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ABSTRACT Neurospora crassa is an important model organism for filamentous fungi as well as for circadian
biology and photobiology. Although the community-accumulated tool set for the molecular analysis of Neu-
rospora is extensive, two components are missing: (1) dependable reference genes whose level of expression
are relatively constant across light/dark cycles and as a function of time of day and (2) a catalog of primers
specifically designed for real-time PCR (RT-PCR). To address the first of these we have identified genes that
are optimal for use as reference genes in RT-PCR across a wide range of expression levels; the mRNA/
transcripts from these genes have potential for use as reference noncycling transcripts outside of Neurospora.
In addition, we have generated a genome-wide set of RT-PCR primers, thereby streamlining the analysis of
gene expression. In validation studies these primers successfully identified target mRNAs arising from 70%
(34 of 49) of all tested genes and from all (28) of the moderately to highly expressed tested genes.
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Profiling gene expression at the mRNA level via real-time PCR (RT-
PCR) is a rapid means of assessing an organism’s response to changing
environmental conditions. In comparison to other techniques that also
track the steady-state levels of mRNA such as Northern blot analysis,
microarrays, and RNA-Seq, RT-PCR is cheaper, faster, requires less
mRNA, and produces large amounts of data with limited effort. Two
key pieces contributing to the success of this technique are (1) the
efficient design of optimal primers that are used in the reaction and
(2) reference genes to serve as internal controls for template inputs. RT-
PCR primer design must take into account sequence position, exon
position, product size, melting temperature (Tm), secondary structure,
and GC content, as well as the terminal nucleotides to create an optimal
primer. To achieve this, programs to aid in primer design have been
developed (Rozen and Skaletsky 2000; Untergasser et al. 2012) as well

as Internet-based primer design resources (e.g., Perfect Primer; Invi-
trogen, Waltham, MA). However, existing Internet-based primer de-
sign web sites are not high-throughput, leaving the user to provide
individually not only the gene but also the genomic sequence of interest.
Designing individual primers for target genes is a time-consuming
process, and very often multiple primers for a single gene are required
as part of the validation process; designing multiple RT-PCR primers
per gene for multiple genes can quickly become tedious, and a genome-
scale data set is optimal for large-scale efforts (Cui et al. 2007).

Neurospora has long been a salient model for nonyeast fungal
species, including important plant and animal pathogens, and has been
defined as a model organism by the NIH (http://www.nih.gov/science/
models/). Its 43-Mb genome contains approximately 11,000 predicted
genes (Galagan et al. 2003; Stajich et al. 2012) (http://fungidb.org/
fungidb/). Haploid progeny, regulatable promoters (Hurley et al.
2012; Lamb et al. 2013; Giles et al. 1985), efficient and simple trans-
formations (Chakraborty et al. 1991; Margolin et al. 1997), as well as an
extensive culture collection (Fungal Genetics Stock Center) (McCluskey
et al. 2010) and knockout library (Colot et al. 2006) (Dunlap et al. 2007)
contribute to the utility of Neurospora for the study of a wide variety of
biological processes, including many that are not fungal-specific. For
example, in addition to being an established model organism for the
study of circadian clock, Neurospora is commonly used to study fungal
biomass deconstruction, epigenetics, fungal infection model, cell
morphology, sexual development, gene silencing, and photobiology
(Aramayo and Selker 2013; Riquelme et al. 2011; Znameroski and Glass

Copyright © 2015 Hurley et al.
doi: 10.1534/g3.115.019141
Manuscript received June 24, 2015; accepted for publication August 3, 2015;
published Early Online August 6, 2015.
This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
Supporting information is available online at www.g3journal.org/lookup/suppl/
doi:10.1534/g3.115.019141/-/DC1
1These authors contributed equally to this work.
2Corresponding author: Geisel School of Medicine at Dartmouth, HB 7400,
Hanover NH 03755. E-mail: jay.c.dunlap@dartmouth.edu

Volume 5 | October 2015 | 2043

http://www.nih.gov/science/models/
http://www.nih.gov/science/models/
http://fungidb.org/fungidb/
http://fungidb.org/fungidb/
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.019141/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.019141/-/DC1
mailto:jay.c.dunlap@dartmouth.edu


2013; Baker et al. 2012; Chen et al. 2009; Kuo et al. 2014; Lehr et al. 2014;
Wang et al. 2014b; Fulci and Macino 2007).

Recently, extensive analyses of mRNA output via deep sequencing
of mRNA levels as well as microarray analyses in Neurospora have
thoroughly described circadian gene expression, as well as the organ-
ism’s response to light and to addition of quinic acid (Hurley et al. 2014;
Logan et al. 2007; Wu et al. 2014; Sancar et al. 2015). By probing these
data sets, we have identified genes that can potentially serve as stably
expressed reference genes when tracking changes in mRNA levels un-
der various experimental conditions. The identified genes have a broad
range of expression levels, providing a variety of comparable and ap-
propriate normalizing genes for any target gene of interest. In addition,
we report the development of a genome-wide data set of RT-PCR
primers to streamline RT-PCR analyses. To create this resource, we
designed and implemented a program to generate a list of five optimal
RT-PCR primers for each gene in theNeurospora genome.We used the
industry-standard program Primer3 (Untergasser et al. 2012; Rozen
and Skaletsky 2000) to identify multiple primer pairs that are statisti-
cally likely to generate reliable gene detection via RT-PCR studies and
validated a selection of the primer pairs (0.5%) by testing their utility on
target genes selected to span the range of gene expression levels.

MATERIALS AND METHODS

Primer design
A software applicationwaswritten in Python to retrieve regions from each
ORF (designated from Assembly 12 of the Neurospora genome; www.
broadinstitute.org/annotation/genome/neurospora/GenomeDescriptions.
html#NC12; http://fungidb.org/fungidb/; http://www.ncbi.nlm.nih.gov/

genome/?term=txid367110) (Stajich et al. 2012) (Supporting Information,
File S1) and pass them to Primer3 (version 2.3.6; http://frodo.wi.mit.edu/
cgi-bin/primer3/primer3_www.cgi), which automatically generated a list
of candidate primers with designated parameters (Table S1). Three to five
primer pairs were selected and primers were ordered for 49 genes and
supplied in 96-well plates (Illumina, San Diego, CA), diluted, and mixed
by a Biomek NX robot (Beckman, Danvers, MA). The 49 genes were
selected because they were potentially circadianly regulated genes based
on previous work (Hurley et al. 2014).

RT-PCR protocols
One-thousand five-hundred ng of RNA [a mix of the 10- and 30-hr
time points from the third RNA-Seq time course published in the
work by Hurley et al. (2014) chosen to encompass maximal expres-
sion of genes at two different clock phases] was used to prepare
cDNA using the SuperScript III First-Strand synthesis kit (Invitrogen,
Waltham, MA). This was followed by RT-PCR using the Fast SYBR
green master mix kit in an ABI 7500 real-time cycler (Applied Bio-
systems, Waltham, MA). The primer combinations used are listed in
Table S1 and the final concentration of primers in the reaction mix
was 0.5 mM. The following cycling parameters were used: step 1: 95�
for 5 min and step 2: 95� for 10 sec and 60� for 30 sec for 40 cycles. Ct

values were calculated using software provided by the instrument
manufacturer. The relative mRNA levels for each time point were
calculated using at least two out of three biological replicates in the
case where one of the replicates differed from either of the other two
by more than three-fold. Only a single biological replicate and primer
concentration was tested.

Data analysis
The functionality of each of the 49 selected primer pairs was tested.
Eachunique primer pairwas assigned aCt valuewith respect to its target
by the ABI 7500 Fast Real-Time PCR software (Applied Biosystems,
Waltham, MA) using the auto Ct command. Each Ct value represents
a single technical replicate from the mix of the cDNA sample.

To determine which genes showed the least variation across time
and would be optimal for use as reference genes over circadian time, we
first rejected extremely low-expressing and nondetected genes with
a log-transformed fragments per kilobase per million (FPKM) value
cutoff of 22 from our RNA-Seq data. Next, we used our Jonckheere-
Terpstra-Kendall (JTK) cycle (Hughes et al. 2010) results from Hurley
et al. (2014), accounting for replicates, to reject genes called with a high
confidence as being circadianly regulated (Benjamini Hochberg cor-
rected q, 0.05). We then performed an ANOVA on the log10 FPKM
values for the remaining genes, comparing within time point variation
against between time point variation for each gene and rejected genes
for which P, 0.05. Because we chose genes to reject, we did not adjust
for multiple comparisons because that would introduce more type I
errors while reducing type II errors; our goal is to screen out genes with
strong variation and the cutoff is itself arbitrary, making such an ad-
justment unnecessary. This left us with a set of expressing, noncirca-
dian, ANOVA selected (ENCAS) genes. In the last step of our analysis,
linear regressions were performed on the same log10 FPKM values used
for all previous calculations for each ENCAS gene using the scikit learn
package (a set of data mining and machine learning tools) in python.
These linear regressions were used to create prediction intervals (95%)
for the expected mean at each time point for each gene. Genes were
then scored based on the sum of the absolute value of the differences of
the upper and lower bounds of these prediction intervals with respect to
the overall mean expression of the gene at each time point. Under this

Figure 1 Optimal reference genes for RT-PCR in Neurospora. A graphical
representation of the log10 of FPKM values from the RNA-Seq data set for
the 10 Neurospora genes (two reported from each quintile) that demon-
strated the least variability in expression over 2 d in culture. The chart
reports the gene name as well as the gene symbol for each of the NCUs
reported. Gene symbols are from the Neurospora e-Compendium at Leeds
(http://www.bioinf.leeds.ac.uk/~gen6ar/newgenelist/genes/gene_list.htm).
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scoring metric, which we have termed the prediction interval ranking
score (PIRS), genes that are more stable across circadian time will have
lower scores. For both the light-induction and quinic acid–induction
(QA) time courses, neither the JTK cycle nor the ANOVA-based
screening methods were applicable because the time courses were not
circadian in nature and did not contain replicates. It is important to
note that the light-induction data were all normalized to the initial time
point for each gene; because of this, we could not examine absolute
expression levels and identify the best genes from each expression
quintile for the light-induction data set.

In addition, as an independent analysis, normalized, log-
transformed FPKM values (Hurley et al. 2014) were averaged
across each of the three reported circadian time courses as well as averaged
across an average of the three time courses, and the SD of the log10 FPKM
values for each gene over circadian timewas determined. Genes where the
SD of the log10 FPKM values was 0.5% or less of the log10 FPKM averages
were selected as candidates. The list of genes was compiled by selecting
genes that appeared in the averaged time course as well as at least one
of the three individual time courses (Hurley et al. 2014) (Figure S1).

Data availability
All strain, data analysis programs and ancillary information are either
freely available or available upon request. Table S1 and File S1 contain
all necessary information regarding the generated RT-PCR primers.

RESULTS

Identifying a constitutively expressed reference gene
To identify genes with near-constant expression in Neurospora, we
examined the global gene expression profiles in Neurospora informed
by previous RNA-Seq and microarray experiments/studies (Hurley

et al. 2014; Wu et al. 2014; Logan et al. 2007). Using our analysis
(Materials andMethods) we assigned a prediction interval ranking score
(PIRS) to each gene. The resulting PIRS was minimized for genes that
exhibit both flat expression as a function of time and low variance in
observed expression at each time point (Figure 1). The gene ranks pro-
duced by our scoring metric were compared to rankings based on SD
and relative SD (RSD) of expression using the Jaccard similarity co-
efficient (Levandowsky and Winter 1971) [Figure S1 and Figure S2
(Hintze and Nelson 1998)]. The rankings produced by our metric
(PIRS) corresponded very well with SD and were noticeably more sim-
ilar to RSD than random ranking. The majority of the difference be-
tween our method and RSD likely resulted from RSD’s preference for
highly expressing genes, because the similarity scoremarkedly improved
when comparing the highest expressing quintile of genes under our
scoring metric with the RSD results. A similar analysis was applied to
the light-induced and QA-induced data sets with a few differences
(Figure 2 and Figure 3). The selection criteria for nonlight-induced genes
and non-QA-induced genes were identical to those for noncircadian
genes except that the removal of noncircadian genes and the ANOVA
were omitted (due to lack of replicate datasets).

For both the circadian and QA induction datasets, we selected the
top two genes in each quintile of expression (Figure 1 and Figure 3).
Because only relative expression data were available for the light-
induction time course, we have reported the top 10 scoring genes over-
all (Figure 2). The top ranking genes in each quintile outperformed the
average gene, whereas the top three quintiles were markedly higher
than the average gene [Figure S3 (Scott 1992)]. In all cases, the genes
selected by our metric show flat expression with low variation, whereas
genes that rank poorly show high variation both within and between
time points (compare Figure 1, Figure 2, and Figure 3 to Figure S4). The

Figure 3 Optimal reference genes for RT-PCR under quinic acid (QA)
induction. A graphic representation of the log10 of FPKM values from
the RNA-Seq data set for the 10 Neurospora genes (two reported from
each quintile) that demonstrated the least variability after the addition
of QA. The chart reports the gene name as well as gene symbol for
each of the NCUs reported. Gene symbols are from the Neurospora
e-Compendium at Leeds.

Figure 2 Optimal reference genes for RT-PCR under light induction in
Neurospora. A graphical representation of the log10 of FPKM values
from the RNA-Seq data set for the 10 Neurospora genes that demon-
strated the least variability following light induction. Note that the
light-induction data are normalized to the initial time point for each
gene. The chart reports the gene name as well as gene symbol for
each of the NCUs reported. Gene symbols are from the Neurospora
e-Compendium at Leeds.
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average FPKM values of the noncircadian genes ranged from log10
0.087 to log10 3.16, whereas the non-QA-induced genes ranged from
log1021.30 to log10 1.49, giving a wide variety of expression levels from
which to choose from when selecting the appropriate reference gene.
Not surprisingly, of the genes with predicted function, classifications
included ribosomal, cytoskeletal, or protease genes, all proteins that
could logically be expected to be housekeeping genes.

As a way to identify genes that could be used as reference genes, we
subjected all of the genes that were in our ENCAS set to pareto
optimization to select nondominated genes across the three data sets.
Pareto optimization is a technique formulti-objective optimization that
aims tofind the set of all choices thatmight be considered optimal under
any of the possible combinations of weightings of individual scores
(Pareto 1906). The algorithm rejects any choice for which another
choice is available with superior scores under every metric. Genes for
which there is an alternative genewith superior scoresunder all available
metrics are termed "dominated" and genes for which any scoringmetric
exists under which they are optimal are termed "nondominated." This
produced a list of 27 genes from the three data sets. Because it was
possible that some of the genes on the pareto plane represent an opti-
mal combination of PIRS for one experiment individually as opposed to
all experiments in combination, we then compared these 27 genes to
the summed normalized PIRS scores (Figure 4). We selected the over-
lap between the top 10 summed normalized scores and the pareto
optimized set, leaving us with nine genes as good candidates for refer-
ence. These nine genes spanned the top four quintiles of expression
(Figure 4), suggesting genes buffered against variation are not specific
to a given level of expression except at the limits of detection (Figure S3).

Generation of a genome-wide RT-PCR primer data set
Although there aremanyways to analyze and validatemRNA levels and
consistency between any two methods constitutes validation, it has
become common practice in Neurospora to test mRNA steady-state
levels using RT-PCR (Hurley et al. 2012, 2014; Wang et al. 2014a;
Sancar et al. 2012; Hong et al. 2014; Hutchison et al. 2009). To analyze
mRNA, RT-PCR primers are generally designed for each gene by hand,
a time-consuming process when done on a large scale. To streamline
this process, a catalog of RT-PCR primers was created for each gene
designated in Neurospora by the Broad database. To achieve this we
created a program that would design five primer sets for each gene
based on the standard RT-PCR primer criteria (see Materials and
Methods). In addition, each gene should have five primer pair sets that
are not identical to one another. In the case of mono-exonic genes, the
primer pairs were all selected from sequence in the last 500 base pairs of
the gene (Figure 5). In the case of multi-exonic genes with a single
intron, the primer pairs were designed to encompass the intron;
in multi-exonic genes with multiple introns, the primer pairs were
designed to encompass the last intron in the gene (Figure 5).

Using our program we were able to successfully design primers for
10,798 (99.9%) of the 10,802 ORFs predicted by Assembly 12 of the
Neurospora genome (www.broadinstitute.org/annotation/genome/
neurospora/GenomeDescriptions.html#NC12; http://fungidb.org/
fungidb/; http://www.ncbi.nlm.nih.gov/genome/?term=txid367110)
(Stajich et al. 2012) (File S1). The outline of the database can be seen
in Table 1. For each transcript, the number of primer pairs that was
designed is noted. In a few cases (five total), fewer than five unique
primer pairs were designed; in theory, this is due to the limitations of

Figure 4 Least variably expressed genes for circadian RT-PCR in Neurospora. (A–C) A graphic representation of the log10 expression values from
the (A) circadian, (B) quinic acid, and (C) light-induction data sets for the nine Neurospora genes in each category that were reported as the most
stably expressed according to pareto optimization and normalized summed PIRS. (D) The chart reports the NCUs plotted in (A–C) with the quintile
of expression associated with each gene from the circadian and QA time courses as well as the gene symbol and name for each of the NCUs
reported. Gene symbols are from the Neurospora e-Compendium at Leeds.
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the gene sequence and the parameters that were set. Each primer pair
has a penalty score associated with it and that score, assigned by
Primer3, represents how close the primer pair comes to the optimum
conditions set by the program. The lower the score, the better the primer
pair. The pair with the lowest score is ordered first, the second lowest
score is second, and this pattern continues through to the fifth pair.

Analyzing the generated RT-PCR primers
To confirm that the primers generated by our program were capable of
producing valid RT-PCR products, we tested 49 genes with three or
more of the generated primer pairs (Table 2). In our work, transcripts
with low abundance generally give rise to highly variable RT-PCR
estimates (Table 2). As a standard, we decided Ct values had to be
below 30 to consider the cDNA target as being reliably detected by
RT-PCR. We noted that genes that we classified as significantly ampli-
fied had an average Primer3 primer score of 0.4, whereas genes that
were classified as not significantly amplified had an average Primer3
primer score of 0.9, suggesting that there is a correlation between
Primer3 primer score and the successful amplification of PCR products.

Of the 49 genes analyzed, 34 (69%) returned aCt value under 30 in at
least one of the primer pairs (Table 2), meaning that these primer pairs
were viable for use in RT-PCR studies. For medium to highly expressed
genes with an average Ct value under 28, all of the primer pairs (28)
were successfully able to return Ct values under 30. The remaining 15
(31%) genes had Ct values over 30 across the three primer pairs, in-
dicating that they were very poorly expressed. For five of the 15 genes
that had Ct values over 30, we tested the remaining two primer sets to
see if we could obtain a reliable signal. None of the genes tested were
able to generate meaningful Ct values, suggesting that genes that were

not detected by our designed primers are either in extremely low abun-
dance under the conditions tested or poor candidates for RT-PCR
analysis rather than being an inherent program primer design failure.
Furthermore, when comparing the average Ct values of all the tested
primer pairs for genes with Ct values below 30 to the average Ct values
of test primer pairs for genes with Ct values above 30, the SD of the
average Ct value was strikingly lower in genes with Ct values below 30
than those genes with Ct values over 30 (Table 2) (i.e., compare
NCU06651 to NCU6799). The average SD for genes where all primer
pairs reported a Ct values below 30 was 0.52 (this calculation does not
include genes where some of the primer pairs had Ct values above 30),
whereas the average SD of those genes with a Ct value above 30 (this
calculations includes only the genes where a SD could be determined)
was 2.45.

DISCUSSION
Finding a functional and truly constitutive “housekeeping” gene to serve
as a reference gene in RT-PCRhas often been difficult because changing
cell or experimental conditions have been shown to have a large influ-
ence on gene expression levels (Schmittgen and Zakrajsek 2000), i.e.,
reference genes tend to change expression levels under different con-
ditions. This problem is augmented in circadian biology because many
commonly used RT-PCR reference genes have been shown to be reg-
ulated by the circadian clock (e.g., GAPDH) (Shinohara et al. 1998).
Here, we report a partially validated genome-wide set of RT-PCR pri-
mers for Neurospora that reliably reports mRNA levels for all moder-
ately to highly expressed genes and for 70% of all genes. There aremany
reasons for a less than perfect reporter rate, the most likely being that
we only investigated the mRNA levels in senescent hyphal growth in

Figure 5 Criteria for the selection of RT-PCR primers. A diagrammatic representation of the rules used for primer design. In all cases, the primers
are designed to create fragments between 100 and 250 bp in length. In the case of genes with no introns (mono-exonic genes), five unique primer
pairs are designed to fall between 500 and 100 bp from the end of the gene. In the case of a gene with one intron, the primer pairs are designed
to exclude the intron. In the case of genes with more than one intron, the primer pairs are designed to exclude the last intron in the gene, no
matter how many introns there are.
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a single type of growth medium. If we tracked mRNA extracted from
a number of different stages of the Neurospora life cycle in a variety of
different nutrient conditions, it seems likely that a greater percentage
of gene targets would be more highly expressed and could be identi-
fied by our primers. In addition, we did not discern if the mRNAs
investigated by this study were known to be poor candidates for RT-
PCR for some unknown reason (i.e., high levels of secondary struc-
ture). To develop manually a single RT-PCR primer sequence that
meets all of the standards set forth in our criteria takes approximately
5–10 min, suggesting that these predesigned primers may afford con-
siderable time-savings.

Circadian rhythmspresent a unique challenge for those investigating
mRNA levels via RT-PCR. Because as much as 40% of the genome
could be rhythmic at themRNA level (Hurley et al. 2014), finding genes
that show little change in expression over the circadian day to serve as
reference genes has been be difficult. Even well-known housekeeping
genes that are used regularly as RT-PCR reference genes have been
shown to cycle over circadian time (Shinohara et al. 1998). In this work,
we used an in-depth investigation into mRNA expression levels to
identify genes that demonstrated little change at the steady-state
mRNA level over circadian time, light induction, and QA response
(Hurley et al. 2014). We identified nine potential candidates that could

n Table 1 Setup of the RT-PCR primer data set

An example of the contents of the RT-PCR primer data set. Each transcript in Neurospora is listed with five primer pairs. Each primer pair is assigned a penalty score by
Primer3 that represents the strength of the primer pair: the lower the score, the closer the primer pair is to the required/enforced criteria.

n Table 2 Designed RT-PCR primers detect mRNAs in Neurospora

A chart of Ct values from primer pairs from the RT-PCR primer data set tested using RT-PCR with the Primer3 primer scores noted next to the Ct values in parentheses.
Scores represent a single biological replicate. Average Ct values are an average of all samples that had a readable Ct score, whereas SDs of Ct values are only
presented for genes that had three or more readable Ct values in the analysis. The average value of the Primer3 primer scores of gene with or without significant
amplification is noted next to the key. Blue boxed numbers represent significant amplification Ct , 30; red boxed numbers represent no significant amplification Ct .
30; red boxed NA, amplification; NT, not tested.
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be used as controls for any experiments involving long-term culture,
withmRNA levels that are minimally variable across multiple modes of
regulation. Many of the genes identified have orthologs in higher eu-
karyotes (Figure 1, Figure 2, Figure 3, and Figure 4 and Figure S1) and
therefore have the potential to be useful to other species that serve as
model organisms.
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