2 + 9.1602P]$ where $P = (F_o^2 + 2F_c^2)/3$
2130 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
164 parameters	$\Delta \rho_{max} = 0.49 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.0000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.5000	0.0000	1.0000	0.0283 (3)
N1	0.61735 (18)	0.4086 (4)	1.0380 (3)	0.0268 (7)
H1A	0.6034	0.3279	1.0569	0.032*
O1W	0.42661 (16)	0.0994 (3)	0.8725 (2)	0.0280 (6)
H1WA	0.410 (2)	0.173 (3)	0.890 (3)	0.034*
H1WB	0.422 (3)	0.085 (4)	0.8095 (18)	0.034*
01	0.57941 (14)	0.1422 (3)	0.9864 (2)	0.0247 (6)
O2W	0.47378 (16)	0.1539 (3)	1.1025 (2)	0.0299 (7)
H2WA	0.449 (2)	0.211 (4)	1.063 (3)	0.036*
H2WB	0.456 (2)	0.097 (4)	1.136 (3)	0.036*
O2	0.6109 (2)	0.6481 (3)	1.0578 (3)	0.0428 (8)
O3	0.59193 (17)	0.0609 (3)	0.8358 (2)	0.0328 (7)
C1	0.5978 (2)	0.5248 (5)	1.0801 (3)	0.0296 (9)
C2	0.7488 (2)	0.4914 (4)	0.8911 (4)	0.0296 (10)
H2A	0.7806	0.5647	0.8871	0.035*
C3	0.65394 (19)	0.2748 (4)	0.9062 (3)	0.0208 (7)
C4	0.7454 (2)	0.3684 (4)	0.8315 (3)	0.0269 (8)
C5	0.6976 (2)	0.2625 (4)	0.8402 (3)	0.0244 (8)
H5A	0.6943	0.1792	0.8003	0.029*
C6	0.6584 (2)	0.3999 (4)	0.9657 (3)	0.0245 (8)
C7	0.7056 (3)	0.5073 (4)	0.9566 (4)	0.0298 (10)
H7A	0.7085	0.5916	0.9952	0.036*
C8	0.60481 (19)	0.1505 (4)	0.9089 (3)	0.0218 (8)
C9	0.7926 (2)	0.3494 (5)	0.7609 (4)	0.0374 (10)
Н9А	0.7825	0.2581	0.7259	0.056*

supplementary materials

H9B	0.8428	0.3532	0.8024	0.056*
H9C	0.7827	0.4249	0.7093	0.056*
C10	0.5580 (3)	0.4978 (5)	1.1599 (4)	0.0379 (11)
H10A	0.5459	0.5881	1.1854	0.057*
H10B	0.5884	0.4433	1.2178	0.057*
H10C	0.5142	0.4449	1.1273	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0351 (5)	0.0249 (4)	0.0276 (4)	-0.0034 (2)	0.0136 (3)	-0.0013 (2)
N1	0.0366 (18)	0.0198 (16)	0.0284 (17)	-0.0013 (14)	0.0166 (14)	-0.0030 (13)
O1W	0.0396 (16)	0.0238 (14)	0.0197 (13)	0.0070 (12)	0.0077 (12)	-0.0002 (11)
01	0.0332 (14)	0.0225 (13)	0.0230 (13)	-0.0110 (11)	0.0154 (11)	-0.0047 (10)
O2W	0.0450 (17)	0.0217 (14)	0.0295 (15)	-0.0044 (12)	0.0210 (13)	-0.0029 (11)
O2	0.066 (2)	0.0219 (16)	0.0467 (19)	0.0081 (14)	0.0265 (17)	0.0020 (13)
O3	0.0511 (18)	0.0284 (15)	0.0262 (15)	-0.0162 (14)	0.0224 (13)	-0.0083 (12)
C1	0.030 (2)	0.031 (2)	0.026 (2)	0.0014 (17)	0.0064 (17)	-0.0044 (17)
C2	0.031 (2)	0.024 (2)	0.035 (2)	-0.0084 (15)	0.0119 (18)	0.0032 (15)
C3	0.0233 (17)	0.0192 (17)	0.0194 (17)	-0.0015 (14)	0.0058 (14)	0.0028 (14)
C4	0.0258 (19)	0.032 (2)	0.0234 (19)	-0.0044 (16)	0.0076 (15)	0.0052 (16)
C5	0.0286 (19)	0.0226 (18)	0.0230 (18)	-0.0039 (15)	0.0093 (15)	-0.0005 (14)
C6	0.0295 (19)	0.0223 (19)	0.0215 (18)	-0.0003 (16)	0.0076 (15)	0.0006 (15)
C7	0.038 (2)	0.020 (2)	0.033 (2)	-0.0051 (15)	0.012 (2)	-0.0021 (15)
C8	0.0249 (18)	0.0198 (17)	0.0215 (18)	-0.0028 (14)	0.0084 (15)	0.0023 (14)
C9	0.038 (2)	0.043 (3)	0.038 (2)	-0.0123 (19)	0.021 (2)	-0.0001 (19)
C10	0.043 (3)	0.039 (3)	0.037 (3)	-0.0061 (18)	0.021 (2)	-0.0118 (18)

Geometric parameters (Å, °)

Zn1—O1W ⁱ	2.070 (3)	C2—C7	1.384 (7)
Zn1—O1W	2.070 (3)	C2—C4	1.382 (6)
Zn1—O1	2.073 (2)	C2—H2A	0.9300
Zn1—O1 ⁱ	2.073 (2)	C3—C5	1.393 (5)
Zn1—O2W	2.140 (3)	C3—C6	1.395 (5)
Zn1—O2W ⁱ	2.140 (3)	C3—C8	1.503 (5)
N1—C1	1.324 (5)	C4—C5	1.379 (5)
N1—C6	1.421 (5)	C4—C9	1.503 (6)
N1—H1A	0.8600	С5—Н5А	0.9300
O1W—H1WA	0.811 (18)	C6—C7	1.382 (6)
O1W—H1WB	0.826 (18)	С7—Н7А	0.9300
O1—C8	1.270 (4)	С9—Н9А	0.9600
O2W—H2WA	0.80 (4)	С9—Н9В	0.9600
O2W—H2WB	0.83 (4)	С9—Н9С	0.9600
O2—C1	1.230 (5)	C10—H10A	0.9600
O3—C8	1.247 (5)	C10—H10B	0.9600
C1—C10	1.508 (6)	C10—H10C	0.9600
O1W ⁱ —Zn1—O1W	180.00 (12)	C5—C3—C6	118.7 (3)

O1W ⁱ —Zn1—O1	90.89 (11)	C5—C3—C8	117.2 (3)
O1W—Zn1—O1	89.11 (11)	C6—C3—C8	124.0 (3)
O1W ⁱ —Zn1—O1 ⁱ	89.11 (11)	C5—C4—C2	117.4 (4)
O1W—Zn1—O1 ⁱ	90.89 (11)	C5—C4—C9	121.1 (4)
O1—Zn1—O1 ⁱ	180.0	C2—C4—C9	121.5 (4)
O1W ⁱ —Zn1—O2W	90.67 (11)	C4—C5—C3	122.8 (4)
O1W—Zn1—O2W	89.33 (11)	C4—C5—H5A	118.6
O1—Zn1—O2W	87.28 (10)	С3—С5—Н5А	118.6
Ol ⁱ —Zn1—O2W	92.72 (10)	C7—C6—C3	118.8 (4)
O1W ⁱ —Zn1—O2W ⁱ	89.33 (11)	C7—C6—N1	122.4 (3)
O1W—Zn1—O2W ⁱ	90.67 (11)	C3—C6—N1	118.7 (3)
O1—Zn1—O2W ⁱ	92.72 (10)	C6—C7—C2	121.1 (4)
Ol ⁱ —Zn1—O2W ⁱ	87.28 (10)	С6—С7—Н7А	119.4
O2W—Zn1—O2W ⁱ	180.000 (1)	С2—С7—Н7А	119.4
C1—N1—C6	128.4 (3)	O3—C8—O1	123.9 (3)
C1—N1—H1A	115.8	O3—C8—C3	118.3 (3)
C6—N1—H1A	115.8	O1—C8—C3	117.8 (3)
Zn1—O1W—H1WA	112 (3)	С4—С9—Н9А	109.5
Zn1—O1W—H1WB	126 (3)	С4—С9—Н9В	109.5
H1WA—O1W—H1WB	119 (3)	Н9А—С9—Н9В	109.5
C8—O1—Zn1	125.9 (2)	С4—С9—Н9С	109.5
Zn1—O2W—H2WA	104 (4)	Н9А—С9—Н9С	109.5
Zn1—O2W—H2WB	98 (3)	Н9В—С9—Н9С	109.5
H2WA—O2W—H2WB	122 (3)	C1-C10-H10A	109.5
O2—C1—N1	123.5 (4)	C1—C10—H10B	109.5
O2—C1—C10	120.8 (4)	H10A—C10—H10B	109.5
N1—C1—C10	115.7 (4)	C1—C10—H10C	109.5
C7—C2—C4	121.1 (4)	H10A—C10—H10C	109.5
С7—С2—Н2А	119.4	H10B—C10—H10C	109.5
C4—C2—H2A	119.4		

Symmetry codes: (i) -x+1, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1A…O1	0.86	1.95	2.616 (4)	133
O1W—H1WA···O2 ⁱⁱ	0.81 (2)	1.90 (2)	2.704 (4)	170 (5)
O1W—H1WB···O3 ⁱⁱⁱ	0.83 (2)	1.88 (2)	2.707 (4)	177 (4)
O2W—H2WA···O2 ⁱⁱ	0.80 (4)	2.12 (4)	2.916 (5)	172 (5)
O2W—H2WB···O3 ⁱ	0.83 (4)	1.84 (3)	2.627 (4)	159 (5)
Symmetry codes: (ii) $-x+1$, $-y+1$, $-z+2$; (iii) $-x+1$, y , $-z+3/2$; (i) $-x+1$, $-y$, $-z+2$.				

Fig. 2