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Breast cancer (BC) categorized as human epidermal growth factor receptor 2 (HER2)
borderline [2+ by immunohistochemistry (IHC 2+)] presents challenges for the testing,
frequently obscured by intratumoral heterogeneity (ITH). This leads to difficulties in therapy
decisions. We aimed to establish prognostic models of overall survival (OS) of these
patients, which take into account spatial aspects of ITH and tumor microenvironment by
using hexagonal tiling analytics of digital image analysis (DIA). In particular, we assessed
the prognostic value of Immunogradient indicators at the tumor–stroma interface zone (IZ)
as a feature of antitumor immune response. Surgical excision samples stained for
estrogen receptor (ER), progesterone receptor (PR), Ki67, HER2, and CD8 from 275
patients with HER2 IHC 2+ invasive ductal BC were used in the study. DIA outputs were
subsampled by HexT for ITH quantification and tumor microenvironment extraction for
Immunogradient indicators. Multiple Cox regression revealed HER2 membrane
completeness (HER2 MC) (HR: 0.18, p = 0.0007), its spatial entropy (HR: 0.37, p =
0.0341), and ER contrast (HR: 0.21, p = 0.0449) as independent predictors of better OS,
with worse OS predicted by pT status (HR: 6.04, p = 0.0014) in the HER2 non-amplified
patients. In the HER2-amplified patients, HER2 MC contrast (HR: 0.35, p = 0.0367) and
CEP17 copy number (HR: 0.19, p = 0.0035) were independent predictors of better OS
along with worse OS predicted by pN status (HR: 4.75, p = 0.0018). In the non-amplified
tumors, three Immunogradient indicators provided the independent prognostic value:
CD8 density in the tumor aspect of the IZ and CD8 center of mass were associated with
better OS (HR: 0.23, p = 0.0079 and 0.14, p = 0.0014, respectively), and CD8 density
variance along the tumor edge predicted worse OS (HR: 9.45, p = 0.0002). Combining
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these three computational indicators of the CD8 cell spatial distribution within the tumor
microenvironment augmented prognostic stratification of the patients. In the HER2-
amplified group, CD8 cell density in the tumor aspect of the IZ was the only
independent immune response feature to predict better OS (HR: 0.22, p = 0.0047). In
conclusion, we present novel prognostic models, based on computational ITH and
Immunogradient indicators of the IHC biomarkers, in HER2 IHC 2+ BC patients.
Keywords: HER2, breast cancer, intratumoral heterogeneity, CD8, immune response, tumor microenvironment,
digital pathology
INTRODUCTION

Breast cancer (BC) is a complex and diverse disease with distinct
clinical, pathological, and molecular characteristics. The
multifaceted nature of the disease leads to diverse clinical
outcomes and therapeutic responses. BC has been classified
into several biologically distinct subtypes: luminal A, luminal
B, human epidermal growth factor receptor 2 (HER2)-enriched
(HER2), basal-like, and normal-like by gene expression profiling
analysis (1, 2), requiring different treatment strategies. This
categorization of the BC subtypes has been adapted for clinical
practice and is mainly based on immunohistochemistry (IHC)
assessment of estrogen receptor (ER), progesterone receptor
(PR), HER2, and Ki67 expression.

Routinely used predictive features, including clinicopathological
parameters (age, tumor size, lymph node status, and histological
grade) and biomarkers (ER, PR, and HER2) are insufficient for
personalized clinical decisions in BC patients (3). Novel prognostic
BC biomarkers have been intensively investigated as recently
reviewed by Wu et al. (4). In particular, robust biomarkers are in
demand for HER2-positive disease to improve selection of patients
for current and emerging therapies of HER2-positive metastatic BC
(5) as well as for prediction of resistance for anti-HER2 therapies,
recurrence (6, 7), and particular consequences of the disease (8).
Novel approaches based on pathology image analytics and
machine learning methods open new perspectives for predictive
modeling and clinical decision support (9, 10). Importantly, both
molecular and image-based biomarkers can be explored and
validated using The Cancer Genome Atlas (TCGA) Data
Portal (11).

HER2 amplification and overexpression occur in
approximately 15%–20% of invasive BC cases and are
associated with worse patient survival as compared with non-
amplified HER2 BC (12–15). A positive HER2 status predicts
better effect of HER2-targeted therapies, and therefore, its
accurate detection is essential for treatment decisions (16, 17).

While the majority of tumors can be categorized as either
HER2-positive or HER2-negative by IHC and in situ
hybridization (ISH) techniques, which are regarded as the
standard methods to assess HER2 status in BC, borderline
tumors do account for up to 18% of BCs (18, 19) and present
challenges for patient assessment and therapy choices. In 2018,
the American Society of Clinical Oncology (ASCO) and College
of American Pathologists (CAP) updated the guidelines for
HER2 testing with revised criteria for HER2 IHC borderline
2

(IHC 2+) classification. This mainly focused on less common
fluorescence ISH (FISH) patterns (ASCO/CAP groups 2, 3, and
4) and recommended to integrate them with a concomitant IHC
review for a final HER2 result determination (20). The
ambiguous FISH equivocal group (18), which poses therapeutic
dilemmas, was removed, which resulted in an increased
frequency of HER2-negative cases (21–24). Nevertheless, some
studies report that HER2 equivocal tumors present similar
clinical behaviors to the HER2-negative BC (25, 26), while
others find differences in clinicopathological and prognostic
aspects between these two categories (23). This suggests that
the equivocal category represents an intermediate state between
HER2-positive and HER2-negative tumors (27, 28).

Approximately 15%–30% of IHC 2+ cases are HER2-
amplified (29), while the remaining IHC 2+ and IHC 1+ HER2
non-amplified tumors were recently designated as a relatively
common “HER2-low” category, accounting for approximately
40%–55% of BC (30–32). This concept becomes important with
the advent of a new generation of anti-HER2 agents. Specifically,
ongoing clinical trials have demonstrated high efficacy of
antibody–drug conjugates that are designed to target and
deliver chemotherapy inside cancer cells in this particular
subset of BC patients (33–35). The HER2-low BC group is not
formally defined at present, but if treatment options will become
available, the current dichotomous HER2 guidelines will have to
be revised further to distinguish truly HER2-negative from
HER2-low breast cancer (31).

The intratumoral heterogeneity (ITH) of HER2, at both
protein expression and gene amplification levels, is a common
feature of HER2-borderline tumors, which further complicates
the assessment of HER2 status (36–40). In addition to the
heterogeneous HER2 expression, the variable expression of
hormone receptors (HRs) also contributes to the ITH and may
further affect clinical outcomes and responses to treatment of BC
(41, 42). Potential interactions between HR and HER2 signaling
pathways, which could impact development of resistance to
endocrine and anti-HER2 therapies, have been highlighted by
several preclinical and clinical studies (43–48).

Current pathological IHC methods are based on the
assessment of a proportion of HER2-positive tumor cells;
however, ITH of HER2 expression may present a challenge in
some tumors to be categorized with a single value (0, 1+, 2+, and
3+). Digital image analysis (DIA) has opened new opportunities
in HER2 IHC assessment by providing biomarker quantification
with increased accuracy, precision, reproducibility, and capacity
November 2021 | Volume 11 | Article 774088
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(49–55). Studies have demonstrated that DIA can reliably
distinguish HER2 IHC negative (0–1+) and positive (3+) cases
and reduce the proportion of IHC 2+ cases (51–54). Importantly,
continuous data and spatial aspects of IHC biomarker
distribution can be revealed by DIA (56–58). Several diversity
metrics (the Shannon entropy (59), the Simpson index (60), and
Rao’s quadratic entropy (61) have been adapted for molecular,
genetic, and microenvironmental heterogeneity assessments in
BC) (62–65). Potts et al. examined HER2 expression ITH in BC
by combining semiquantitative analysis with ecology diversity
statistics (64). Both cell-level and tumor-level heterogeneities
were evaluated, but the authors had doubts about the insufficient
number of regions sampled to make an assessment of
heterogeneity at a tumor level. Several recent studies (56–58)
showed a successful assessment of ITH of IHC biomarkers in
whole slide images (WSIs) based on hexagonal grid subsampling
of DIA data; importantly, this methodology enabled retrieval of
prognostically informative spatial heterogeneity indicators of
tissue biomarker expression.

Although ITHmay challenge the efficacy of therapy, it may be
also associated with favorable prognostic effects, since a greater
mutational load could lead to an increased tumor neo-antigen
generation that attracts immune cells and stimulate antitumor
immunity (66, 67). However, immunogenicity is different among
BC subtypes, with generally higher mutational load, higher
numbers of tumor-infiltrating lymphocytes (TILs), and higher
programmed death-ligand 1 (PD-L1) expression in triple-
negative and lower in HR-positive subtypes (68–71). These
differences may impact the efficacy of therapy with immune
checkpoint inhibitors with significant responses achieved only in
patients with triple-negative BC so far (72–74).

TILs have been recognized as a potential biomarker of
survival on BC patients (75, 76); however, their prognostic
significance varies in BC types (70). A positive prognostic role
of CD8 cells has been demonstrated in ER-negative and triple-
negative BC (77–79), but its prognostic value in HR-positive BC
remains unclear (70, 80). Recent studies have shown that the
distance between immune cells and cancer cells is clinically and
prognostically important in BC (81–84). The methods for
assessing TILs and their spatial distributions have been the
focus of many studies. Recently, Krijgsman et al. (85) first
applied an automated deep learning approach that identifies
the tumor boundary and detects CD8-positive cells in IHC
images, and then they analyzed the spatial distribution of CD8
lymphocytes in ER-positive invasive BC. They found that only
the SD of the CD8 density (but not the mean of CD8 density)
distribution was significantly associated with better survival,
hypothesizing that it reflects the contribution from local high-
density areas. In another study (84), the immune scores of cell
abundance and spatial heterogeneity were quantified using a
combination of fully automated H&E-stained image analysis and
spatial statistics. High immune spatial scores, but not the
abundance scores, were associated with poor prognosis in ER
positive BC. Rasmusson et al. proposed a hexagonal grid-based
methodology to automatically detect the tumor–host interface
zone (IZ) and compute the immune cell density profile across the
Frontiers in Oncology | www.frontiersin.org 3
interface. The computed Immunogradient indicators provided
the independent prognostic value in HR-positive breast and
colorectal cancer patients (86).

In our study, we investigated ITH and immune response
properties of HER2 IHC 2+ borderline BC patients with regard
to their prognostic value. We utilized image DIA of IHC for ER,
PR, Ki67, HER2, and CD8, with subsequent hexagonal grid
analytics to extract combined prognostic overall survival (OS)
models in HER2 IHC 2+ FISH-negative and FISH-
positive patients.
MATERIALS AND METHODS

Patients and Samples
This retrospective study included 275 patients, selected from an
initial set of 302 patients with invasive ductal breast carcinoma
diagnosed as HER2 borderline by IHC (IHC 2+), treated at the
National Cancer Institute of Lithuania and investigated at the
National Center of Pathology, affiliate of the Vilnius University
Hospital Santaros Klinikos, between September 2012 and March
2017. The selected patients met the following criteria: 1) patients
diagnosed with invasive ductal carcinoma; and 2) HER2 IHC 2+
cases assessed by a pathologist, tested routinely by HER2 FISH
and ER, PR, Ki67, and CD8 IHC slides available for DIA. The
cases without paraffin blocks available for CD8 IHC staining and
available follow-up data were excluded (15 and 12 cases,
respectively). Clinical and pathology information was collected
retrospectively from the medical records. The study was
approved by the Lithuanian Bioethics Committee (reference
number: 40, April 26, 2007, updated on March 18, 2013, and
on July 4, 2016).

Immunohistochemistry
Formalin-fixed paraffin-embedded (FFPE) surgical excision
samples tissue were cut at 3µm thickness and mounted on
positively charged slides and for IHC staining by Roche
Ventana BenchMark ULTRA automated slide stainer (Ventana
Medical Systems, Tucson, AZ). IHC for ER, PR, and HER2 was
performed using ready-to-use antibodies (SP1, 1E2, and 4B5,
respectively, Ventana (Tucson, Arizona, USA); for Ki67 and CD8
—MIB-1, Dako (Glostrup, Denmark; dilution 1:100) and C8/
144B, Dako (Glostrup, Denmark; dilution 1:100) antibodies,
respectively. Visualization of ER, PR, Ki67, HER2, and CD8
was performed with the ultraView Universal DAB Detection kit
(Ventana Medical Systems, Tucson, Arizona, USA). Tissue
sections were counterstained with Mayer’s hematoxylin.

HER2 expression was scored as 0 (no staining, or incomplete
membrane staining that is faint or barely perceptible and within
≤10% of the invasive tumor cells); 1+ (incomplete membrane
staining that is faint or barely perceptible and within >10% of the
invasive tumor cells); 2+ (weak-to-moderate complete
membrane staining observed in >10% of tumor cells); or 3+
(circumferential membrane staining that is complete, is intense,
and in >10% of tumor cells) according to the 2018 ASCO/CAP
guidelines (20). IHC 0 and IHC 1+ were defined as HER2
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negative, IHC 2+ was categorized as HER2 borderline, and IHC 3
+ was categorized as HER2 positive.

Fluorescence In Situ Hybridization
HER2 FISH was performed on FFPE sections using the PathVysion
HER2 DNA probe kit and Paraffin pretreatment kit (Abbott-Vysis,
Inc., Downers Grove, IL, USA) as described in detail previously
(87). Briefly, 4 µm thick sections were mounted on positively
charged slides and dried overnight at 56°C. Subsequently,
deparaffinization, dehydration, and pretreatment procedures were
performed. After the digestion with protease, the hybridization
mixture containing two fluorescently labeled DNA probes
recognizing the HER2 locus (17q11.2-q12) and the centromeric
region of CEP17 (17p11.1-q11.1) was applied to the target tissue.
Denaturation and hybridization were performed in a hybridizer
(Dako Diagnostics, Glostrup, Denmark). Then slides were washed,
counterstained with DAPI, and coverslipped (Invitrogen
Corporation, Carlsbad, USA). The samples were analyzed using a
fluorescence microscope (Zeiss, Axio Imager.Z2, Gottingen,
Germany) equipped with single-pass filters for DAPI, HER2, and
CEP17, under a 63× oil immersion objective. All tumors were
tested routinely by dual-probe FISH assay for final HER2
classification according to the ASCO/CAP guidelines (20).

Digital Image Acquisition, Analysis, and
Calculation of Indicators
For the analysis of ER, PR, Ki67, and HER2, sections were
scanned using a ScanScope XT Slide Scanner (Leica Aperio
Technologies, Vista, CA, USA) at ×20 objective magnification
(0.5 mm per pixel); CD8 IHC slides were scanned using an
Aperio AT2 Slide Scanner (Leica Biosystems, Buffalo Grove, IL,
USA) at ×20 objective magnification (0.5 mm per pixel). The DIA
was performed on the WSIs with HALO™ software (version
3.0311.174; Indica Labs, Corrales, NM, USA) by three operators
(RG, RA, and GR). Initially, the tissue was classified into the
tumor, stroma, and background (consisting of glass, necrosis,
and artifacts) by HALO AI™ classifier. Subsequently, the HALO
Multiplex IHC and Membrane algorithms (versions 1.2 and 1.4,
respectively) were applied to obtain coordinates of the cells in the
IHC WSI. For quality assurance, all image analysis results were
approved by the breast pathologist (RG).

Positive cell percentages for ER, PR, and Ki67 and the
percentages of HER2 2+ and 3+ cells along with the cell
membrane completeness (MC) indicator were obtained by the
HALO DIA. ITH indicators were computed by systematic
subsampling of the HALO DIA data using hexagonal tiling
arrays as described previously in (56). Briefly, the cells were
assigned to 825-pixel-sized hexagons (hexagon side length 257
µm) according to their extracted coordinates. Hexagons
containing fewer than 50 cells were regarded as insufficient
sampling and were excluded from further analyses.
Subsequently, the percentages of ER, PR, Ki67, and HER2-
positive cells were calculated for each hexagon to be ranked
into 10 intervals (0%–10%, >10%–20%, >20%–30%, >30%–40%,
>40%–50%, >50%–60%, >60%–70%, >70%–80%, >80%–90%,
and >90%–100%). Based on the ranks, a co-occurrence matrix
was constructed to compute Haralick’s texture indicators
Frontiers in Oncology | www.frontiersin.org 4
(contrast, dissimilarity, entropy, energy, and homogeneity)
(88). The intratumoral distributions of ER, PR, Ki67, and
HER2 expression were assessed for bimodality by Ashman’s D
indicator as described previously (57).

The automated extraction of the IZ and Immunogradient
indicators is described in detail in (86). In our study, an IZ width
of seven hexagon ranks (hexagon side length 65 mm) was used.
CD8 cell density was calculated in both 1) the WSI stroma and
tumor areas and 2) within the tumor–stroma IZ, which consists
of stroma (S), tumor (T), and tumor edge (TE) aspects.
Subsequently, Immunogradient indicators (center of mass
(CM) and immunodrop) representing CD8 cell density profiles
across the IZ were computed. The CM indicator reflects CD8 cell
density increase towards the tumor within the IZ, while the
immunodrop indicator reflects an abrupt decrease of CD8 cell
density across the TE (IZ rank 0) from stroma (IZ rank −1) to
tumor (IZ rank 1), represented by the CD8 cell density ratio
between rank −1 and rank 1.

Statistical Analysis
All continuous variables were tested for normal distribution by
Kolmogorov–Smirnov test and compared by two-tiled Student’s
t-test (for normally distributed variables) or the Mann–Whitney
U test (for non-normally distributed variables). A log-
transformation was applied to normalize the asymmetric
distributions of immune response variables and to meet the
assumptions of parametric statistical tests; they were used in one-
way ANOVA followed by Bonferroni’s post-hoc test for pairwise
comparisons and a two-sided Welch’s t-test for homogeneity of
variances. Fisher’s exact test was used to assess the differences in
clinicopathological variables among the analyzed groups.

A factor analysis was performed using the factoring method
based on principal component analysis; factors were retained
based on the threshold of an eigenvalue of 1; lastly, a general
orthogonal varimax rotation of the initial factors was applied.

The optimal cutoff value for each indicator was determined
using Cutoff Finder (89) to test the predictions of OS. The
Kaplan–Meier method was applied to estimate the OS
distributions with the log-rank test to compare survival
differences between the stratified groups. To assess the
prognostic factors, univariate and multivariate analyses were
performed using the Cox proportional-hazards models. The
“best” subset of variables to be included in the multivariate
Cox proportional-hazards models was identified by leave-one-
out cross-validation (90). All p-values were considered
significant at the <0.05 level. Statistical analyses were
performed with SAS software (version 9.4; SAS Institute Inc.,
Cary, NC, USA); plots were generated by R (version 4.1.0).
RESULTS

Clinicopathological and Follow-Up
Characteristics
Clinicopathological and follow-up characteristics of the HER2
non-amplified and HER2-amplified groups are summarized in
November 2021 | Volume 11 | Article 774088
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Table 1. The median follow-up period was 64 (range 2–102) and
52 months (range 0.7–100) in the non-amplified and amplified
HER2 cohorts, respectively. Forty-two patients died during the
follow-up, including 22 (13.7%) and 20 (17.1%) in the non-
amplified and amplified tumor subsets, respectively.

Of the 275 IHC 2+ patients, 158 (57.5%) were diagnosed as
HER2 non-amplified (HER2/CEP17 ratio <2.0; average HER2
copy number <4.0 signals per cell), while 117 (42.5%) were
HER2-amplified (HER2/CEP17 ratio ≥2.0; average HER2 copy
number ≥4.0 signals per cell) on the basis of the FISH results
categorized according to 2018 ASCO/CAP guidelines (20). Fifty-
nine (37.3%) FISH equivocal cases under the 2013 guidelines
(18) were reclassified into HER2 non-amplified according to the
2018 guidelines (20).

The HER2-amplified group revealed significantly higher
histological grade (p < 0.001) and higher frequency of
increased CEP17 copy number (p = 0.0002) as compared with
the HER2 non-amplified group (Table 1). Of note, 55 (34.8%)
and 67 (57.3%) cases with CEP17 copy number ≥3 were detected
in the HER2 non-amplified and HER2-amplified groups,
respectively. No significant differences between the groups
regarding the patient age, tumor stage, and node involvement
were found.

Summary Statistics of Explored Indicators
Summary statistics of the variables in the HER2 non-amplified
and HER2-amplified groups are presented in Supplementary
Table 1; the variance plots of the significant differences are
presented in Supplementary Figure 1.

In general, expression rates of ER and PR were higher, while
Ki67 was lower in the HER2 non-amplified group. No significant
difference in CD8 cell density distribution between tumor and
stroma areas was observed in both the HER2 non-amplified (t =
1.72, p = 0.0867) and HER2-amplified (t = 1.07, p = 0.2841)
groups. Also, the mean of CD8 density within the IZ was
Frontiers in Oncology | www.frontiersin.org 5
significantly higher in the S aspect than in the T aspect in both
the HER2 non-amplified (t = 6.56, p < 0.001) and HER2-
amplified (t = 6.17, p < 0.001) groups. The variance of CD8
cells was the highest in the S aspect, less in the TE aspect, and
lowest in the T aspect of the IZ in both the HER2 non-amplified
and HER2-amplified groups (p < 0.0001) (data not shown). No
significant differences of CD8 cell densities neither in tumor nor
stroma areas nor inside the IZ (T, TE, and S aspects) were found
between the groups. ITH (higher contrast, dissimilarity, and
entropy but lower energy and homogeneity) was higher only for
Ki67 in the HER2-amplified group.

Factor Analysis of Immunohistochemistry,
Fluorescence In Situ Hybridization,
Immune Response, and Intratumoral
Heterogeneity Indicators in HER2 Non-
Amplified and HER2-Amplified Groups
A factor analysis was performed on the combined set of DIA IHC,
FISH, immune response, and ITH data and six orthogonally
independent factors in each patient group were extracted. The
patterns of the factors are plotted in Supplementary Figures 2, 3,
factor loadings obtained after varimax rotation are presented in
Supplementary Tables 2, 3 for the HER2 non-amplified and
HER2-amplified groups, respectively.

In the HER2 non-amplified BC cases, Factor 1 was
characterized by positive loadings of the variables indicative of
CD8 density within the IZ T, TE, and S aspects and was named
CD8 density factor. Factor 2 showed positive loadings of HER2
FISH variables (HER2 copy number, HER2/CEP17 ratio,
percentage of amplified cells calculated from HER2/CEP17
ratio, and percentage of amplified cells calculated by HER2
signals only) and was named the HER2 amplification factor.
Factor 3 was characterized by increasing CD8 densities towards
the T aspect of the IZ (strong positive loadings of the CD8 CM
and its SD) and by moderate loading of CD8 density in the T
TABLE 1 | Patient and tumor characteristics according to HER2 status.

Characteristic Total (n = 275) HER2 non-amplified, n (%) HER2-amplified status, n (%) p-Value*

Number of patients 275 158 (57.5) 117 (42.5)
Median age, years (range) 60 (29–92) 59 (33–86) 63 (29–92) 0.2247
Median follow up, months (range) 58 (0.7–102) 64 (2–102) 52 (0.7–100)
Deceased 42 22 (13.7) 20 (17.1)
Histological grade (G), n (%)
1 22 18 (11.4) 4 (3.4) <0.0001*
2 153 99 (62.7) 54 (46.2)
3 100 41 (25.5) 59 (50.4)

Tumor invasion (pT), n (%)
T1 129 77 (48.7) 52 (44.4) 0.7578
T2 129 73 (46.2) 56 (47.9)
T3 9 4 (2.5) 5 (4.3)
T4 8 4 (2.5) 4 (3.4)

Lymph node metastasis (pN), n (%)
N0 165 96 (60.8) 69 (59) 0.3225
N1 66 41 (26) 25 (21.4)
N2 30 16 (10.1) 14 (12)
N3 14 5 (3.2) 9 (7.7)
November 2021 | Volume 11 | Artic
HER2, human epidermal growth factor receptor 2.
*p-Value < 0.05 is considered significant.
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aspect; therefore, it was named the CD8 density gradient. Factor
4 was represented by the Ki67% and Ki67 entropy indicators.
Factor 5 was characterized by positive loadings of two Haralick’s
texture indicators, namely, HER2 MC entropy and ER contrast,
along with negative loading of ER%. This factor was interpreted
as HER2&ER heterogeneity factor. Factor 6 was represented by
PR% and PR entropy indicators.

Similarly, in HER2-amplified tumors, Factor 1 was the HER2
amplification factor, Factor 2 was the CD8 density factor, and
Factor 3 (CD8 density gradient factor) was the main sources of
variance. Factor 4 was characterized by strong positive loadings
of Ki67% and Ki67 entropy indicators and by moderate negative
loading of ER entropy. Factor 5 was represented by the
percentage of both HRs along with the PR entropy. Factor 6
was characterized by strong positive loading of a single HER2
MC variable.

Prognostic Significance of
Clinicopathological Parameters,
Immunohistochemistry, Fluorescence In
Situ Hybridization, Immune Response, and
Intratumoral Heterogeneity Indicators in
HER2 Non-Amplified and HER2-Amplified
Patients
We explored the potential of the clinicopathological parameters,
IHC, FISH, immune response, and ITH indicators for predicting
Frontiers in Oncology | www.frontiersin.org 6
OS of the patients by univariate survival analysis. Statistically
significant indicators and their hazard ratios are presented in
Table 2. For the HER2 non-amplified group, higher T stage,
lymph node status (pN), CD8 density in the S aspect, SD of CD8
density in the S and TE aspects, immunodrop of CD8 density,
and Haralick’s texture indicators reflecting homogeneity of
HER2 and HER2 MC (energy, homogeneity) were associated
with shorter OS. Meanwhile, higher HER2 expression, CD8
densities in the tumor area and T aspect within IZ along with
its variance, CM for CD8 density and its variance, Haralick’s
texture indicators reflecting heterogeneity of HER2 and HER2
MC (contrast, dissimilarity, and entropy), and ER contrast were
associated with longer OS. In theHER2-amplified patients, worse
OS was associated with higher T stage, pN, immunodrop of CD8
density, HER2 MC homogeneity, Ki67 entropy, and PR AshD
(bimodality), while in the presence of higher CEP17 copy
number, the remaining Immunogradient indicators, HER2
entropy, HER2 MC contrast, and dissimilarity were associated
with better OS.

All the variables significantly associated with outcome at a
univariate analysis (p < 0.05, Table 2) were assessed for their
independent prognostic value in the multivariate Cox
regression models.

To investigate any added prognostic value of the indicators,
three models in each group were generated from different
variable sets (Table 3). Models 1 and 4 were obtained from the
pathology and IHC data, including the ITH indicators; FISH
TABLE 2 | Univariate analysis of the impact of clinicopathological parameters, Immunogradient, IHC, FISH, and intratumoral heterogeneity indicators in HER2 non-
amplified and HER2-amplified patient groups on overall survival using the log-rank test.

HER2 non-amplified group HER2-amplified group

Variables and indicators HR 95% CI p-Value Variables and indicators HR 95% CI p-Value

pT stage (pT1–2 vs. pT3–4) 4.41 1.30–14.97 0.0173 pT stage (pT1–2 vs. pT3–4) 3.49 1.01–12.05 0.049
pN stage (pN0 vs. pN1–3) 3.2 1.30–7.86 0.0111 pN stage (pN0 vs. pN1–3) 3.2 1.31–7.83 0.011
HER2% 0.26 0.11–0.62 0.001 CEP17 copy number 0.25 0.09–0.68 0.003
HER2_MC 0.12 0.05–0.32 <0.0001 CD8_T 0.38 0.16–0.91 0.024
CD8_T 0.37 0.16–0.87 0.017 CD8_CM 0.41 0.17–0.99 0.041
CD8_CM 0.2 0.08–0.49 <0.0001 CD8_d_TE 0.37 0.15–0.89 0.021
CD8_CM_sd 0.36 0.15–0.84 0.013 CD8_d_T 0.34 0.13–0.89 0.021
CD8_d_S 3.22 0.94–11.05 0.049 CD8_d_T_sd 0.35 0.14–0.89 0.022
CD8_d_S_sd 2.65 1.08–6.51 0.027 CD8_ID 3.05 1.24–7.48 0.01
CD8_d_TE_sd 2.81 1.21–6.54 0.012 HER2_entropy 0.4 0.16–1.02 0.047
CD8_d_T 0.3 0.13–0.71 0.003 HER2_MC_contrast 0.32 0.12–0.85 0.016
CD8_d_T_sd 0.35 0.14–0.85 0.016 HER2_MC_dissimilarity 0.35 0.14–0.88 0.019
CD8_ID 3.49 1.51–8.06 0.002 HER2_MC_homogeneity 2.49 0.99–6.27 0.044
HER2_contrast 0.22 0.09–0.52 0.0002 Ki67_entropy 2.39 0.99–5.77 0.044
HER2_dissimilarity 0.21 0.08–0.55 0.0005 PR_AshD 3.72 1.35–10.26 0.006
HER2_entropy 0.23 0.10–0.56 0.0004
HER2_energy 4.28 1.81–10.08 0.0003
HER2_homogeneity 2.95 1.26–6.90 0.009
HER2_MC_contrast 0.37 0.14–0.94 0.029
HER2_MC_dissimilarity 0.36 0.14–0.92 0.025
HER2_MC_entropy 0.31 0.13–0.72 0.004
HER2_MC_energy 3.25 1.36–7.79 0.005
HER2_MC_homogeneity 2.9 1.18–7.13 0.015
ER_contrast 0.21 0.05–0.91 0.021
Nov
ember 2021
 | Volume 11 | Article
AshD, Ashman’s D; CEP17, centromere enumeration probe for chromosome 17; CM, center of mass; CM_sd, SD for center of mass; ID, immunodrop; d_S, density in the stroma aspect
of interface zone (IZ); d_S_sd, SD in the stroma aspect of IZ; d_T, density in the tumor aspect of IZ; d_T_sd, SD in the tumor aspect of IZ; d_TE, density in the tumor edge aspect of IZ;
d_TE_sd, SD in the tumor edge aspect of IZ; HR, hazard ratio; MC, membrane completeness; T, tumor area; IHC, immunohistochemistry; FISH, fluorescence in situ hybridization.
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indicators were additionally used in the HER2-amplified group.
In models 2 and 5, the IHC CD8 density and Immunogradient
indicators were added to the variables tested in models 1 and 4.
Models 3 and 6 were obtained from the pathological and CD8
indicators, without inclusion of any ER, PR, Ki67, and
HER2 variables.

In the HER2 non-amplified group, higher values of HER2
MC, HER2 MC entropy, and ER contrast indicators were
independent features of better OS, while higher tumor stage
was associated with worse OS (model 1). Model 2 revealed a
marked increase of prognostic power contributed by the immune
response indicators in the data set (model likelihood ratio 56.1
achieved in model 2 compared with that of 27.1 in model 1);
better OS was associated with higher CD8_CM and CD8_d_T
cell densities, and worse OS with higher CD8_d_TE_sd.
Remarkably, models 2 and 3 included the same three immune
response indicators as independent prognostic factors, reflecting
different properties of the local CD8 densities within tumor
microenvironment: CD8_d_T (absolute density in the tumor
aspect of IZ) and CD8_CM (positive IZ density gradient towards
the tumor) were both associated with longer OS, while
CD8_d_TE_sd (variance of the CD8 cell density along the IZ)
was a feature of worse prognosis.

For the HER2-amplified group, no significant prognostic IHC
(ER, PR, HER2, and Ki67 global expression levels) indicators
were found by the univariate analyses; therefore, only a set of
ITH and FISH indicators along with the pathological variables
were used in model 4. Models 5 and 6 were built with the same
sets of variables as in theHER2 non-amplified group. In model 4,
higher values of HER2 MC contrast and CEP17 copy number
indicators predicted better OS, while pN was associated with
worse OS. The prognostic power of model 5 was increased by
adding immune response indicators (likelihood ratio 29.03 of
model 5 compared with 17.64 of model 4), where higher CD8
Frontiers in Oncology | www.frontiersin.org 7
density in the tumor aspect of IZ predicted better OS. The latter
indicator was also an independent factor of better OS in the
context of worse OS predicted by pN status in model 6.

The Kaplan–Meier survival probability plots demonstrating
an association between the prognostic factors and OS are
presented for the HER2 non-amplified and HER2-amplified
groups in Figures 1, 2, respectively.

Combined CD8 Immunogradient
Prognostic Score in HER2 Non-Amplified
Patient Group
To further assess the added prognostic value of the independent
immune response features revealed by the multivariate
regression analysis in the HER2 non-amplified group, a
combined CD8 Immunogradient prognostic score was
calculated by summing corresponding scores (0/1) for each
factor (CD8_CM, CD8_d_T, and CD8_d_TE_sd), assigning
the score 1 for good or 0 for poor prognosis. The combined
CD8 Immunogradient prognostic score allowed stratification of
patients into three prognostic groups with 5-year OS probability
of 98%, 80%, and 49% for the score of 3, 2, and 1, respectively
(Figure 3). Of note, there were no patients with all three
indicators assigned a score of 0.
DISCUSSION

In this study, we present prognostic models for patients with
HER2 IHC borderline (2+) BC patients, based on the expression
levels of ER, PR, Ki67, HER2, and CD8 densities in the tumor
tissue assessed by DIA. These biomarkers were augmented by a
set of computational indicators that quantify spatial aspects of
ITH and tumor microenvironment. Importantly, the CD8
(immune response) indicators markedly strengthened the
TABLE 3 | Multivariate analysis of prognostic factors associated with OS in HER2 non-amplified (models 1, 2, and 3) and HER2-amplified (models 4, 5, and 6) patient groups.

HER2 non-amplified group HER2-amplified group

HR 95% CI p-Value HR 95% CI p-Value

Model 1 (LR: 27.1, p < 0.0001) Model 4 (LR: 17.64, p = 0.0005)
pT stage (pT1–2 vs. pT3–4) 6.04 2.31–33.04 0.0014 pN stage (pN0 vs. pN1–3) 4.75 1.77–12.62 0.0018
HER2 MC 0.18 0.07–0.48 0.0007 HER2_MC_contrast 0.35 0.13–0.94 0.0367
HER2 MC entropy 0.37 0.15–0.93 0.0341 CEP17 copy number 0.191 0.06–0.58 0.0035
ER contrast 0.21 0.05-0.97 0.0449
Model 2 (LR: 56.05, p < 0.0001) Model 5 (LR: 29.03, p < 0.0001)
pT stage (pT1–2 vs. pT3–4) 13.65 3.05–61.03 0.0006 pN stage (pN0 vs. pN1-3) 7.985 2.7–23.63 0.0002
HER2 MC 0.17 0.05–0.66 0.0102 HER2_MC_contrast 0.243 0.09–0.69 0.0077
HER2 MC entropy 0.33 0.13–0.88 0.0263 CEP17 copy number 0.135 0.04–0.44 0.0008
ER contrast 0.16 0.03–0.80 0.0258 CD8_d_T 0.117 0.04–0.37 0.0002
CD8_CM 0.223 0.08–0.64 0.0053
CD8_d_T 0.147 0.05–0.47 0.0013
CD8_d_TE_sd 7.82 2.63–23.28 0.0002
Model 3 (LR: 28.26, p < 0.0001) Model 6 (LR: 12.52, p = 0.0019)
CD8_CM 0.14 0.04–0.47 0.0014 pN stage (pN0 vs. pN1–3) 4.55 1.72–12.06 0.0023
CD8_d_T 0.23 0.08–0.68 0.0079 CD8_d_T 0.22 0.08–0.63 0.0047
CD8_d_TE_sd 9.45 2.9–30.78 0.0002
No
vember 2021
 | Volume 11 | Article
CEP17, centromere enumeration probe for chromosome 17; CM, center of mass; d_T, density in the tumor aspect of interface zone (IZ); d_TE_sd, SD in the tumor edge aspect of IZ; HR,
hazard ratio; LR, likelihood ratio; MC, membrane completeness; OS, overall survival.
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models in both the HER2 non-amplified and HER2-amplified
groups. Furthermore, these latter indicators outperformed
pathological variables and enabled independent prognostic
stratification of the HER2 non-amplified BC patients.

DIA enables extraction of IHC data and spatial aspects from
WSI with high capacity, not available by conventional IHC
Frontiers in Oncology | www.frontiersin.org 8
scoring. Additional processing of the DIA-generated data by
hexagonal tiling enabled extraction of Haralick’s texture
measures of ITH of the biomarkers of the prognostic value, as
reported previously. In this study, we found that, of the IHC
variables explored in the HER2 non-amplified group, only HER2
expression percentage and HER2 MC were significantly
A B

C D

E F

G

FIGURE 1 | Kaplan–Meier survival plots representing the association of overall survival in the group of patients with HER2 non-amplified breast cancer with
independent prognostic indicators identified by multiple Cox regression analysis: (A) membrane completeness (HER2 MC), (B) membrane completeness entropy
(HER2 MC entropy), (C) ER contrast, (D) center of mass for CD8 density (CD8_CM), (E) mean CD8 density in the tumor aspect (CD8_d_T), (F) SD of CD8 density in
the tumor edge aspect (CD8_d_TE_sd), and (G) tumor stage (T).
November 2021 | Volume 11 | Article 774088
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associated with the patient outcome (HR = 0.25, p = 0.001 and
HR = 0.12, p < 0.0001, respectively). Of note, HER2 MC was a
stronger indicator than the proportion of HER2-positive tumor
cells (as assessed by the HALO DIA) and served as an
independent prognostic factor of better OS. Remarkably, two
ITH indicators—HER2 MC entropy and ER contrast—showed
an independent prognostic significance in the context of tumor
stage status (Table 3, models 1 and 2). Similar findings of
beneficial prognostic impact of higher HER2 MC were
reported recently in early HR-positive BC patients, where
better prognosis of higher HER2 expression was found in a
Frontiers in Oncology | www.frontiersin.org 9
univariate analysis (58). In another study, a trend of more
favorable prognosis with respect to relapse-free survival has
been shown for the ER-positive, HER2 non-amplified tumors
with higher levels of HER2 RNA (91).

HER2 MC status shows the status of HER2 expression, as
HER2 protein is localized on the cell membrane. This means that
HER2 MC entropy, which is indicative of MC spatial
heterogeneity, also reveals information about the ITH of the
HER2 protein expression. We observed a non-linear relationship
between the HER2 MC and its spatial heterogeneity in our study
(Supplementary Figure 4), represented by high ITH values in
A B

C D

FIGURE 2 | Kaplan–Meier survival plots representing the association of overall survival in the group of patients with HER2-amplified breast cancer with independent
prognostic indicators identified by multiple Cox regression analysis: (A) CEP17 copy number, (B) membrane completeness contrast (HER2 MC contrast), (C) mean
CD8 density in the tumor aspect (CD8_d_T), and (D) lymph node status (pN).
FIGURE 3 | Kaplan–Meier plot for the overall survival of prognostic groups obtained by combined CD8 Immunogradient prognostic score (CD8_IPS) in HER2 non-
amplified group.
November 2021 | Volume 11 | Article 774088
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the middle range of the MC and lower ITH in the low and high
ends of the MC variance. Similar dependencies between PR and
Ki67 and their ITH indicators were previously reported (56–58);
importantly, these studies demonstrated that the ITH indicators
of Ki67 and PR expression enabled higher prognostic power than
the expression rates per se. Our study extends this evidence by
showing a greater prognostic value of ER ITH indicator than by
the rate of its expression. Interestingly, ER contrast was the only
ITH indicator of HR that provided the prognostic value in a
univariate analysis (Table 2, HR = 0.21, p = 0.021) and in the
multiple Cox regression models (Table 3, HR = 0.21, p = 0.0449,
model 1, HR = 0.16, p = 0.0258, model 2, respectively). Haralick’s
contrast (88) measures the spatial distribution of tumor cell
subpopulations with different properties in the image. The
associations of ER contrast with HER2 MC entropy and their
inverse relation to ER expression were revealed by factor analysis
(Factor 5, Supplementary Figure 2 and Supplementary
Table 2). This HER2&ER heterogeneity factor reflects the
higher ITH of both HER2 and ER proteins in the tumors with
decreased ER expression.

A majority of the patients with HER2-amplified tumors
received adjuvant trastuzumab treatment (87, 74.4%). The OS
of these patients is likely to have been impacted by the targeted
therapy; therefore, the prognostic models obtained in this
subgroup should be taken with caution. One can speculate that
any potential effect of the targeted therapy could be related to our
finding of ITH of HER2 expression, represented by the HER2
MC contrast indicator as independent predictor of better OS
(Table 3, HR = 0.35, p = 0.0367, Model 4 and HR = 0.243, p =
0.0077, Model 5) but not by the HER2 MC indicator. The effect
on better OS caused by a higher CEP17 copy number in this
group is not clear, and it may be related to various treatment
modalities applied in HER2-amplified BC patients. Several
studies have reported an association between CEP17 copy
number gain and responsiveness to anthracycline-based
chemotherapy (92–94). Also, in addition to HER2 ,
chromosome 17 includes other genes involved in BC
pathogenesis and DNA repair, such as BRCA1, TOP2A, TP53,
and RAD51C (95, 96); therefore, various abnormalities of
chromosome 17 may affect prognosis and treatment response.

In this study, we tested the prognostic value of CD8 cell
densities quantified by DIA in the tumor and stroma
compartments and applied a recently proposed method, based
on hexagonal grid analytics of the DIA data to compute CD8
local density profiles (Immunogradient) across automatically
detected tumor–stroma IZ (86). This method actually tests if
the immune cells reveal increasing densities towards the tumor at
the tumor/host interface and therefore is expected to be more
sensitive to capture “spatial behavior” of TILs. Indeed, higher
CD8 cell densities in the tumor compartment were associated
with better OS in univariate analyses in both patient subgroups
(Table 2, HR = 0.37, p = 0.017 and HR = 0.38, p = 0.024 in the
HER2 non-amplified and HER2-amplified groups, respectively);
however, they did not provide the independent prognostic value
in our models. In contrast, three Immunogradient indicators
provided the independent prognostic value in the non-amplified
Frontiers in Oncology | www.frontiersin.org 10
tumors: CD8 density in the tumor aspect of IZ (CD8_d_T) and
positive IZ CD8 density gradient towards the tumor (CD8_CM)
were associated with better OS, while the variance (SD) of CD8
density (CD8_d_TE_sd) along the TE predicted worse OS. A
strong prognostic stratification was achieved by aggregating
these three independent spatial properties of the CD8 cell
distribution in the tumor microenvironment into a combined
CD8 Immunogradient prognostic score; this represents an
instance of computational augmentation of a single IHC
biomarker (Figure 3). Remarkably, these three indicators were
sufficient to predict OS independently of any other variables
(Table 3, model 3) with statistical power obtained from
pathology and IHC data supplemented with ITH indicators
(Table 3, model 1). Finally, the prognostic power was doubled
by adding the immune response indicators to the model
(Table 3, model 2). Our findings are similar to the results
presented in the study of Rasmusson et al. (86), where both
CD8 density in the tumor aspect of IZ and CM for CD8 cell
density within the IZ indicators were independent predictors of
better OS in early HR-positive BC. Although several studies have
reported a higher density of CD8 cells to be associated with a
favorable prognosis in node-negative BC (97), or in combination
with CD163 (98), other studies have shown an adverse
prognostic effect of increased CD8 lymphocytes in patients
with HR-positive/HER2-negative tumors (77, 99, 100) or
reported no significant association between CD8 cells and
patient outcome (79). These contradictory results in HR-
positive BC may be related to different methodologies applied,
lacking precision in the assessment of spatial aspects of TIL
distributions within the tissues (100, 101). Recently, Dieci et al.
(102) highlighted the need of deeper insight into the mechanisms
on which the interaction between HR-positive/HER2-negative
BC tumor and immune cells relies, as various factors such as
menopausal status, estrogen levels, and endocrine treatments
may be involved in the modulat ion of the tumor
microenvironment (102). Therefore, methods with appropriate
discriminatory spatial precision are needed to expose the
prognostic role of TILs in luminal-like BC.

We did not find significant differences in CD8 cell densities
between the HER2-amplified and non-amplified groups, which
could be explained by the fact that the HER2-amplified group
was composed of both molecular subgroups showing HER2
positivity, namely, luminal B and HER2-enriched. Previous
studies reported that HER2-enriched subtype is more
immunogenic than the luminal B (103). In our study, the only
immune response indicator—density of CD8 in the T aspect of
IZ—provided an independent association with better OS in
HER2-amplified BC patients (Table 3, models 5 and 6).
Extensive TIL infiltration has been associated with better
outcomes (pathological complete response, event-free survival,
and disease-free survival) in HER2-positive BC (70, 104, 105).
However, studies evaluating the prognostic significance of CD8
TILs reported conflicting results (77, 79, 100, 106, 107),
suggesting that the association between CD8 cells and
prognosis depends on lymphocyte types, their tissue location,
analysis methods, and other factors. Indeed, the interaction
November 2021 | Volume 11 | Article 774088
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between immune system and tumor as well as prognostic effects
of TILs in HER2-positive BC is impacted by various combined
therapy modalities, including anti-HER2 therapy, chemotherapy,
and hormonal therapy (108). Trastuzumab therapy effect
depends on immune response (109), it has both cytotoxic and
immunological effects on tumor cells (110–112), and better
therapeutic efficacy is achieved in tumors with high TILs (113–
115). However, this was not confirmed by other studies
(116, 117).

Our study has limitations, related to its retrospective and
monocentric design and lack of well-structured information
about applied therapies and responses achieved. In particular,
it is relevant to the prognostic modeling in the HER2-positive
patient cohort.

In conclusion, we present prognostic OS models based on
computational ITH, tumor microenvironment, and immune
response indicators of the IHC biomarkers in HER2 IHC 2+
borderline BC patients. The ITH indicators (HER2 MC entropy
and ER contrast in FISH-negative and HER2 MC contrast in
FISH-positive tumors) provided an independent contribution to
predict better OS. In FISH-negative tumors, antitumor immune
response, assessed by the CD8 IZ Immunogradient indicators,
provided prognostic stratification independent and superior to
other pathology and IHC variables.
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